Регуляция репродуктивной функции млекопитающих в раннем онтогенезе. Системы регуляции онтогенеза. А также другие работы, которые могут Вас заинтересовать

Кафедра биологии с экологией и курсом
фармакогнозии
Лекция
ПРИНЦИПЫ И
МЕХАНИЗМЫ
РЕГУЛЯЦИИ
ОНТОГЕНЕЗА
Доцент ДЕГЕРМЕНДЖИ Н.Н

Вопросы:
Уровни регуляции
онтогенеза
Детерминация онтогенеза,
эмбриональная индукция
Генные и клеточные механизмы
регуляции онтогенеза

Уровни регуляции онтогенеза

Онтогенез – это совокупность
взаимосвязанных и хронологически
детерминированных событий в процессе
осуществления организмом жизненного
цикла. На каждом этапе индивидуального
развития происходит реализация
наследственной информации в тесном
взаимодействии с окружающей средой

Уровни регуляции онтогенеза

Генный
Клеточный
Организменный
Гены,
регулирующие
ход онтогенеза
Клеточные
механизмы
Нейрогуморальная
регуляция

Уровни регуляции онтогенеза

Проэмбринальный период
Амплификация генов-
образование копий генов,
что приводит к
возникновению
повторяющихся участков
ДНК и увеличению объема
генома.

Уровни регуляции онтогенеза

Проэмбринальный период
Ооплазматическая сегрегация –
специфическая организация яйца,
при которой в яйцах перед
оплодотворением происходит
перемещение цитоплазмы. И в
разных участках состав цитоплазмы
различный: на анимальном полюсе
увеличивается концентрация РНК и
гликогена, по экватору –
аскорбиновой кислоты
Образование и накопление в цитоплазме
питательных веществ

Уровни регуляции онтогенеза

Эмбриональный период
Детерминация - это возникновение
качественных различий между частями
развивающегося организма, предопределяет
дальнейшую судьбу этих частей, прежде чем
возникают морфологические различия между
ними
Потенции – максимальные возможности элементов
зародыша. В норме реализуется одно из них

Детерминация

Эмбриональный период
Тотипотентность –
равнонаследствен
ность. Зародыш
имеет широкие
потенции
Лабильная детерминация
у зародыша бластомеры
при пересадке ведут себя
соответственно месту
пересадки

Детерминация

Лабильная детерминация
Опыты Тарковски и Минц

Детерминация

Стабильная детерминация –
зачатки зародыша
детерминированы и дают начало
органам независимо от места
пересадки

Детерминация

Стабильная детерминация

Детерминация

Канализация развития

Эмбриональная индукция

Это взаимодействие частей
развивающегося зародыша, при этом
один участок зародыша влияет на
судьбу другого
Опыт Шпемана

ЭМБРИОНАЛЬНАЯ
ИНДУКЦИЯ
– это влияние группы клеток эмбриона
на дифференцировку рядом
расположенных клеток
– это влияние одних зачатков на
другие с помощью выделяемых
клетками веществ-регуляторов

Г. Дриш (1891)- явление
эмбриональной регуляции
Онтогенез есть целостный
процесс, а НЕ простая
сумма однозначных
причинно-следственных
звеньев!

Хордомезодермальный
зачаток - первичный
эмбриональный
организатор

ЭМБРИОНАЛЬНАЯ
ИНДУКЦИЯ обусловлена
СПЕЦИФИЧЕСКИМИ
ИНДУКТОРАМИ
ВКЛЮЧАЮТ И ВЫКЛЮЧАЮТ
БЛОКИ ГЕНОВ В РЯДОМ
РАСПОЛОЖЕННЫХ КЛЕТКАХ

Эмбриональный период

Таким образом, основными
способами эмбрионального
развития
являются:дифференциация,
детерминация, и все это
происходит во взаимосвязи всех
частей зародыша, т.е интеграции

В 1985 году были открыты гены, контролирующие ход
онтогенеза
Хроногены –контролируют
Регулируют все процессы
дробления до гаструляции
время наступления событий.
Самые ранние из хроногенов –
гены с материнским эффектом.
Образуются в яйцеклетке при
амплификации генов.
В результате появляется
большое количество копий
генов. Некоторые из них
транскрибируются и создается
большое количество иРНК,
которая начинает
транслироваться сразу после
оплодотворения.

Гены с материнским эффектом

Гены раннего эмбрионального развития дрозофил
Распределение матричной РНК

Гены, регулирующие ход онтогенеза

На стадии гаструляции начинают действовать гены
пространственной организации – это собственные
гены организма.
Они подразделяются на гены:
Сегментации - отвечают за образование сегментов.
Действуют до стадии поздней гаструлы.
Компартментализации – отвечают за
дифференцировку сегментов и образование
компартментов
Гомеозисные гены – обеспечивают нормальное
образование структур и расположение их в нужном месте.

Гены сегментации

Гены сегментации

Гены сегментации

Мутации генов сегментации у дрозофилы
Нобелевские
лауреаты 1995г.:
Э.Льюис; К.
Нюссляйн-Волхард;
Э.Вишуас – за
открытие
генетиечкогоконтроля
раннего
эмбрионалного
развития

Гомеозисные гены (HOM)

Обеспечивают развитие органов и
тканей в определенном месте
В структуре гомеозисных генов обнаружены
участки, имеющие сходную нуклеотидную
последовательность это, так называемые
ГОМЕОБОКСЫ
Гомеобоксы кодируют последовательность
аминокислот, которая называется ГОМЕОДОМЕН

Гомеозисные гены (HOM)

Гомеодомен
Мышь
Лягушка
ANTENNAPEDIA
FUSHITARASU
ULTRABITHORAX
Три,глу,арг,гли,иле,лиз,иле,три,фен,гли,асн,арг,арг,мет,лиз,тир,лиз,лиз,асп,глу

Три,глу,арг,гли,иле,лиз,иле,три,фен,гли,асн,арг,арг,мет,лиз,три,лиз,лиз,глу,асп
Сер,глу,арг,гли,иле,лиз,иле,три,фен,гли,асн, арг,арг,мет,лиз,сер,лиз,лиз,асп,арг
Три,глу,арг,гли,иле,лиз,иле,три,фен,глу, асн, арг,арг,мет,лиз,лей,лиз,лиз,глу,иле
Гомеодомен имеет большее сходство,
чем гомеобокс
Гомеобокс узнается гомеодоменом

Гомеозисные гены (HOM)

Мутации гомеозисных генов

Мутации гомеозисных генов

Личинка тутового шелкопряда

Мутации гомеозисных генов

Гомеозисные гены у человека

- Гены группы РАХ (играют важную роль
в развитии нервной системы).
- Гены MSX (при мутациипреждевременное зарастание швов в
черепе).
- EMX (при мутации – расщелина мозга в
одном или обоих полушариях).
- SOX (роль в первичной детерминации пола
и др.

Детерминация

Генетическая детерминация пола
Регуляция по типу «цинковые пальцы»

Схема набора генных переключателей

Морфоген
B
E
G
А
C
Морфоген
F
H
D
Кауфман, 1972

Гомология генов, контролирующих раннее развитие

Уровни регуляции онтогенеза

Генные механизмы
Клеточные механизмы
С материнским эффектом
Пролиферация
Сегментации
Дифференциация
Компартментализации
Гомеозисные
Сортировка
Перемещение
Адгезия

Пролиферация
Дифференциация
Сортировка
Перемещение
Адгезия
Апоптоз

Клеточные механизмы регуляции

Дробление
Гены - с материнским
эффектом
Клеточные механизмы пролиферация
Гаструляция
Гены – сегментации
Клеточные механизмы пролиферация,
перемещение,
сортировка

Клеточные механизмы регуляции

Гены: компартментализации
Клеточные механизмы:
Пролиферация
Дифференциация
Сортировка
Перемещение
Адгезия

Клеточные механизмы регуляции

В 1987 году были открыты Эдельманом
несколько групп белков, которые определяют
взаимодействие клеток в зародыше.
CAM – определяют взаимодействие клеток в
зародыше. Находятся на поверхности клеток и
взаимодействуют с такими же молекулами
соседних клеток. Участвуют в формировании
плотных и щелевых контактов.
SAM- определяют взаимоотношение клеток с
субстратом
CJM – молекулы клеточных контактов

Клеточные механизмы регуляции

Гисто – и органогенез
Гены: гомеозисные
Клеточные механизмы:
Пролиферация
Дифференциация
Сортировка
Перемещение
Адгезия
Апоптоз

Эпигенетический контроль

Эпигенетический контроль хода
онтогенеза осуществляется
следующими механизмами:
Нуклеосомной организацией
ДНК – белковыми
взаимодействиями
Альтернативным сплайсингом
Метилированием ДНК
Имринтингом

Эпигенетический контроль

Морфогенез определён
генетически, но
осуществляется благодаря
эпигенетическим
взаимозависимостям клеток и
их комплексов.
Нерегулируемые искажения
морфогенеза приводят к
аномалиям развития
(Тератомы).

Врожденные пороки в популяциях
человека (1-2%) подразделяются на
-
аплазии, агенезии
атрезия
гипоплазии
гиперплазии
гетеротопии
незаращение
персистирование
стенозы
гаметопатии
эмбриопатии

Развитие организма
определяют:
-генетические факторы
-взаимодействие частей
зародыша
- факторы внешней
среды ГОУ ВПО «Сургутский государственный университет ХМАО-Югры»

Методическая разработка

лабораторного занятия № 11 для студентов I-курса.

Тема занятия: «Регуляция онтогенеза».

Выполнил (а) студент (ка) I курса

Медицинского института

31- _____ группы

Ф.И.О._________________________

_________________________

Сургут, 2010 г.

Цель занятия : Изучить основные механизмы регуляции онтогенеза, критические периоды онтогенеза человека; влияние вредных факторов на плод и механизмы образования пороков развития.

Вопросы для самоподготовки студентов:


  1. Регуляционный и мозаичный тип развития, их отличия.

  2. В чем сущность дифференцировки клеток?

  3. Как происходит регуляция ранних стадий эмбрионального развития; когда начинает функционировать геном зародыша?

  4. В чем заключается действие генов в раннем развитии?

  5. Как изменяется генетическая потенция ядер клеток в процессе развития?

  6. Как осуществляется генетическая регуляция дифференци­ровки?

  7. Чем отличается взаимодействие клеток в период дробления, гаструляции, органогенеза?

  1. Какое значение имеет контакт бластомеров, к чему приво­дит их разъединение?

  2. Возможно ли развитие зародыша млекопитающих из смеси клеток двух-трех зародышей?

  1. Каковы основные формы взаимодействия клеток в периоды органогенеза?

  2. В чем сущность эмбриональной индукции, ее виды?

  3. Каковы химическая структура индукторов и механизм их действия?

  4. Какое значение имеет нервная система в регуляции онтоге­неза?

  5. В чем сущность гуморальной регуляции онтогенеза, виды регуляторов.

  6. Каковы механизмы гормональной регуляции в онтогенезе?

  7. Какое значение в эмбриогенезе имеют морфогенетические поля?

  8. Каковы возможные пути действия факторов среды, вызы­вающие нарушение эмбриогенеза?

  9. Почему эмбриопатии характеризуются более глубокими нарушениями, чем фетопатии?

  10. Как осуществляется взаимосвязь материнского организма и плода, каковы последствия ее нарушения?

  11. В чем разница между наследственными и ненаследственны­ми врожденными заболеваниями?

  12. Что такое фенокопии?

  13. Нарушения каких процессов в онтогенезе приводят к поро­кам развития?

  14. Что такое критические периоды эмбриогенеза?

  15. Что такое тератогены; их классификация, механизм действия?

Задание для студентов.

Работа 1. Регуляция развития плацентарных млекопитающих.

Перепишите табл. 1.

Таблица 1


Периоды онтогенеза

Виды регуляции

генетическая

контактное взаимодействие клеток

эмбриональ­ная индукция

морфо генети­ческие поля

нервная

гормональная (гормоны зародыша)

факторы среды

Прогенез

Эмбриогенез:

Зародыш на ста­дии дробления

Бластула

Гаструла

Зародыш на ста­дии органогенеза Зародыш в плод­ный период

^ Постэмбриональный период


+

Геном матери

^ Работа 2. Генетическая регуляция развития организма.

Гены регулируют и контролируют развитие организма на всех этапах онтогенеза (рис. 1).


Рис. 1. Генетический контроль развития млекопитающих [Коню­хов Б. В., 1976].

В овогенезе в цитоплазме яйцеклетки синтезируются и от­кладываются материнские РНК, которые несут информацию о белках и контролируют развитие зародыша от зиготы до стадии бластулы. Гены зародыша начинают функционировать у позво­ночных на разных стадиях дробления (например, у человека на стадии двух бластомеров), и продукты их деятельности начина­ют регулировать развитие зародыша. Таким образом, ранние этапы развития регулируются материнскими и зародышевыми генами. Начиная со стадии гаструлы у позвоночных развитие организма регулируется только продуктами деятельности соб­ственных генов зародыша.

Регуляция экспрессии генов в процессе развития организ­мов осуществляется на всех этапах синтеза белка, как по типу индукции, так и по типу репрессии, причем контроль на уровне транскрипции определяет время функционирования и характер транскрипции данного гена.

Разберите некоторые модели генетической регуляции на уровне транскрипции (рис. 2). Зарисуйте модель 1.


Рис. 2. Генетическая регуляция на уровне транскрипции.

А - модель 1: каскадная эмбриональная индукция; б - модель 2: репрессия ко­нечным продуктом; в - модель 3: регуляция экспрессии генов несколькими генами-регуляторами; г - модель 4: регуляция нескольких групп структурных генов одним геном.

Обозначьте:

С – сенсорный ген;

И – ген-интегратор;

П – промотор;

СГ – структурные гены;

O – индуктор;

Δ – репрессор.

Модель 1. Каскадная эмбриональная индукция (рис. 2, а).

Индуктор 1 взаимодействует с сенсорным геном (С), акти­вируя ген-интегратор (И), продукт деятельности которого дей­ствует через промотор (П) на структурные гены (СГ 1 , СГ 2 и СГ 3). В свою очередь продукт деятельности СГ 3 является ин­дуктором 2 для структурных генов СГ 4 , СГ 5 и т.д.

Модель 2. Репрессия конечным продуктом (рис. 2, б).

Продукты активности структурных генов в свою очередь ре­прессируют деятельность гена, контролирующего синтез ин­дуктора 1.

Модель 3. Регуляция экспрессии генов несколькими гена­ми-регуляторами (рис. 2, в).

Структурные гены активируются или репрессируются про­дуктами действия нескольких генов.

Модель 4. Регуляция нескольких групп структурных генов одним геном (рис. 2, г).

Индукция или репрессия нескольких структурных генов продуктом деятельности одного гена. Этой моделью можно объяснить плейотропное действие генов, влияние половых гормонов и т.д.

^ Работа 3. Политенные хромосомы.

В создании тканеспецифических продуктов участвует лишь небольшая часть генома. Места активного синтеза мРНК - пу­фы - хорошо видны в политенных (гигантских) хромосомах и представляют собой расплетенные участки хромосом, образую­щие менее компактную структуру.

А. Изучите микропрепарат под микроскопом при большом увеличении и зарисуйте. Обозначьте: 1 - эухроматин, 2 - гетерохроматин, 3 - пуф.

Б. Изучите по рис. 3 участок политенной хромосомы, пре­терпевающий пуфинг (по Grossbach, 1973, из Гилберт С., 1994). Зарисуйте рис. 3, г.


Рис. 3. Процесс пуфинга.

А-г - стадии образования пуфа;


Рис. 3. Процесс пуфинга (Продолжение)

Д - пуфинг в политенных хромосомах в динамике.

Работа 4. Регуляционная способность ядер. Клонирование.

В онтогенезе при дифференцировке клеток происходит избирательная экспрессия разных частей генома и ограничение генетических потенций у дифференцированных клеток. Одна­ко в ядрах соматических клеток сохраняются все гены, и в соот­ветствующих условиях они могут реактивироваться и обеспе­чить развитие нормального зародыша. Клонирование - это развитие нового организма, являющегося точной генетической копией родительской особи. У видов, размножающихся поло­вым путем, клонирование происходит при пересадке ядер из соматической клетки в энуклеированную яйцеклетку. Молодая особь при клонировании является точной копией организма-донора ядер соматических клеток. В настоящее время получе­ны путем клонирования животные разных классов, в том числе и млекопитающие. Оказалось, что в процессе, развития генетические потенции ядер соматических клеток снижаются, и чем старше донор соматических ядер, тем ниже процент развития клонированных особей. Кроме того, установили, что генетиче­ские потенции разных клеток донора неодинаковы.

Изучите рисунки по пересадке ядер, взятых из соматических клеток на разных стадиях развития лягушки (по Гёрдон, 1965, из Дьюкар Э., 1978) (рис. 4).


^ Рис. 4. Пересадка ядер из соматических клеток в яйцеклетки лягушки на разных стадиях развития клеток донора.

Работа 5. Взаимодействие бластомеров в период дробления , (лечебный факультет).

а. Влияние положения бластомеров на их дифференцировку. На дифференцировку клетки влияет ее положение в определен­ном месте зародыша в определенное время. У плацентарных животных до завершения восьмиклеточной стадии разные бластомеры не отличаются друг от друга по морфологии, биохимии и потенциям. Однако компактизация (сближение и увели­чение контакта бластомеров с образованием компактного клеточного шара) приводит к образованию наружных и внутрен­них клеток, которые резко различаются по своим свойствам. Наружные клетки формируют трофобласт, а внутренние - зародыш. Опыт по пересадке бластомеров показывает, что образование из бластомеров трофобласта или клеток зародыша оп­ределяется тем, где оказалась клетка - на поверхности или внутри группы клеток.

Изучите рис. 5, а пересадки бластомеров у зародышей мыши [Минц Б., 1970; Hillman et al., 1972].


Рис. 5. Взаимодействие бластомеров в период дробления.

А - пересадка бластомеров зародышам мыши; б - соединение бластомеров у зародышей мыши: 1 -зародыш, 2 - трофобласт; в - механизмы формирова­ния однояйцевых близнецов и двойниковых уродств у человека: 1 - внутрен­ние клетки бластоцисты; 2 - полость бластоцисты; 3 - зародыш; 4 - полость амниона; 5 - полость хориона; 6 - не полностью разъединенные близнецы.

б. Влияние контакта бластомеров на развитие зародыша. Образование однояйцевых близнецов и двойниковых уродств у человека.

При сохранении полного контакта бластомеров развивается один организм. Также один организм развивается при объеди­нении бластомеров нескольких зародышей. После специально­го воздействия бластомеры нескольких четырехклеточных за­родышей могут соединиться с образованием общей морулы. Например, если соединить бластомеры зародышей трех разных линий с контрастной окраской (белой, черной и рыжей), фор­мируется морула, из которой развиваются мыши с разноокрашенными участками кожи. Это связано с перемешиванием бла­стомеров зародышей разных линий мышей, часть из которых пошла на образование зародыша и свидетельствует о том, что наследственный материал бластомеров не смешивается.

Изучите рис. 5,б - соединение бластомеров у зародышей [Гилберт С, 1993].

Потеря контакта между бластомерами изменяет их судьбу. Разъединение клеток зародыша на ранних этапах развития при­водит к образованию идентичных близнецов, так как ранние бластомеры тотипотентны. Неполное разъединение клеток за­родыша приводит к возникновению двойниковых уродств, ко­торые могут быть у разных видов беспозвоночных, позвоноч­ных животных и у человека.

Рассмотрите слайды, таблицы, рисунки с примерами двой­никовых уродств у разных видов животных и человека.

Изучите рис. 5, в, на котором показан механизм образова­ния однояйцевых близнецов и двойниковых уродств у человека [из: Гилберт С., 1993, переработано].

Рис. 5. Продолжение.

Примерно в 33 % случаев разъединение бластомеров идет до образования трофобласта. Близнецы имеют собственные хорион и амнион.

Разъединение бластомеров после образования трофобласта, но до образования амниона происходит примерно в 66 % случаев. Близнецы имеют собственные амниотические оболочки, но находятся в общем хорионе.

Разъединение бластомеров после образования ам­ниона происходит редко, в нескольких процентах случаев. Близнецы имеют общие амнион и хорион.

Неполное разъединение клеток зародыша. Близне­цы имеют общие отделы тела (двойниковое уродст­во).

Работа 6. Клеточные процессы в периоды гаструляции и ор­ганогенеза.

Изучите табл. 2, рис. 6 и 7, слайды и препараты по эм­бриогенезу животных. Перепишите таблицу.


Рис. 6. Последовательные этапы формирования лица (вид спереди). а - 4-недельный зародыш (3,5 мм.); б - 5-недельный зародыш (6,5 мм); в - 5,5-недельный зародыш (9 мм); г - 6-недельный зародыш (12 мм); д - 7-недельный зародыш (19 мм); е - 8-недельный зародыш (28 мм). 1 - лобный выступ; 2 - обонятельная плакода; 3 - носовая ямка; 4 - ротовая пластинка; 5 - ротовое отверстие; 6 - верхнечелюстной отросток; 7 - нижнечелюстная дуга; 8 - гиоидная дуга; 9 - медиальный носовой отросток; 10 - латеральный носовой отросток; 11 - носослезная бороздка; 12 - гиомандибулярная щель; 13 - область филтрума, сформированная слившимися медиальными носовыми отростками; 14 - наружное ухо; 15 - слуховые бугорки вокруг гиомандибулярной щели; 16 - подъязычная кость; 17 - хрящи гортани.

Таблица 2


Формы клеточных взаимодействий

Образование нормальных структур (примеры)

Последствия нарушений межклеточных взаимодействий (примеры)

^ Клеточные перемещения

Избирательное размножение клеток

Избирательная клеточная гибель

Клеточная адгезия

Клеточные сгущения


Перемещение клеток при гаструляции, при образовании нервной трубки, при перемещении первичных половых клеток.

Закладка зачатков отдельных органов.

Разделение пальцев, гибель эпителиальных клеток при слиянии небных зачатков, носовых отростков.

Гибель нейроэпителиальных клеток при образовании нервной трубки.

Образование нервной трубки из нервной пластинки, слияние зачатков структур лица (небных отростков, носовых отростков между собой и с верхнечелюстными отростками).

Образование зачатков конечностей.


Нарушение образования гаструлы, нервной трубки; нарушение структуры, изменение количества или отсутствия гонад.

Отсутствие органа или его доли.

Синдактилия, расщелина твердого неба, расщелины твердой губы, лица, спинномозговые грыжи.

Спинномозговая грыжа, расщелины твердого неба, верхней губы, лица.

Отсутствие конечностей, дополнительные конечности.

Рис. 7. Развитие неба у зародыша свиньи [Карлсон Б., 1983].

А-г - этапы развития вторичного неба (препарат крыши ротовой полости, х 5); д, е (поперечные срезы, иллюстрирующие до и после опускания языка, 1 - верхняя губа; 2 - срединный небный отросток; 3 - латеральный небный отросток; 4 - носовая перегородка; 5 - язык; 6 - шов неба.

Работа 7. Эмбриональная индукция.

Разберите рис. 8, а, б, зарисуйте и обозначьте основные структуры.

Рис. 8. Эмбриональная индукция почки и зуба у млекопитающих, а - развитие почек: 1 - предпочка. 2 - мезонефральный канал, 3 - мезенхима первичной почки, 4 - первичная почка, 5 - вырост мочеточника вторичной почки, 6 - мезенхима вторичной почки, 7 - зачаток вторичной почки, → ин­дукция; б - ранние стадии развития зуба: I - десна нижней челюсти (вид свер­ху): II - поперечный срез десны; III-VI - стадии развития зуба: 1 - гребень десны, 2 - зубная пластинка, 3 - мезодермальные зубные сосочки, 4 - зача­ток эмалевого органа, 5 - амелобласты, 6 - зачаток эмали, 7 – одонтобласты, 8 - зачаток дентина, 9 - зачаток пульпы, 10 - эмаль, 11 - дентин; → индук­ция; ↔ − взаимная индукция.

^ Лечебный факультет :

А. Эмбриональная индукция, обусловливающая развитие почек у млекопитающих (рис. 8, а).

Мезонефральный (вольфов) канал индуцирует образование первичной почки. Вырост мочеточника из мезонефрального канала индуцирует образование вторичной почки, которая в свою очередь поддерживает рост мочеточника. Метанефрогенная мезенхима индуцирует ветвление мочеточника. Эпителий разветвлений мочеточника индуцирует мезенхиму к образованию почечных канальцев.

^ Стоматологический факультет

Б. Эмбриональная индукция, обусловливающая развитие зуба у млекопитающих (рис. 8, б) [Дьюкар Э., 1978].

Первый зачаток зубов - зубная пластинка, утолщенная по­лоска эктодермы по гребню десны, развивается независимо от мезодермы. Под зубной пластинкой появляется ряд мезодермальных зубных сосочков, которые индуцируют образование из эктодермы зачатков эмалевого органа (при удалении мезодермальных сосочков зачатки эмалевого органа не образуются). Взаимная индукция между эмалевым органом и мезодермальным зубным сосочком приводит к формированию клеток, об­разующих эмаль, дентин и пульпу. На следующей стадии дифференцировки возникающие эмаль и дентин оказывают взаимное влияние на развитие друг друга.

Работа 8. Взаимосвязь нервной системы и иннервируемого ею органа в онтогенезе.

Взаимодействие между центрами ЦНС и иннервируемыми органами устанавливается на ранних этапах эмбриогенеза, при­чем эти структуры взаимно стимулируют развитие друг друга. Отсутствие периферических нервов или их повреждение (на­пример, лекарственными препаратами, токсинами токсоплазмы и др.) вызывают нарушение формирования иннервируемых ими структур. Так, например, в Европе родились несколько со­тен детей с отсутствием конечностей, матери которых в период беременности принимали снотворное талидомид.

В постнатальном периоде сохраняется взаимосвязь между нервной системой и иннервируемыми органами. Родовые трав­мы головного мозга и периферических нервов приводят не только к параличам, но и к атрофии мышц и отставанию роста соответствующих конечностей или односторонней гипотрофии структур лица (при врожденном параличе VI-VII черепных нервов). Способствуют восстановлению поврежденных струк­тур головного и спинного мозга пассивные движения (для это­го созданы специальные аппараты), массаж и физиотерапевти­ческая стимуляция иннервируемых органов.

При нейрофиброматозе (аутосомно-доминантный тип на­следования) развиваются опухоли периферических нервов. Если заболевание начинается в раннем детстве, то на той сто­роне тела, где развиваются опухоли, возникает гипертрофия костей и мягких тканей. Например, развивается дизморфоз лица (несимметричное, непропорциональное развитие струк­тур, формирующих лицо).

Установлено, что в раннем детстве игры, способствующие движению кистей рук, особенно мелкие, точные формы дея­тельности, стимулируют развитие структур головного мозга, в том числе и развитие интеллекта.

Разберите схемы экспериментов по изучению взаимосвязи нервных центров и иннервируемых органов.

Удаление нерва на левой стороне зародыша аксолотля при­вело к отсутствию конечности на оперированной стороне тела. Отсутствие конечности может быть обусловлено действием нейротропных тератогенов (токсины при токсоплазмозе, тали­домид и др.) (рис. 9, а).

Удаление зачатка конечности у зародыша аксолотля приво­дит к уменьшению размеров ганглиев и рогов серого вещества спинного мозга на оперированной стороне (рис. 9, б).


Рис. 9. Взаимосвязь нервных центров и иннервируемых органов [Дьюкар Э., 1978, с изменениями].

А - влияние спинномозговых нервов на развитие конечности: 1 - спинной мозг, 2 - спинномозговой нерв, иннервирующий конечность, 3 - спинномоз­говой ганглий, 4 - конечность; б- влияние зачатка конечности на развитие сегментов спинного мозга (поперечный сред зародыша аксолотля с удаленным зачатком конечности: 1 - спинномозговой ганглий, 2 - спинномозговой нерв, 3 - дорсальные рога серого вещества спинного мозга, 4 - вентральные рога се­рого вещества спинного мозга.

Работа 9. Гормональная регуляция онтогенеза у плацентар­ных млекопитающих.

Изучите по табл. 3 влияния гормонов на процессы разви­тия организма.

Таблица 3


Источник образования

Гормона


Гормоны

Основные эффекты

Гипоталамус

Гипофиз

^ Эпифиз (шишковид­ное тело)

Щитовид­ная железа

Поджелудоч­ная железа

Надпочеч­ники

Яичники:

фолликулы

желтое тело

Плацента

Семенники

Тимус

Либерины

Гонадолиберин

Соматропный гормон

Тиреотропный гормон(ы)

Адренокортикотропный гормон (АКТГ)

Гонадотропины:

А) фолликулостимулирующий гормон (ФСГ)

Б) лютеинизирующий гормон

В) пролактин (лютеотропный гормон - ЛТГ)

Мелатонин (син­тезируется но­чью)

Серотонин (син­тезируется днем)

Тироксин

Инсулин

Кортизол

Эстрогены

Прогестерон

Прогестерон

Хорионический соматомаммотропин (плацен­тарный гормон роста)

Тестостерон

Фактор, ингибирующий парамезонефральные протоки

Дигидротестостерон

Тимозин


В раннем эмбриогенезе гормоны ги­поталамуса влияют на дифференцировку и миграцию нейронов.

В позднем эмбриогенезе и постна­тальном периоде - регулируют разви­тие опосредованно путем изменения синтеза гормонов гипофиза.

Усиливают синтез гормонов аденогипофиза.

Тормозят синтез гормонов аденогипофиза.

Определяет момент наступления по­ловой зрелости и характер полового поведения.

Усиливает пролиферацию клеток и синтез белка. В постнатальном перио­де регулирует рост.

Ускоряет рост и дифференцировку клеток щитовидной железы.

Стимулирует рост надпочечников и продукцию стероидов.

Усиливают пролиферацию стволовых клеток, рост фолликулов в яичниках, стимулируют рост семенных канальцев и семенников, образование поло­вых гормонов в гонадах. Инициируют гаметогенез.

Поддерживает желтое тело беремен­ности в активном состоянии. Стиму­лирует рост молочной железы и секрецию молока.

Регулирует суточные биологические ритмы, половое созревание и репро­дуктивные функции.

Чувствительные к серотонину нейро­ны регулируют поведение, сон, про­цессы терморегуляции.

Регуляция двигательной активности пищеварительного тракта.

Повышает интенсивность обмена ве­ществ и синтеза белка; регулирует развитие головного мозга, рост и про­порции тела.

Необходим для нормального развития производных кожи. Инициирует дифференцировку молочной железы. Усиливает пролиферацию.

Необходим для нормального развития многих органов на поздних стадиях он­тогенеза. Стимулирует поздние стадии дифференцировки молочных желез.

Стимулируют развитие женских вто­ричных половых признаков; способст­вуют пролиферации и секреции в эпи­телиальных клетках матки; начальных изменений в молочных железах.

Сохранение беременности; дальнейшая дифференцировка молочных желез.

Дальнейшая пролиферация эпителия матки и сохранение беременности; дальнейшая дифференцировка мо­лочных желез.

Действие, сходное с действием гормо­на роста и пролактина гипофиза.

Определяет развитие мужских поло­вых путей, семенников, вторичных половых признаков и гормональной функции гипоталамуса (в эмбриогенезе), ингибирует развитие молочных желез, регулирует рост тела.

Регрессия парамезонефральных мюллеровых протоков.

Развитие предстательной железы, пениса, мошонки.

Пролифирация Т-лимфоцитов.

Работа 10. Воздействие вредных факторов среды на зародыш.

Изучите таблицу 4, разберите и зарисуйте схему 1, приведите примеры прямого и опосредованного повреждения зародыша.

Таблица 4


Факторы

Основные механизмы нарушений

Эмбрио- и фетопатии

I. Неполноценное питание матери

1. Голодание и недоедание

2. Дефицит белка

3. Дефицит вита­минов (часто без гиповитаминоза у матери):

Витамина А

витамина В2

витамина С

витамина Е

фолиевая кислота

4. Избыток витаминов:

Витамина А

витамина С

^ II. Заболевания матери


  1. Ревматические пороки сердца

  1. Ненаследственные врожден-ные пороки сердца

  1. Гипертониче­ская болезнь

4. Анемия

5. Сахарный диабет

6. Тиреотоксикоз

7.Патология надпочечников

8. Иммунологи­ческий конфликт (по резус-факто­ру и системе АВ0; наиболее часто несовмес­тимы: 0 - А, 0 - В, А - В, В - А, комбинации групп крови ма­тери и плода)

III. Внутриутроб­ные инфекции

1.Вирус краснухи

2. Вирус гриппа

3. Вирус полиомиелита

4. Вирусный ге­патит (болезнь Боткина)

Токсоплазмоз

^ IV. Ионизирующая радиация

V. Влияние хи­мических соеди­нений, в том чис­ле лекарственных веществ (более 600 соединений)

Алкоголь


Нарушение трофики за­родыша.

Нарушение метаболизма у зародыша.

Нарушение окислитель­но-восстановительных процессов в эпителии.

Нарушение роста, обра­зование ферментов био­логического окисления.

Нарушение процессов окисления, образования соединительной ткани, биосинтеза.

Нарушение окисления жиров, приводящее к по­явлению токсичных про­дуктов.

Нарушение синтеза ряда аминокислот, метальных групп.

Нарушение роста, окислительно-восстановительных процессов.

Гипоксия, нарушение трофики, дистрофиче­ские изменения плацен­ты.

Гипоксия, нарушение трофики, дистрофиче­ские изменения плаценты.

Гипоксия, нарушение маточно-плацентарного кровообращения, морфофункциональные на­рушения плаценты.

Нарушается транспорт кислорода к плоду, де­фицит железа, морфоло­гические изменения пла­центы.

Гормональные сдвиги, гипергликемия и кетоацидоз, ухудшение маточно-плацентарного кровообращения, пато­логические изменения в плаценте.

Повышенное выделение гормонов щитовидной железы.

Недостаток или избыток гормонов надпочечников.

Проникают через пла­центу резус-антитела. Проникновение через плаценту неполных изоиммунных антител А и В, которые вызывают ге­молиз эритроцитов пло­да. Выделившийся не­прямой билирубин явля­ется сильным тканевым токсином.

Инфицирование зароды­ша, особенно в первые три месяца развития.

Инфицирование плода, интоксикация организма матери, гипертермия, нарушение маточно-плацентарного кровообра­щения.

Вирус переходит через плаценту, вызывая забо­левание.

Патологические изменения материнского организма, изменения в плаценте.

Поражение зародыша проникающими радиацией и токсичными продуктами поврежденных тканей.

Непосредственное дейст­вие на зародыш. Наруше­ние структуры и функ­ции плаценты. Патологи­ческие изменения в мате­ринском организме.

Прямое токсическое действие на плод, пла­центу и организм матери.

Повреждение гамет, ге­неративные мутации. Прямое токсическое действие.


Гипотрофия плода, различные аномалии развития, преимущественно центральной нервной системы, мертворождение, ослабленные, склонные к заболевани­ям дети.

Дефекты органов зрения и мочеполовой системы.

Деформация конечно­стей, расщепление твер­дого неба, гидронефроз, гидроцефалия, аномалии сердца и др.

Возможны гибель заро­дыша, выкидыш.

Аномалии мозга, глаз, скелета.

Пороки сердца и сосудов.

Расщепление твердого неба, анэнцефалия.

Увеличивается вероят­ность выкидыша.

Гипотрофия плода, функциональная незре­лость, аномалии органов и систем, преимущест­венно сердечно-сосуди­стой. У детей часто встречаются инфекционно-аллергические за­болевания и нарушения нервной системы.

Гипотрофия плода. По­роки развития, в основ­ном сердца и сосудов.

Гипотрофия плода, на­рушения сердечно-сосу­дистой системы. Повы­шенная заболеваемость у детей.

Гибель плода, наруше­ние центральной нерв­ной системы, анемия у детей.

Гибель плода, недоно­шенные, незрелые с повышенной массой плоды, функциональная не­зрелость поджелудочной железы, легких, реже из­менения щитовидной железы, почек. Встреча­ются анэнцефалия, гид­ронефроз и другие нарушения центральной нервной системы

Нарушение формирова­ния центральной нерв­ной системы, щитовид­ной железы и, меньше, других желез внутренней секреции. Реже аномалии сердечно-сосудистой системы, костно-мышечной, половой и др.

Функциональная неполно­ценность надпочечников.

Гемолитическая болезнь плода и новорожденного.

Аномалии сердца, мозга, органов слуха, зрения и др.

Аномалии половых орга­нов, катаракта, «заячья губа».

Врожденный полиомие­лит.

Уродства на разных стади­ях развития. Врожденный вирусный гепатит, ослож­ненный циррозом печени; задержка развития.

Уродства головного моз­га, глаз, конечностей, «волчья пасть», пороки сердца, заболевания эн­докринных органов.

Врожденная лучевая бо­лезнь. Наиболее часто паралич нервной системы. Могут быть анома­лии глаз, сосудов, легких, печени, мочеполовых ор­ганов, конечностей.

Различные пороки раз­вития, зависящие от ве­щества, дозы и срока по­ступления.

Гипотрофия, склонность детей к респираторным заболеваниям.

Умственная отсталость, психические заболева­ния, пороки сердца, эпи­лепсия, алкогольное по­ражение плода.

Схема 1. Воздействие вредных факторов среды на зародыш.


Работа 11. Критические периоды в онтогенезе человека.

Изучите и перепишите табл. 5.

Таблица 5


Периоды онтогенеза человека

Критические периоды

Возможные нарушения развития

Предымплантаци­онный и имплантационный

Период гисто- и органогенеза и начала плацентации

Перинатальный пе­риод (роды)

Период новорожденности

Подростковый (пу­бертатный)

Климактерический


Для всего зародыша

Для разных органов и систем не совпадают по времени

Для всего организма и отдельных органов и систем

Для всего организ­ма и отдельных ор­ганов и систем

Для всего организ­ма и отдельных ор­ганов и систем


Гибель зародыша

Двойниковые уродства

Наследственные болезни

Пороки и аномалии развития различных органов и систем, гибель зародыша

Травмы, детский церебральный паралич, слабоумие, гибель

Высокая вероятность перегревания, переохлаждения, патологии различных организмов и систем, неспецифических инфекций и гибели

Повышен риск проявления ненаследственных заболеваний, нарушения обмена веществ, подростковых нарушений поведе­ния, психической ранимо­сти, агрессивности. Увели­чивается смертность

Возрастает риск развития соматических и психиче­ских болезней, увеличива­ется частота возникнове­ния опухолей. Повышается смертность

^ Работа 12. Классификация и механизмы образования пороков развития.

Изучите и перепишите информацию по классификации механизмов образования пороков развития.

^ I. По этиологическому признаку.

1. Наследственные: а) генеративные мутации (наследственные болезни); б) мутации в зиготе и бластомерах (наследственные болезни, мозаицизм).

2. Ненаследственные: а) нарушение реализации генетической информации (фенокопии); б) нарушение взаимодействия клеток и тканей; пороки развития органов и тканей (тератомы, кисты); в) соматические мутации (врожденные опухоли.)

3. Мультифакториальные.

II. По периоду онтогенеза.


  1. Гаметопатии: а) наследственные; б) ненаследственные (перезревание гамет).

  2. Бластопатии до 15-го дня; а) наследственные болезни (мозаицизм - зародыш состоит из клеток с нормальным и атипичным набором хромосом); б) не наследственные (двойниковые уродства, циклопия, сиреномелия).

  3. Эмбриопатии до конца 8-й недели: большинство поро­ков развития, пороки, обусловленные действием тератогенов.

  4. Фенопатии от 9 нед. до родов. Пороки этой группы встре­чаются редко: остатки эмбриональных структур (персистирование); сохранение первоначального расположения органов, например крипторхизм; недоразвитие отдель­ных органов или всего плода, отклонения в развитии органов.

  5. ^ Пороки, возникающие в постнатальный период (возника­ют реже, чем вышеуказанные пороки, обусловлены трав­мами или заболеваниями).

Контроль итогового уровня знаний:

Тестовые задания

1. Выберите один правильный ответ.

^ УЧЕНИЕ О ЗАРОДЫШЕВОМ РАЗВИТИИ ОРГАНИЗМОВ ПУТЕМ ПОСЛЕДОВАТЕЛЬНЫХ ОБРАЗОВАНИЙ НО­ВЫХ СТРУКТУР НАЗЫВАЕТСЯ:


  1. Преформизм.

  2. Эпигенез.

  3. Трансформизм.

  4. Витализм.

2. Выберите один правильный ответ.

^ ГЕНЕТИЧЕСКАЯ РЕГУЛЯЦИЯ ОНТОГЕНЕЗА У ПОЗВО­НОЧНЫХ ОСУЩЕСТВЛЯЕТСЯ ПУТЕМ:

1. Уменьшения количества генов в процессе развития.

2. Репрессии генов.

3. Дерепрессии генов.

4. Дерепрессии и репрессии генов.

3. Выберите один правильный ответ.

^ ПРИ КЛОНИРОВАНИИ РЕГУЛИРУЮТ РАЗВИТИЕ ЗА­РОДЫША ГЕНЫ:


  1. Сперматозоида.

  2. Яйцеклетки.

  3. Сперматозоида и яйцеклетки.

  4. Соматической клетки.

4. Выберите один правильный ответ.

^ ОДНОЯЙЦОВЫЕ БЛИЗНЕЦЫ ОБРАЗУЮТСЯ В РЕЗУЛЬТАТЕ;


  1. Разъединения клеток зародыша на стадии гаструлы.

  1. Разъединения клеток зародыша на стадии дифференцировки зародышевых листков.

  1. Полного расхождения бластомеров.

  2. Неполного расхождения бластомеров.
5. Выберите несколько правильных ответов.

^ ПРИ ОБРАЗОВАНИИ НЕРВНОЙ ТРУБКИ ПРОИСХОДИТ:


  1. Избирательное размножение клеток.

  2. Сгущение мезодермальных клеток.

  3. Избирательная гибель клеток.

  4. Адгезия клеток.

6. Выберите один правильный ответ.

^ ЭМБРИОНАЛЬНАЯ ИНДУКЦИЯ НАЧИНАЕТ РЕГУЛИ­РОВАТЬ РАЗВИТИЕ ПОЗВОНОЧНЫХ В ПЕРИОД:


  1. Дробления.

  2. Ранней гаструляции.

  3. Нейруляции.

  4. Органогенеза.

7. Выберите несколько правильных ответов.

^ СТАДИЯ ЗАВИСИМОЙ ДИФФЕРЕНЦИРОВКИ КЛЕТОК ХАРАКТЕРИЗУЕТСЯ:


  1. Повышением чувствительности к действию индукторов.

  2. Понижением чувствительности к действию индукторов.

  3. Отсутствием способности к трансдифференцировке.

  4. Способностью к трансдифференцировке.
8. Выберите один правильный ответ.

^ ГОРМОНАЛЬНАЯ РЕГУЛЯЦИЯ РАЗВИТИЯ У МЛЕКО­ПИТАЮЩИХ НАЧИНАЕТСЯ В ПЕРИОД:


  1. Гаструляции.

  2. Дробления.

  3. Гисто- и органогенеза.

  4. Плодный.

9. Выберите несколько правильных ответов.

^ НАИБОЛЬШАЯ ЧУВСТВИТЕЛЬНОСТЬ ОРГАНОВ ЗАРО­ДЫША К ДЕЙСТВИЮ ТЕРАТОГЕНА В ПЕРИОДЫ:


  1. Закладки зачатков органов.

  2. Закладки новых структур органа.

  3. Дифференцировки клеток органа.

  4. Роста органа.

10. Установите соответствие.

^ ПОРОКИ РАЗВИТИЯ: МЕХАНИЗМЫ ВОЗНИКНО ВЕНИЯ:


  1. Наследственные. а) генеративные мутации;

  2. Ненаследственные. б) мутации в бластомерах;
в) мутации в клетках зачатков органов;

Г) нарушение функций генов;

Д) нарушение закладки органов.

Термины:

Адгезия, биологическая смерть, взрослое состояние, гуморальной регуляции онтогенеза, дефинитивные структуры органов, дорепродуктивный период, зародыш, зародышевые оболочки, критический период развития, критические периоды эмбриогенеза, личиночное развитие, развитие половозрелого организма, репродуктивный период, пострепродуктивный период, половое созревание, прямое развитие, непрямое развитие (развитие с метаморфозом), сиреномелия, старение, циклопия, ювенальный период, эмбриональной индукции.

Основная литература

1. Биология / Под ред. В.Н. Ярыгина. - М.: Высшая школа, 2001. - Кн. 1. - С. 150, 280-282, 294-295, 297-298, 317-368, 372, 409-418.

2. Пехов А.П. Биология и общая генетика. - М.: Изд-во РУДН, 1993. - С. 166, 201-219.

Дополнительная литература

1. Газарян К.Г., Белоусов М.В. Биология индивидуального развития жи­вотных. - М.: Высшая школа, 1983.

2. Гилберт С. Биология развитая. - М.: Мир, 19^9,3, т. 1; 1994, т. 2; 1995, т. 3.

Все организмы имеют определенный жизненный цикл. Для организмов развивающихся половым путем он начинается с момента появления зиготы и заканчивается естественной гибелью организма.

Совокупность процессов, которые происходят в течение жизненного цикла организмов, определяют как индивидуальное развитие или онтогенез.

Онтогенез включает 3 периода:

1 период. Предэмбриональный или гаметогенез.

2 период. Эмбриональный.

3 период. Постэмбриональный.

1. Жизненные циклы организмов. Развитие личиночное и прямое.

Развитие организмов бывает прямое и непрямое с превращением.

Непрямое развитие происходит через личиночную стадию. У личинки формируются определенные зародышевые или провизорные органы, которые обеспечивают жизнедеятельность организма на данной стадии развития.

У высших позвоночных развитие прямое, но во время эмбрионального развития также формируются провизорные органы. У млекопитающих это зародышевые оболочки (амнион, хорион, аллантоис, плацента) и желточный мешок.

2. Предэмбриональный период (предзародышевый, прогенез) развития. Стадии гамето­генеза. Изменения в овогенезе, связанные с ранним развитием заро­дыша (амплификация генов, ооплазматическая сегрегация, накопление питательных веществ).

Предэмбриональный период или гаметогенез включает несколько стадий: обособления, размножения, роста, созревания, формирования (последнее только у сперматозоидов).

Во время овогенеза происходят важнейшие события, которые необходимы для развития будущего организма.

1 событие. При овогенезе происходит амплификация генов рРНК или увеличение числа копий генов отвечающих за рРНК. Этот процесс происходит в профазу мейоза 1. Копий генов рРНК может быть до миллиона.

Затем эти копии отделяются от хромосом, свободно плавают в кариоплазме, вокруг них образуются ядрышки, а в ядрышках синтезируются субъединицы рибосом, которые поступают в цитоплазму. Таким образом, в яйцеклетке заранее резко увеличивается количество рибосом.

2 событие. При овогенезе в профазу мейоза 1 синтезируются различные виды иРНК. Процессы транскрипции идут на деспирализованных участках хромосом. Хромосомы на стадии профазы мейоза 1 называют – хромосомы типа ламповых щеток.

3 событие. В яйцеклетке накапливаются питательные вещества в виде желтка.

4 событие. Для яйцеклетки характерна ооплазматическая сегрегация, то есть распределение веществ по цитоплазме яйцеклетки, что приводит к химической неоднородности цитоплазмы. Предполагают, что это необходимо для ранней дифференцировки клеток.

5 событие . Половые клетки это особые клетки организма, так как они обладают тотипотентностью, то есть равнонаследственностью. Только половые клетки, а также бластомеры у человека, на стадии 2х бластомеров дают начало всем типам клеток. Например, опыты по разделению, сращиванию или перемешиванию бластомеров на стадии дробления показали, что у видов с радиальным типом дробления бластомеры нескольких поколений, если их изолировать и поместить в подходящие условия, проявляют тотипотентность, т.е. развиваются в полноценный организм. За равнонаследственность и тотипотентность клеток зародышей человека до стадии 2-4 бластомеров говорят случаи рождения двух, трех, четырех однояйцевых близнецов.

3. Эмбриональный период развития, периодизация.

Эмбриональный период онтогенеза включает несколько стадий:

1 Стадия оплодотворения.

2 Стадия зиготы.

3 Стадия дробления (образование однослойного зародыша).

4 Стадия гаструляции (образование двух-, и трехслойного зародыша).

5 Стадия гисто- и О рганогенеза (образования тканей и органов).

4. Оплодотворение и образование зиготы. Особенности оплодотворения у млекопитающих и человека.

Стадия оплодотворения , это процесс слияния яйцеклетки и сперматозоида, в результате образуется диплоидная зигота, из которой развивается диплоидный организм. В этом процессе условно выделяют 3 стадии:

1 стадия – сближения гамет. В этом важную роль играют вещества, которые выделяются яйцеклеткой и сперматозоидом. Они называются – гамоны (гормоны гамет, соответственно гиногамоны и андрогамоны). Кроме того, выделяют ряд неспецифических факторов, повышающих вероятность встречи и взаимодействия сперматозоида с яйцеклеткой. К ним относятся

скоординированность наступления готовности к оплодотворению у самца и самки,

поведение самцов и самок, обеспечивающее совокупление и осеменение,

избыточную продукцию сперматозоидов,

крупные размеры яйцеклетки,

наличие гамонов, способствующих сближению и взаимодействию гамет,

наличие совокупительных органов, обеспечивающих внутреннее осеменение.

У млекопитающих большое значение имеет пребывание сперматозоидов в половых путях самки, в результате чего мужские половые клетки приобретают оплодотворяющую способность, т.е. способность к акросомальной реакции.

2 стадия – активации гамет, наступает после их контакта. Активация сперматозоида называется акросомная реакция. Активация яйцеклетки – кортикальная реакция.

Суть акросомной реакции: У сперматозоида в области акросомы изменяется проницае мость плазматической мембраны, и из акросомы выделяются ферменты – сперматолизины. Эти ферменты расслабляют связи между фолликулярными клетками, которые окружают яйцеклетку. Сперматозоид проходит через слой фолликулярных клеток, затем разрушается зона пеллюцида и сперматозоид проходит через эту зону.

Суть кортикальной реакции: Заключается в сложных структурных и физико-химических изменениях. Благодаря тому, что участок мембраны сперматозоида проницаем для ионов натрия, последние начинают поступать внутрь яйца, изменяя мембранный потенциал клетки. Затем в виде волны, распространяющейся из точки соприкосновения гамет, происходит увеличение содержания ионов Са 2+ (в гиалоплазме они выходят из депо – ЭПС, ретикулум) и в яйцеклетке запускаются биохимические процессы, вслед за чем, также волной растворяются кортикальные гранулы. Выделяемые при этом специфические ферменты способствуют отслойке желточной оболочки; она затвердевает, это оболочка оплодотворения .

Одним из значений кортикальной реакции является предотвращение полиспермии, т.е. проникновения в яйцеклетку более одного сперматозоида. У млекопитающих кортикальная реакция не вызывает образования оболочки оплодотворения, но суть ее та же.

Активация яйцеклетки завершается началом синтеза белка на трансляционном уровне, поскольку мРНК, тРНК, рибосомы и энергия были запасены еще в овогенезе.

3 стадия – слияния гамет, или сингамия. При этом образуется общая плазматическая мембрана у сперматозоида и яйцеклетки. Женский и мужской пронуклеус сближаются и сливаются (синкарион), образуя общую метафазную пластинку. Это и есть момент окончательного слияния гамет – сингамия.

Особенности оплодотворения у различных видов организмов.

1 пример. У млекопитающих и человека сперматозоид связывается с яйцеклеткой в том участке, где на блестящей оболочке имеется рецептор. После этого взаимодействия остальные рецепторы блокируются.

2 пример. У морского ежа после оплодотворения в яйцеклетке резко изменяется электрический потенциал плазматической мембраны, а затем образуется оболочка оплодотворения, препятствующая полиспермии.

Стадия зиготы. После проникновения мужское ядро называется – мужской пронуклеус. В нем разрыхляется хроматин, происходит репликация ДНК. Женское ядро называется – женский пронуклеус. В нем происходят те же события. У млекопитающих и человека слияния ядер не происходит, а сразу образуется метафазная пластинка.

5. Искусственное оплодотворение яйцеклетки животных и человека, биологические и медицинские аспекты.

Искусственное оплодотворение яйцеклетки животных имеет важное научное значение для медицины, так как в процессе его изучения разрабатываются пути и механизмы лечения бесплодия у людей.

Искусственное оплодотворение применяется при различных формах бесплодия как мужского, так и женского, которое с трудом поддается лечению. Например, когда у мужчины сперматозоидов слишком мало или они практически неподвижны, когда у женщины нарушена проходимость маточных труб или имеются какие-нибудь другие повреждения внутренних половых органов, при иммунологической несовместимости партнеров.

6. Общая характеристика дробления. Типы дробления, характерные для различных видов животных. Дробление и формирование бластулы у пла­центарных млекопитающих.

Стадия дробления. Это стадия образования однослойного зародыша - бластулы. Внутри бластулы находится полость – бластоцель.

Особенности дробления:

Клетки делятся митозом.

Накануне каждого деления происходит репликация днк.

Делящиеся клетки не растут.

Тип дробления зависит от типа яйцеклетки.

Полное равномерное дробление у ланцетника :

Первая борозда дробления проходит вертикально, образуется два бластомера. Вторая борозда также идет вертикально и образуется четыре бластомера. Третья борозда проходит горизонтально, образуется восемь бластомеров, а затем вертикальные и горизонтальные борозды чередуются. Спустя 12 циклов дробление становится асинхронным. На определенной стадии развития зародыш представляет собой комочек клеток или морула. Затем между клетками появляются промежутки, и образуется полость – бластоцель. У ланцетника в ходе дробления образуется бластула, которая называется целобластула, то есть однослойный шар.

Полное неравномерное дробление у амфибий:

У амфибий клетки умеренно телолецитальные. На анимальном полюсе клетки дробление идет быстрее, чем на вегетативном полюсе. В результате на анимальном полюсе клетки более мелкие - микромеры. На вегетативном полюсе клетки более крупные – макромеры. Бластула амфибий называется амфибластула. Бластоцель располагается на анимальном полюсе.

Особенности дробления у млекопитающих и человека:

Дробление полное неравномерное, с первых этапов асинхронное, на определенной стадии развития зародыш представляет собой морулу (комочек клеток). Затем к периферии отделяются более крупные клетки, образуя трофобласт, а в центр более мелкие клетки образуя эмбриобласт. Бластула называется - бластоциста. Бластоцель имеет очень малые размеры. Трофобласт способствует внедрению зародыша в слизистую матки. Этот процесс называется - имплантация. Эмбриобласт дает начало самому зародышу и некоторым провизорным органам.

7. Общая характеристика гаструляции. Особенности гаструляции у амфибий и птиц. Гаструляция у высших (плацентарных) млекопитающих.

Стадия гаструляции , или стадия образования двухслойного зародыша, а затем и трехслойного. Зародыш на этой стадии называется – гаструла.

Способы образования двухслойного зародыша:

– Инвагинация (впячивание).

– Деляминация (расслоение).

– Иммиграция (вселение).

– Эпиболия (обрастание).

Инвагинация или впячивание. Этот способ характерен для ланцетника. В определенном участке клетки бластулы впячиваются в бластоцель, в результате образуется двухслойный зародыш. Наружный слой клеток называется - эктодерма, внутренний – энтодерма. Энтодерма ограничивает полость первичной кишки или гастроцель. Вход в эту полость называется первичный рот или бластопор. Бластопор окружен губами.

Деляминация или расслоение. Этот способ характерен для кишечнополостных животных, у которых бластула имеет вид морулы и бластоцель практически не выражена.

Иммиграция или вселение. Некоторые клетки бластулы внедряются в бластоцель, затем эти клетки интенсивно делятся. В результате за счет этих клеток образуется энтодерма.

Эпиболия (обрастание). Микромеры делятся и как бы наслаиваются на макромеры. За счет микромеров образуется эктодерма, за счет макромеров - энтодерма. В чистом виде эти способы практически не встречаются, как правило, они сочетаются. У амфибий сочетается инвагинация и эпиболия. У птиц и млекопитающих сочетается деляминация и иммиграция.

Начиная с плоских червей, в эволюции появляется третий зародышевый листок – мезодерма.

Способы образования мезодермы:

Телобластический способ характерен для первичноротых животных. В области губ бластопора выделяются 2 клетки, которые делятся и образуют мезодерму.

Энтероцельный способ характерен для вторичноротых животных (хордовых). От энтодермы симметрично отделяются 2 участка клеток в форме карманов. Это мезодермальные карманы. Клетки мезодермальных карманов делятся и дают начало мезодерме. Мезодерма это зародышевый листок.

8. Общая характеристика гисто- и органогенеза (образования тканей и органов).

Стадия гисто и органогенеза (стадия образования тканей и органов). Условно разделяется на два периода.

1 период. Период образования осевых органов у зародыша, это образование нервной трубки и хорды. Поэтому этот период называется – период нейруляции, а зародыш на этой стадии называется – нейрула.

2 период . Характеризуется образованием остальных тканей и органов. На спинной стороне зародыша (дорсальной) по всей его длине от эктодермы отделяется участок клеток, который дает начало нервной пластинке. Затем края нервной пластинки приподнимаются, утолщаются, и образуется нервный желобок, который постепенно погружается под эктодерму. Затем края нервного желобка смыкаются, образуется нервная трубка с полостью внутри, полость называется – невроцель. У позвоночных животных передний отдел нервной трубки расширяется и дает начало головному мозгу, остальная часть – спинному мозгу. Одновременно под нервной трубкой закладывается хорда, она образуется из энтодермы и прилежащей мезодермы. Сначала мезодерма представляет собой однородную клеточную массу, но по мере развития происходит ее сегментация. Образуются структуры, которые называются – сомиты. В последствии они дают начало опорно-двигательному аппарату.

Производные зародышевых листков:

Эктодерма – эмаль зубов, нервная система и органы чувств, эпидермис кожи и ее придатки, эпителий передней и задней кишки.

Энтодерма – эпителий средней кишки, пищеварительные железы и дыхательная система.

Мезодерма – опорно-двигательный аппарат, мочеполовая система, кровеносная и лимфатическая система, вся соединительная ткань.

9. Характеристика провизорных органов зародышей позвоночных. Провизор­ные органы высших млекопитающих.

Провизорные органы функционируют у зародыша и отсутствуют во взрослом состоянии. К ним относятся желточный мешок и так называемые зародышевые оболочки – амнион, хорион и аллантоис.

Желточный мешок. Желточный мешок выполняет ряд важнейших функций: питания, дыхания, выделения, кроветворения. Но, в связи с малым содержание желтка в яйцеклетке, существенной роли в питании зародыша не играет.

Амнион . В образовании амниона участвует амниотическая оболочка, которая ограничивает полость амниона, заполненную амниотической жидкостью, омывающей теперь зародыш со всех сторон. Благодаря этому зародыш развивается в водной среде, что предохраняет его от механических травмирующих воздействий и прилипания к оболочкам.

Аллантоис образуется как вырост задней кишки. Главная функция аллантоиса состоит в том, что он является зародышевым органом выделения. В нем скапливаются продукты распада, образующиеся в ходе обмена веществ в теле зародыша.


Эмбриогенез – сложный целостный процесс, который связан с определенными явлениями и механизмами. Многие из этих явлений до конца не изучены, хотя по некоторым из них получены определенные данные.

1. Молекулярно-генетические изменения раннего развития.

2. Пролиферация клеток (деление клеток).

3. Дифференцировка клеток.

4. Формообразование или морфогенез.

1. Молекулярно-генетические изменения раннего развития (периода зиго­ты и дробления), роль цитоплазматических факторов яйцеклетки.

Раннее развитие включает стадии зиготы и дробления.

Изучая эти стадии, ученые пытались ответить на вопросы:

Во-первых, когда начинают работать собственные гены зародыша.

Во-вторых, существуют ли качественные и количественные различия в молекулах иРНК и белков в разных частях зародыша на ранних стадиях развития.

В зиготе активность генов невелика, так как ДНК прочно связана с белками гистонами. Первые белки, которые синтезируются в зиготе, имеют материнское происхождение, так как в яйцеклетке заранее накопились рибосомы и молекулы иРНК. Установлено, что собственные гены зародыша у млекопитающих начинают работать на стадии 2 – 4 бластомеров. У амфибий – на стадии бластулы. Первыми в работу включаются гены, отвечающие за пролиферацию и общий метаболизм, позднее начинают работать гены, отвечающие за дифференцировку клеток и тканей. Например, при удалении из зиготы ядра дробление происходит, и зародыш доходит в своем развитии почти до стадии бластулы, после чего дальнейшее развитие прекращается.

Установлено, что качественных различий в молекулах иРНК и белков в разных частях зародыша на ранних стадиях развития нет. Имеются только количественные различия.

Важную роль в дроблении играет деление цитоплазмы – цитотомия . Она имеет особое морфогенетическое значение, так как определяет тип дробления. Борозды дробления проходят по границам между отдельными участками ооплазмы, отражающим явление ооплазматической сегрегации. Поэтому цитоплазма разных бластомеров различается по химическому составу.

2. Пролиферация клеток, рост.

Пролиферация клеток или деление клеток имеет место на протяжении всего эмбриогенеза. С этим связан рост тканей и органов. Рост зародыша в целом.

3. Дифференцировка, молекулярно-генетические механизмы дифференцировки.

Дифференцировка клеток это совокупность процессов, в результате которых клетки общего происхождения приобретают стойкие морфологические, физиологические, биохимические различия, что приводит к специализации клеток. Специфичность клеток определяется белками, которые в них синтезируются, а за белки отвечают соответствующие гены. Поэтому можно сделать вывод о том, что в одних клетках работают одни гены, а в других другие. В этом заключается сущность гипотезы о дифференциальной активности генов.

На ранних этапах дифференцировка клеток связана с влиянием веществ цитоплазмы на работу соответствующих генов – это эпигенетический уровень регуляции работы генов. В яйцеклетке имеет место явление ооплазматической сегрегации, в результате разные участки цитоплазмы яйцеклетки содержат различные вещества. В ходе дробления появляются бластомеры, набор генов в них одинаков, а состав цитоплазмы разный. Впоследствии эти вещества цитоплазмы, по-видимому, приводят к дифференциальной активности генов.

При характеристике дифференцировки клеток используются 2 понятия - детерминация и компетенция.

Детерминация означает, что дифференцировка клеток генетически предопределена и необратима.

В процессе дифференцировки клеточный материал эмбриональных закладок преобразуется в определенный элемент взрослого организма. Рассмотрим дифференцировку на примере мезодермального сомита, подразделяемого на дерматом, склеротом и миотом. Дерматом клетки дермы, второй – клетки хряща, третий – поперечнополосатые мышечные волокна. Следовательно, конечный результат развития отдельных эмбриональных закладок предопределен или детерминирован.

Компетенция это способность клеток дифференцироваться в различных направлениях, под влиянием факторов внешней среды. Например, хорда и прилежащая мезодерма воздействуют на эктодерму, в результате образуется нервная трубка из эктодермы. Если такого воздействия нет, то эктодерма дает начало эпидермису кожи.

4. Морфогенез (формообразование), его основные процессы:

Формообразование или морфогенез. Морфогенез это совокупность процессов, в результате которых зародыш приобретает характерное внешнее и внутреннее строение. В свою очередь морфогенез связан с:

а) морфогенетическое перемещение клеток

В ходе эмбриогенеза перемещаются отдельные клетки или группы клеток. Клетки перемещаются по поверхности других клеток (благодаря механизму амебоидного движения), где находятся особые молекулы, указывающие направление перемещения. Некоторые типы клеток перемещаются по градиенту концентрации химических веществ (хемотаксис), но этот механизм встречается значительно реже.

Нарушение миграции клеток в ходе эмбриогенеза приводит к недоразвитию органов или к изменению его нормальной локализации. То и другое представляет собой врожденные пороки развития. Например, при нарушении миграции клеток – нейробластов, возникают островки серого вещества в белом веществе, и при этом клетки утрачивают способность к дифференцировке.

Таким образом, миграция клеток находится под генетическим контролем, с одной стороны, и влиянием окружающих клеток и тканей – с другой.

б) эмбриональная индукция

Это воздействие одной ткани (индуктора) на другую ткань, в результате развитие индуцируемой ткани становится качественно новым. Первой и наиболее значимой индукцией является воздействие хорды и мезодермы на эктодерму, в результате чего образуется нервная трубка. Без нервной трубки вся эктодерма будет преобразовываться в эпидермис. Это первичная эмбриональная индукция, первый шаг в цепи последовательных (вторичных, третичных) индукционных процессов в дальнейшем развитии.

Установлено, что существуют «специфические индукторы», т.е. вещества, оказывающие индуцирующее действие в ничтожных концентрациях, и различающиеся по конечному результату своего действия. Так, экстракт из печени млекопитающих индуцирует главным образом развитие мозговых структур, а экстракт костного мозга – мезодермальных.

Способность эмбрионального зачатка к восприятию индукционного стимула называется – компетенцией.

в) межклеточные взаимодействия

Это взаимодействие клеток или слоев при контакте или на расстоянии. Взаимодействие на расстоянии идет с участием биологически активных веществ (БАВ).
Это могут быть белки, гормоны и др. На ранних этапах эмбрионального развития это гормоны матери, так как у эмбриона не образованы собственные эндокринные железы. Гормоны не вызывают новую дифференцировку, но они усиливают её.

Благодаря межклеточным взаимодействиям осуществляются такие явления как морфогенетическое перемещение клеток, эмбриональная индукция, адгезия клеток.

г) адгезия – способность клеток к слипанию. В эксперименте клетки эктодермы, мезодермы и энтодермы разделяли и перемешивали между собой. Далее они вновь собираются в отдельные группы, каждая из которых представляет собой клеточный агрегат из однородных клеток. Образуются снова три зародышевых листка, располагающиеся нормально относительно друг друга.

В процессе адгезии принимают участие особые белковые молекулы. Они называются молекулы адгезии клеток (МАК), их около 100 видов.

Другая гипотеза утверждает, что контакты между подобными клетками сильнее, чем между чужеродными клетками.

Избирательная адгезия клеток определенного зародышевого листка друг с другом является необходимым условием нормального развития.

д) гибель клеток – это необходимый процесс, потому что для образования отдельных структур (протоки, каналы, отверстия и др.) нужно разрушение части клеток.

Выделяют два принципиально различных типа клеточной гибели: апоптоз (в переводе с греческого «отпадающий») и некроз .

Апоптоз – физиологическая, генетически предопределенная гибель клетки. Наряду с прочими механизмами морфогенеза он способствует достижению характерных для определенного биологического вида черт его морфофункциональной организации. Следовательно, апоптоз является естественным, эволюционно обусловленным и генетически контролируемым механизмом морфогенеза.

Некроз – нефизиологическая гибель клетки, в связи с воздействием неблагоприятных факторов (механических, химических, физических и др.). Некроз обычно сопровождается воспалением и является патологическим процессом.


5. Интеграция в развитии, целостность онтогенеза. Роль гормонов в ко­ординации процессов развития.

В настоящее время известен ряд веществ, которые побуждают клетки к делению, например фитогемагглютинин, некоторые гормоны, а также комплекс веществ, выделяющихся при повреждении тканей. Открыты также и тканеспецифичные ингибиторы клеточного деления – кейлоны . Их действие заключается в подавлении или замедлении скорости деления клеток в тех тканях, которые их вырабатывают. Например, эпидермальные кейлоны действуют только на эпидермис. Будучи тканеспецифичными, кейлоны лишены видовой специфичности. Так, эпидермальный кейлон трески действует и на эпидермис млекопитающего.

Гормоны – органические соединения, вырабатываемые определенными клетками и предназначенные для управления функциями организма, их регуляции и координации.

Физиологическое действие гормонов направлено на:

1) обеспечение гуморальной, т.е. осуществляемой через кровь, регуляции биологических процессов;

2) поддержание целостности и постоянства внутренней среды, гармоничного взаимодействия между клеточными компонентами организма;

3) регуляцию процессов роста, созревания и репродукции. Гормоны регулируют активность всех клеток организма. Они влияют на остроту мышления и физическую подвижность, телосложение и рост, определяют развитие признаков полового диморфизма и поведение.

6. Роль наследственности и среды в эмбриональном развитии. Критические периоды развития. Тератогенные факторы. Аномалии и пороки развития.

На любом этапе онтогенеза организм существует в единстве с окружающей средой. Эмбриогенез в этом отношении не является исключением. Диапазон условий необходимых для жизни вида может быть широким. Тем не менее для организмов любого вида существуют минимум, оптимум и максимум необходимых условий развития. На развитие зародыша оказывают влияние колебания естественно встречающихся факторов (температура, влажность, атмосферное давление, излучения, газовый состав среды).

Так, в зависимости от температуры процессы развития замедляются или интенсифицируются. Например, яйца лягушки из одной кладки при большей температуре развиваются быстрее.

У аскариды при прекращении доступа к эмбриону кислорода развитие прекращается.

Общим правилом служит то, что под действием света из сине-фиолетовой части спектра эмбриональное развитие многих видов животных ускоряется, а из красной – замедляется.

При внутриутробном развитии огромное значение играют факторы внешней среды. Если эти факторы приводят к формированию аномалий или дефектов развития, то они называются тератогенными. Тератогенные факторы могут быть физическими (высокая температура, ионизирующее излучение, рентген и др.), химическими (лекарственные препараты, соли тяжелых металлов и др.) и биологическими (вирусы, бактерии). Тератогенные факторы приводят к развитию аномалий в определенные периоды эмбрионального развития, которые называются критическими. К ним относятся:

Период образования половых клеток (гаметогенез),

Стадия оплодотворение,

Стадия зиготы,

Имплантация зародыша в стенку матки,

Образование плаценты,

Период гистогенеза и органогенеза,

Пороки развития .

Аплазия - отсутствие органа или его части

Гипоплазия - недоразвитие органа

Гипотрофия - уменьшение массы тела или органа

Гипертрофия - непропорциональное увеличение массы органа

Гигантизм - увеличение длины тела

Гетеротопия - нетипичная локализация группы клеток или органа в организме.

Гетероплазия - нарушение дифференцировки тканей

Стеноз - сужение канала или отверстия

Атрезия - отсутствие канала или отверстия

Персистирование - сохранение эмбриональных структур

В зависимости от причины врожденные пороки делят на:

Наследственные , вызванные изменением генов или хромосом в гаметах родителей, в результате чего зигота с самого возникновения несет генную, хромосомную или геномную мутацию.

Экзогенные , возникающие под влиянием тератогенных факторов: лекарственные препараты (талидомид), пищевые добавки, вирусы, промышленные яды и др. Это всё факторов внешней среды, которые, действуя во время эмбриогенеза, нарушают развитие тканей и органов.

Мультифакториальные пороки, которые развиваются под влиянием как экзогенных так и генетических факторов.


1. Постнатальный онтогенез, его периодизация.

Постэмбриональное развитие (для человека постнатальное) начинается с момента рождения и заканчивается естественной гибелью или смертью.

Постэмбриональное развитие включает в себя несколько периодов:

1. Дорепродуктивный (ювенильный).

2. Репродуктивный (период зрелости).

3. Пострепродуктивный (период старости).

2. Дорепродуктивный период, его характеристика. Рост организма как важная характеристика дорепродуктивного периода.

Дорепродуктивный период начинается сразу после рождения. В это время заканчиваются процессы морфогенеза, начинают функционировать те системы, которые не функционировали в эмбриогенезе (дыхательная, выделительная и ряд других).

Важная характеристика дорепродуктивного периода – это рост организма. При этом происходит увеличение размеров тела в целом, увеличиваются его продольные размеры; увеличиваются размеры тканей и органов.

3. Характер роста организма и отдельных его частей.

В основе роста организма лежат три основных процесса:

1. увеличение числа клеток.

2. увеличение размеров клеток (гипертрофии).

3. накопление межклеточного вещества.

Различают два варианта роста: ограниченный и неограниченный . Неограниченный рост продолжается на протяжении всего онтогенеза, вплоть до смерти.

Выделяют несколько типов роста:

Ауксентичный – рост, идущий путем увеличения размеров клеток.

Пролиферационный – рост, протекающий путем размножения клеток: мультипликативный и аккреционный .

Мультипликативный рост характеризуется тем, что обе клетки, возникшие от деления родоначальной клетки, снова вступают в деление. Мультипликативный рост очень эффективен и поэтому в чистом виде почти не встречается или очень быстро заканчивается (например, в эмбриональном периоде).

Аккреционный рост заключается в том, что после каждого последующего деления лишь одна из дочерних клеток снова делится, тогда как другая прекращает деление. При этом число клеток растет линейно. Такой рост характерен для органов, где происходит обновление клеточного состава.

Необходимо указать, что особое значение при характеристике роста имеет увеличение продольных размеров тела, которое происходит в основном за счет роста длинных трубчатых костей. В трубчатых костях на границе диафиза и эпифиза выделяют зону роста. Здесь находятся хрящевые клетки, при делении которых кость растёт в длину.

Окончательное окостенение у каждой кости происходит в определенные сроки. У мужчин рост обычно заканчивается к 18-20 годам, у женщин – к 16-18 годам. В это время исчезают последние зоны роста. Именно тогда прекращается рост костей в длину.

Необходимо указать, что до 30 лет человек может подрасти на 3см за счет увеличения размеров позвонков.

Увеличение линейных размеров человека описывается S-образной кривой. Сразу после рождения идет усиленный рост организма, затем снижается и резко ускоряется к 13-14-15 годам. Это так называемый пубертатный скачок роста (в период полового созревания). Далее скорость роста несколько замедляется, а в возрасте 30-40-45 лет рост человека остается постоянным. По такой схеме растут кости, мышцы и многие внутренние органы (печень, почки, селезенка).

При старении происходит незначительное уменьшение роста.

Некоторые органы имеют совершенно иной характер:

К таким органам относится головной и спинной мозг, лимфоидные органы, органы размножения.

Вес головного мозга новорожденного составляет 25% от окончательного веса мозга (во взрослом состоянии), к 5 годам – 90%, к 10 годам – 95%.

Рост вилочковой железы (тимуса) – центрального органа иммунной системы. Относительный вес тимуса (к весу тела) достигает максимума к 12 годам. Абсолютный вес достигает максимума к 30 годам, а затем идет резкое уменьшение веса тимуса.

4. Генетический контроль роста. Роль нервной и эндокринной системы в регуляции процессов роста.

Рост относится к генетическим признакам, которые передаются по наследству подобно цвету волос и кожи, разрезу глаз и т.д. Именно поэтому у высоких родителей обычно бывают рослые дети, и наоборот. Рост – полигенный признак, за его проявление в фенотипе отвечают несколько генов. Свой контроль за ростом гены осуществляют через соответствующие гормоны. Важнейшим гормоном является гормон роста или соматотропин, вырабатываемый гипофизом.

Соматотропин стимулирует образование новых хрящевых клеток, а частично и их окостенение, способствует синтезу белка в клеточных структурах и образованию новых капилляров. Большое количество этого гормона вырабатывается ночью. Собственный соматотропин у ребенка вырабатывается с 3- 4 лет.

На рост организма также влияют гормоны щитовидной железы и половые гормоны.

5. Взаимодействие биологического и социального в период детства и мо­лодости.

Роль наследственности для роста велика, но это не единственный фактор. Наследственность следует рассматривать как ориентировочную программу, согласно которой рост человека может оказаться, например, в пределах от 160 до 180см. Каким он будет на самом деле, во многом зависит от внешних условий, которые могут тормозить наследственную программу или способствовать ее реализации. Условия среды, влияющие на рост человека: питание, физические нагрузки, психологическое воздействие курение, алкоголь.

То есть происходит подрастание населения (это акселерация).

Одна из вероятных ее причин – улучшение условий жизни (питание). Замечено, что в годы войны и стихийных бедствий рост детей уменьшается. На рост незначительно влияет климат и географическая среда.

6. Формирование конституционных типов, типы телосложения.

С ростом человека связано формирование конституционных типов людей. Под этим следует понимать особенности внешних форм тела, особенности функций организма, особенности поведения данного человека. В зависимости от строения тела, в зависимости от внешних форм тела выделяют определенные типы телосложения. В настоящее время существует достаточно много классификаций. Одна из них классификация М.В. Черноруцкого. Согласно этой к

Деление клеток . Является чрезвычайно важным процессом в онтогенетическом развитии. Оно протекает с разной интенсивностью в разное время и в разных местах, носит клональный характер и подвержено генетическому контролю. Все это характеризует клеточное деление как сложнейшую функцию целостного организма, подчиняющегося регулирующим влияниям на различных уровнях: генетическом, тканевом, онтогенетическом.

Миграция клеток . Для миграции клеток очень важны их способность к амебоидному движению и свойства клеточных мембран. И то, и другое генетически детерминировано, так что и сама миграция клеток находится под генетическим контролем, с одной стороны, и влияниями окружающих клеток и тканей - с другой.

Дифференцировка клеток . Дифференцировка - это процесс, в результате которого клетка становится специализированной, т.е. приобретает химические, морфологические и функциональные особенности. В самом узком смысле это изменения, происходящие в клетке на протяжении одного, нередко терминального, клеточного цикла, когда начинается синтез главных, специфических для данного клеточного типа, функциональных белков. В более широком смысле под дифференцировкой понимают постепенное (на протяжении нескольких клеточных циклов) возникновение все больших различий и направлений специализации между клетками, происшедшими из более или менее однородных клеток одного исходного зачатка. Этот процесс непременно сопровождают морфогенетические преобразования, т.е. возникновение и дальнейшее развитие зачатков определенных органов в дефинитивные органы. Первые химические и морфогенетические различия между клетками, обусловливаемые самим ходом эмбриогенеза, обнаруживаются в период гаструляции.

Эмбриональная индукция . Это явление, при котором в процессе эмбриогенеза один зачаток влияет на другой, определяя путь его развития, и, кроме того, сам подвергается индуцирующему воздействию со стороны первого зачатка.

Критические периоды онтогенеза.

С конца XIX в. существует представление о наличии в онтогенетическом развитии периодов наибольшей чувствительности к повреждающему действию разнообразных факторов. Эти периоды получили название критических, а повреждающие факторы - тератогенных. Единодушия в оценке различных периодов, как более или менее устойчивых, не существует.

Некоторые ученые полагают, что наиболее чувствительными к самым разнообразным внешним воздействиям являются периоды развития, характеризующиеся активным клеточным делением или интенсивно идущими процессами дифференциации. П. Г Светлов, в середине XX столетия внесший большой вклад в разработку проблемы, считал, что критические периоды совпадают с моментом детерминации, который определяет конец одной и начало другой, новой цепи процессов дифференциации, т.е. с моментом переключения направления развития. По его мнению, в это время имеет место снижение регуляционной способности. Критические периоды не рассматривают как наиболее чувствительные к факторам среды вообще, т.е. независимо от механизма их действия. Вместе с тем установлено, что в некоторые моменты развития зародыши чувствительны к ряду внешних факторов, причем реакция их на разные воздействия бывает однотипной.

Критические периоды различных органов и областей тела не совпадают друг с другом по времени. Причиной нарушения развития зачатка является ббльшая чувствительность его в данный момент к действию патогенного фактора, чем у других органов. При этом действие разных факторов может вызвать одну и ту же аномалию. Это свидетельствует о неспецифическом ответе зачатка на повреждающие воздействия. В то же время некоторая специфичность тератогенных факторов выражается в том, что, будучи различными, они оказывают максимальное повреждающее действие не на одних и тех же стадиях развития.

П. Г. Светлов установил два критических периода в развитии плацентарных млекопитающих. Первый из них совпадает с процессом имплантации зародыща, второй - с формированием плаценты. Имплантация приходится на первую фазу гаструляции, у человека -на конец 1-й -начало 2-й недели. Второй критический период продолжается с 3-й по 6-ю неделю. По другим источникам, он включает в себя также 7-ю и 8-ю недели. В это время идут процессы нейруляции и начальные этапы органогенеза.

Повреждающее действие во время имплантации приводит к ее нарушению, ранней смерти зародыша и его абортированию. По некоторым данным, 50-70% оплодотворенных яйцеклеток не развиваются в период имплантации. По-видимому, это происходит не только от действия патогенных факторов в момент начавшегося развития, но и в результате грубых наследственных аномалий.

Действие тератогенных факторов во время эмбрионального (с 3 до 8 нед) периода может привести к врожденным уродствам. Чем раньше возникает повреждение, тем грубее бывают пороки развития. Развивающийся организм можно уподобить большому вееру. Достаточно небольших нарушений у его основания, чтобы вызвать большие изменения во всем веере. При действии тератогенных факторов в фетальном периоде возникают малые морфологические изменения, задержка роста и дифференцировки, недостаточность питания плода и другие функциональные нарушения.

У каждого органа есть свой критический период, во время которого его развитие может быть нарушено. Чувствительность различных органов к повреждающим воздействиям зависит от стадии эмбриогенеза.

Рис. 12. Чувствительность развивающегося зародыша человека к повреждающим факторам

Заштрихованным отрезком обозначен период наиболее высокой чувствительности, незаштрихованным - период меньшей чувствительности; 1-38- недели внутриутробного развития

Факторы, оказывающие повреждающее воздействие, не всегда представляют собой чужеродные для организма вещества или воздействия. Это могут быть и закономерные действия среды, обеспечивающие обычное нормальное развитие, но в других концентрациях, с другой силой, в другое время. К ним относят кислород, питание, температуру, соседние клетки, гормоны, индукторы, давление, растяжение, электрический ток и проникающее излучение.

Развитие организмов базируется на генетической программе (заложенной в хромосомном аппарате зиготы) и происходит в конкретных условиях среды, существенно влияющей на процесс реализации генетической информации в онтогенезе особи.

Весь объем такой информации о совокупности признаков и свойств будущего организма содержится в ядре зиготы. Образование клеток тела многоклеточного животного осуществляется в процессе митотического деления зиготы и последующих поколений клеток, идентичных ей по своей генетической информации. И тем не менее тело сформированного организма состоит из разных типов клеток - нервных, мышечных, эпителиальных и т. д., - дифференцированных, отличающихся по своему строению и функциям. Почему же при наличии одинаковой у всех них генетической информации они столь разнообразны? Что же обеспечивает их дифференцировку в онтогенезе?

Генетическая основа дифференцировки - избирательная активность определенной части генов из общего набора в клетках разных тканей. В одних клетках функционирует одна группа генов, в других - иные группы. Соответственно, в каждом клеточном типе синтезируются комплексы специфических белков, определяющих структурные и функциональные свойства клеток. Этот феномен получил название дифференциальной экспрессии (активности ) генов. Возникают следующие вопросы: что же регулирует активность генов? Чем определяются различные пути развития клеток в формирующемся организме?

Далеко не все факторы, определяющие процессы дифференцировки, изучены. Однако известно, что на разных этапах онтогенеза активность генов зависит как от внутренних, так и от внешних факторов.

На самых ранних этапах дробления между формирующимися бластомерами возникают различия в химическом составе их цитоплазмы. Это объясняется неоднородностью цитоплазмы зиготы (например, у амфибий еще в яйцеклетке создается неравномерное распределение желтка и пигмента). Считается, что исходное различие в цитоплазматическом окружении ядер в бластомерах приводит к активации в них разных групп генов.

На более поздних этапах эмбрионального развития был обнаружен феномен эмбриональной индукции . Так называют влияние одной ткани на другую, соседнюю, которое приводит к образованию в месте контакта новой ткани (например, у амфибий при формировании гаструлы мезодерма возникает в эктодерме под воздействием контактирующей с ней энтодермы). Следовательно, эмбриональная индукция приводит к увеличению числа клеточных типов, а осуществляется она за счет выделения клетками особых веществ - индукторов (белков и других веществ).

На этапах эмбрионального и постэмбрионального развития большое значение имеет гормональная регуляция роста и дифференцировки. Гормоны (вещества, выделяемые железами внутренней секреции) оказывают воздействие на различные органы и ткани, обусловливают их нормальное развитие, активность генов, формирование пола и размножение организмов.

Рассмотрим, например, регуляцию метаморфоза у амфибий, в ходе которого в организме происходит множество разнообразных изменений. Одни органы (личинки головастика) разрушаются, другие (органы взрослой лягушки) усиленно растут и развиваются. Все эти изменения происходят под влиянием гормона щитовидной железы. Личинки амфибий, лишенные щитовидной железы, не претерпевают метаморфоза (однако у оперированных личинок его можно вызвать, если ввести им гормон).

Особенно наглядна роль гормонов на многочисленных примерах нарушений в деятельности желез внутренней секреции у человека, хорошо известных медикам. Так, при избыточном образовании гормона роста могут развиваться гиганты двух- и даже трехметровой высоты. В случае же недостаточной секреции этого гормона люди становятся карликами (рост - от 60 до 140 см).

На всех без исключения этапах онтогенеза значительное влияние на развитие организмов оказывают факторы внешней среды (температура, свет, давление, гравитация, состав пищи по содержанию химических элементов и витаминов, разнообразные физические и химические факторы) (рис. 1).

Рис. 1. Влияние освещения солнечными лучами на рост цыплят. Цыплята одного возраста получали одинаковую пищу, не содержащую витамина D. Один цыпленок (справа) подвергался получасовому освещению солнцем

Даже однояйцовые близнецы (т. е. имеющие идентичный генетический материал), выросшие в различных условиях и подвергавшиеся воздействию различных факторов среды, могут очень сильно отличаться друг от друга по многим признакам. В биологии, медицине и ветеринарии накопилось огромное количество фактов, демонстрирующих повреждающее влияние различных факторов среды на развивающийся организм. В последние десятилетия сформировался самостоятельный раздел медико-биологических наук - тератология . Исследования в этой области посвящены изучению уродств и пороков развития организмов, выяснению причин их появления и роли факторов среды. Многие из выявленных тератогенов (факторов, вызывающих уродства и пороки развития) оказались различными химическими веществами, с которыми человек контактирует в повседневной жизни: никотином, алкоголем, различными синтетическими соединениями, лекарственными препаратами (при неправильном их применении). Выявлено тератогенное действие ряда физических факторов - различного вида излучения, ультразвука, вибрации, электромагнитного поля и т. п.

Исследования подобного рода имеют огромное практическое значение, возрастающее по мере загрязнения человеком окружающей его среды. Знание закономерностей процессов нормального развития и причин нарушений онтогенеза лежит в основе предупреждения аномалий пороков развития у людей.



Статьи по теме: