Объем прямой треугольной призмы формула. Объем призмы. Решение задач

Видеокурс «Получи пятерку» включает все темы, необходимые для успешной сдачи ЕГЭ по математике на 60-65 баллов. Полностью все задачи 1-13 Профильного ЕГЭ по математике. Подходит также для сдачи Базового ЕГЭ по математике. Если вы хотите сдать ЕГЭ на 90-100 баллов, вам надо решать часть 1 за 30 минут и без ошибок!

Курс подготовки к ЕГЭ для 10-11 класса, а также для преподавателей. Все необходимое, чтобы решить часть 1 ЕГЭ по математике (первые 12 задач) и задачу 13 (тригонометрия). А это более 70 баллов на ЕГЭ, и без них не обойтись ни стобалльнику, ни гуманитарию.

Вся необходимая теория. Быстрые способы решения, ловушки и секреты ЕГЭ. Разобраны все актуальные задания части 1 из Банка заданий ФИПИ. Курс полностью соответствует требованиям ЕГЭ-2018.

Курс содержит 5 больших тем, по 2,5 часа каждая. Каждая тема дается с нуля, просто и понятно.

Сотни заданий ЕГЭ. Текстовые задачи и теория вероятностей. Простые и легко запоминаемые алгоритмы решения задач. Геометрия. Теория, справочный материал, разбор всех типов заданий ЕГЭ. Стереометрия. Хитрые приемы решения, полезные шпаргалки, развитие пространственного воображения. Тригонометрия с нуля - до задачи 13. Понимание вместо зубрежки. Наглядное объяснение сложных понятий. Алгебра. Корни, степени и логарифмы, функция и производная. База для решения сложных задач 2 части ЕГЭ.

ПРЯМАЯ ПРИЗМА. ПОВЕРХНОСТЬ И ОБЪЁМ ПРЯМОЙ ПРИЗМЫ.

§ 68. ОБЪЁМ ПРЯМОЙ ПРИЗМЫ.

1. Объём прямой треугольной призмы.

Пусть требуется найти объём прямой треугольной призмы, площадь основания которой равна S, а высота равна h = АА" = = ВВ" = СС" (черт. 306).

Начертим отдельно основание призмы, т. е. треугольник АBС (черт. 307, а), и достроим его до прямоугольника, для чего через вершину В проведём прямую КМ || АС и из точек A и С опустим на эту прямую перпендикуляры АF и СЕ. Получим прямоугольник АСЕF. Проведя высоту ВD треугольника АBС, увидим, что прямоугольник АСЕF разбился на 4 прямоугольных треугольника. Причём /\ ВСЕ = /\ BCD и /\ ВАF = /\ ВАD. Значит, площадь прямоугольника АСЕF вдвое больше площади треугольника АBС, т. е. равна 2S.

К данной призме с основанием АBС пристроим призмы с основаниями ВСЕ и BАF и высотой h (черт. 307, б). Получим прямоугольный параллелепипед с основанием
АСЕF.

Если этот параллелепипед рассечём плоскостью, проходящей через прямые BD и ВВ", то увидим, что прямоугольный параллелепипед состоит из 4 призм с основаниями
ВСD, ВСЕ, BАD и ВАF.

Призмы с основаниями ВСD и ВСЕ могут быть совмещены, так как основания их равны (/\ ВСD = /\ BСЕ) и также равны их боковые рёбра, являющиеся перпендикулярами к одной плоскости. Значит, объёмы этих призм равны. Также равны объёмы призм с основаниями BАD и BАF.

Таким образом, оказывается, что объём данной треугольной призмы с основанием
АBС вдвое меньше объёма прямоугольного параллелепипеда с основанием АСЕF.

Нам известно, что объём прямоугольного параллелепипеда равен произведению площади его основания на высоту, т. е. в данном случае равен 2Sh . Отсюда объём данной прямой треугольной призмы равен Sh .

Объём прямой треугольной призмы равен произведению площади её основания на высоту.

2. Объём прямой многоугольной призмы.

Чтобы найти объём прямой многоугольной призмы, например пятиугольной, с площадью основания S и высотой h , разобьём её на треугольные призмы (черт. 308).

Обозначив площади основания треугольных призм через S 1 , S 2 и S 3 , а объём данной многоугольной призмы через V, получим:

V = S 1 h + S 2 h + S 3 h , или
V = (S 1 + S 2 + S 3)h .

И окончательно: V = Sh .

Таким же путём выводится формула объема прямой призмы, имеющей в основании любой многоугольник.

Значит, объём любой прямой призмы равен произведению площади её основания на высоту.

Упражнения.

1. Вычислить объём прямой призмы, имеющей в основании параллелограмм, по следующим данным:

2. Вычислить объём прямой призмы, имеющей в основании треугольник, по следующим данным:

3. Вычислить объём прямой призмы, имеющей в основании равносторонний треугольник со стороной в 12 см (32 см, 40 см). Высота призмы 60 см.

4. Вычислить объём прямой призмы, имеющей в основании прямоугольный треугольник с катетами в 12 см и 8 см (16 см и 7 см; 9 м и 6 м). Высота призмы 0,3 м.

5. Вычислить объём прямой призмы, имеющей в основании трапецию с параллельными сторонами в 18 см и 14 см и высотой в 7,5 см. Высота призмы 40 см.

6. Вычислить объём вашей классной комнаты (физкультурного зала, своей комнаты).

7. Полная поверхность куба равна 150 см 2 (294 см 2 , 864 см 2). Вычислить объём этого куба.

8. Длина строительного кирпича - 25,0 см, ширина его - 12,0 см толщина - 6,5 см. а) Вычислить его объём, б) Определить его вес, если 1 кубический сантиметр кирпича весит 1,6 г.

9. Сколько штук строительного кирпича потребуется для постройки сплошной кирпичной стены, имеющей форму прямоугольного параллелепипеда длиной в 12 м, шириной в 0,6 м и высотой в 10м? (Размеры кирпича из упражнения 8.)

10. Длина чисто обрезаной доски равна 4,5 м, ширина - 35 см толщина - 6 см. а) Вычислить объем б) Определить её вес, если кубический дециметр доски весит 0,6 кг.

11. Сколько тонн сена можно уложить в сеновал, покрытый двускатной крышей (черт. 309), если длина сеновала равна 12 м, ширина - 8 м, высота - 3,5 м и высота конька крыши равна 1,5 м? (Удельный вес сена принять за 0,2.)

12. Требуется выкопать канаву длиной 0,8 км; в разрезе канава должна иметь форму трапеции с основаниями в 0,9 м и 0,4 м, и глубина канавы должна равняться 0,5 м (черт. 310). Сколько кубометров земли придется при этом вынуть?

Объём призмы. Решение задач

Геометрия является самым могущественным средством для изощрения наших умственных способностей и дает нам возможность правильно мыслить и рассуждать.

Г.Галилей

Цель урока:

  • обучить решению задач на вычисление объема призм, обобщить и систематизировать имеющиеся у учащихся сведения о призме и ее элементах, формировать умения решать задачи повышенной сложности;
  • развивать логическое мышление, умение самостоятельно работать, навыки взаимоконтроля и самоконтроля, умение говорить и слушать;
  • выработать привычку к постоянной занятости, каким- либо полезным делом, воспитание отзывчивости, трудолюбия, аккуратности.

Тип урока: урок применения знаний, умений и навыков.

Оборудование: карточки контроля,медиапроектор, презентация “Урок. Объем Призмы”, компьютеры.

Ход урока

  • Боковые ребра призмы (рис 2).
  • Боковую поверхность призмы (рис 2, рис 5).
  • Высоту призмы (рис 3, рис 4).
  • Прямую призму (рис 2,3,4).
  • Наклонную призму (рис 5).
  • Правильную призму (рис 2, рис 3).
  • Диагональное сечение призмы (рис 2).
  • Диагональ призмы (рис 2).
  • Перпендикулярное сечение призмы (ри3, рис4).
  • Площадь боковой поверхности призмы.
  • Площадь полной поверхности призмы.
  • Объем призмы.

    1. ПРОВЕРКА ДОМАШНЕГО ЗАДАНИЯ (8 мин)
    2. Обменяйтесь тетрадями, проверьте решение на слайдах и выставьте отметку (отметка 10 если составлена задача)

      Составьте по рисунку задачу и решите её. Ученик защищает составленную им задачу у доски. Рис 6 и рис 7.

      Глава 2,§3
      Задача.2. Длины всех ребер правильной треугольной призмы равны между собой. Вычислите объем призмы, если площадь ее поверхности равна cм 2 (рис8)

      Глава 2,§3
      Задача 5. Основание прямой призмы АВСА 1В 1С1 есть прямоугольный треугольник АВС (угол АВС=90°), АВ=4см. Вычислите объем призмы, если радиус окружности, описанной около треугольника АВС, равен 2,5см, а высота призмы равна 10см. (рис 9).

      Глава2,§3
      Задача 29.Длина стороны основания правильной четырехугольной призмы равна 3см. Диагональ призмы образует с плоскостью боковой грани угол 30°. Вычислить объем призмы (рис 10).

    3. Совместная работа учителя с классом (2-3мин.).
    4. Цель: подведение итогов теоретической разминки (учащиеся проставляют оценки друг другу), изучение способов решения задач по теме.

    5. ФИЗКУЛЬТМИНУТКА (3 мин)
    6. РЕШЕНИЕ ЗАДАЧ (10 мин)
    7. На данном этапе учитель организует фронтальную работу по повторению способов решения планиметрических задач, формул планиметрии. Класс делится на две группы, одни решают задачи, другие работают за компьютером. Затем меняются. Учащимся предлагается решить всем № 8 (устно), № 9 (устно). После делятся на группы и преступают к решению задач № 14, № 30, № 32.

      Глава 2, §3, страница 66-67

      Задача 8. Все ребра правильной треугольной призмы равны между собой. Найдите объём призмы, если площадь сечения плоскостью, проходящей через ребро нижнего основания и середину стороны верхнего основания, равна см (рис.11).

      Глава 2,§3, страница 66-67
      Задача 9. основание прямой призмы – квадрат, а ее боковые ребра в два раза больше стороны основания. Вычислите объем призмы, если радиус окружности, описанной около сечения призмы плоскостью, проходящей через сторону основания и середину противолежащего бокового ребра, равен см. (рис.12)

      Глава 2,§3, страница 66-67
      Задача 14 .Основание прямой призмы – ромб, одна из диагоналей которого равна его стороне. Вычислите периметр сечения плоскостью проходящей через большую диагональ нижнего основания, если объем призмы равен и все боковые грани квадраты (рис.13).

      Глава 2,§3, страница 66-67
      Задача 30 .АВСА 1 В 1 С 1 –правильная треугольная призма, все ребра которой равны между собой, точка о середина ребра ВВ 1 . Вычислите радиус окружности, вписанной в сечение призмы плоскостью АОС, если объем призмы равен (рис.14).

      Глава 2,§3, страница 66-67
      Задача 32 .В правильной четырех угольной призме сумма площадей оснований равна площади боковой поверхности. Вычислите объем призмы, если диаметр окружности, описанной около сечения призмы плоскостью, проходящей через две вершины нижнего основания и противолежащую вершину верхнего основания, равен 6 см (рис15).

      В ходе решения задач ученики сопоставляют свои ответы с теми, что показывает учитель. Это образец решения задачи с подробными комментариями … Индивидуальная работа учителя с “сильными” учениками (10мин.).

    8. Самостоятельная работа учащихся над тестом за компьютером
    9. 1. Сторона основания правильной треугольной призмы равна , а высота-5. Найдите объем призмы.

      1) 152) 45 3) 104) 125) 18

      2. Выберите верное утверждение.

      1)Объем прямой призмы, основанием которой является прямоугольный треугольник, равен произведению площади основания на высоту.

      2) Объем правильной треугольной призмы вычисляется по формулеV=0,25а 2 h -где а- сторона основания,h-высота призмы.

      3)Объем прямой призмы равен половине произведения площади основания на высоту.

      4)Объем правильной четырехугольной призмы вычисляется по формуле V=a 2 h-где а- сторона основания,h-высота призмы.

      5)Объем правильной шестиугольной призмы вычисляется по формуле V=1.5а 2 h, где а- сторона основания,h-высота призмы.

      3.Сторона основания правильной треугольной призмы равна . Через сторону нижнего основания и противоположную вершину верхнего основания проведена плоскость, которая проходит под углом 45° к основанию. Найдите объем призмы.

      1) 92) 9 3) 4,54) 2,255) 1,125

      4. Основанием прямой призмы является ромб, сторона которого равна 13, а одна из диогоналей-24. Найдите объем призмы, если диагональ боковой грани равна 14.

В физике треугольная призма, сделанная из стекла, часто используется для изучения спектра белого света, поскольку она способна разлагать его на отдельные составляющие. В данной статье рассмотрим формулу объема

Что такое треугольная призма?

Перед тем как приводить формулу объема рассмотрим свойства этой фигуры.

Чтобы получить этот необходимо взять треугольник произвольной формы и параллельно самому себе перенести его на некоторое расстояние. Вершины треугольника в начальном и конечном положении следует соединить прямыми отрезками. Полученная объемная фигура называется треугольной призмой. Она состоит из пяти сторон. Две из них называются основаниями: они параллельны и равны друг другу. Основаниями рассматриваемой призмы являются треугольники. Три оставшиеся стороны - это параллелограммы.

Помимо сторон, рассматриваемая призма характеризуется шестью вершинами (по три для каждого основания) и девятью ребрами (6 ребер лежат в плоскостях оснований и 3 ребра образованы пересечением боковых сторон). Если боковые ребра перпендикулярны основаниям, то такая призма называется прямоугольной.

Отличие треугольной призмы от всех остальных фигур этого класса заключается в том, что она всегда является выпуклой (четырех-, пяти-, ..., n-угольные призмы могут также быть вогнутыми).

Это прямоугольная фигура, в основании которой лежит равносторонний треугольник.

Объем треугольной призмы общего типа

Как найти объем треугольной призмы? Формула в общем виде аналогична таковой для призмы любого вида. Она имеет такую математическую запись:

Здесь h - это высота фигуры, то есть расстояние между ее основаниями, S o - площадь треугольника.

Величину S o можно найти, если известны некоторые параметры для треугольника, например одна его сторона и два угла или две стороны и один угол. Площадь треугольника равна половине произведения его высоты на длину стороны, на которую опущена эта высота.

Что касается высоты h фигуры, то ее проще всего найти для прямоугольной призмы. В последнем случае h совпадает с длиной бокового ребра.

Объем правильной треугольной призмы

Общую формулу объема треугольной призмы, которая приведена в предыдущем разделе статьи, можно использовать для вычисления соответствующей величины для правильной треугольной призмы. Поскольку в ее основании лежит равносторонний треугольник, то его площадь равна:

Эту формулу может получить каждый, если вспомнит, что в равностороннем треугольнике все углы равны друг другу и составляют 60 o . Здесь символ a - это длина стороны треугольника.

Высота h является длиной ребра. Она никак не связана с основанием правильной призмы и может принимать произвольные значения. В итоге формула объема треугольной призмы правильного вида выглядит так:

Вычислив корень, можно переписать эту формулу так:

Таким образом, чтобы найти объем правильной призмы с треугольным основанием, необходимо возвести в квадрат сторону основания, умножить эту величину на высоту и полученное значение умножить на 0,433.

В школьной программе по курсу стереометрии изучение объёмных фигур обычно начинается с простого геометрического тела - многогранника призмы. Роль её оснований выполняют 2 равных многоугольника, лежащих в параллельных плоскостях. Частным случаем является правильная четырёхугольная призма. Её основами являются 2 одинаковых правильных четырёхугольника, к которым перпендикулярны боковые стороны, имеющие форму параллелограммов (или прямоугольников, если призма не наклонная).

Как выглядит призма

Правильной четырёхугольной призмой называется шестигранник, в основаниях которого находятся 2 квадрата, а боковые грани представлены прямоугольниками. Иное название для этой геометрической фигуры - прямой параллелепипед.

Рисунок, на котором изображена четырёхугольная призма, показан ниже.

На картинке также можно увидеть важнейшие элементы, из которых состоит геометрическое тело . К ним принято относить:

Иногда в задачах по геометрии можно встретить понятие сечения. Определение будет звучать так: сечение - это все точки объёмного тела, принадлежащие секущей плоскости. Сечение бывает перпендикулярным (пересекает рёбра фигуры под углом 90 градусов). Для прямоугольной призмы также рассматривается диагональное сечение (максимальное количество сечений, которых можно построить - 2), проходящее через 2 ребра и диагонали основания.

Если же сечение нарисовано так, что секущая плоскость не параллельна ни основам, ни боковым граням, в результате получается усечённая призма.

Для нахождения приведённых призматических элементов используются различные отношения и формулы. Часть из них известна из курса планиметрии (например, для нахождения площади основания призмы достаточно вспомнить формулу площади квадрата).

Площадь поверхности и объём

Чтобы определить объём призмы по формуле, необходимо знать площадь её основания и высоту:

V = Sосн·h

Так как основанием правильной четырёхгранной призмы является квадрат со стороной a, можно записать формулу в более подробном виде:

V = a²·h

Если речь идёт о кубе - правильной призме с равной длиной, шириной и высотой, объём вычисляется так:

Чтобы понять, как найти площадь боковой поверхности призмы, необходимо представить себе её развёртку.

Из чертежа видно, что боковая поверхность составлена из 4 равных прямоугольников. Её площадь вычисляется как произведение периметра основания на высоту фигуры:

Sбок = Pосн·h

С учётом того, что периметр квадрата равен P = 4a, формула принимает вид:

Sбок = 4a·h

Для куба:

Sбок = 4a²

Для вычисления площади полной поверхности призмы нужно к боковой площади прибавить 2 площади оснований:

Sполн = Sбок + 2Sосн

Применительно к четырёхугольной правильной призме формула имеет вид:

Sполн = 4a·h + 2a²

Для площади поверхности куба:

Sполн = 6a²

Зная объём или площадь поверхности, можно вычислить отдельные элементы геометрического тела.

Нахождение элементов призмы

Часто встречаются задачи, в которых дан объём или известна величина боковой площади поверхности, где необходимо определить длину стороны основания или высоту. В таких случаях формулы можно вывести:

  • длина стороны основания: a = Sбок / 4h = √(V / h);
  • длина высоты или бокового ребра: h = Sбок / 4a = V / a²;
  • площадь основания: Sосн = V / h;
  • площадь боковой грани: Sбок. гр = Sбок / 4.

Чтобы определить, какую площадь имеет диагональное сечение, необходимо знать длину диагонали и высоту фигуры. Для квадрата d = a√2. Из этого следует:

Sдиаг = ah√2

Для вычисления диагонали призмы используется формула:

dприз = √(2a² + h²)

Чтобы понять, как применять приведённые соотношения, можно попрактиковаться и решить несколько несложных заданий.

Примеры задач с решениями

Вот несколько заданий, встречающихся в государственных итоговых экзаменах по математике.

Задание 1.

В коробку, имеющую форму правильной четырёхугольной призмы, насыпан песок. Высота его уровня составляет 10 см. Каким станет уровень песка, если переместить его в ёмкость такой же формы, но с длиной основания в 2 раза больше?

Следует рассуждать следующим образом. Количество песка в первой и второй ёмкости не изменялось, т. е. его объём в них совпадает. Можно обозначить длину основания за a . В таком случае для первой коробки объём вещества составит:

V₁ = ha² = 10a²

Для второй коробки длина основания составляет 2a , но неизвестна высота уровня песка:

V₂ = h (2a)² = 4ha²

Поскольку V₁ = V₂ , можно приравнять выражения:

10a² = 4ha²

После сокращения обеих частей уравнения на a² получается:

В результате новый уровень песка составит h = 10 / 4 = 2,5 см.

Задание 2.

ABCDA₁B₁C₁D₁ — правильная призма. Известно, что BD = AB₁ = 6√2. Найти площадь полной поверхности тела.

Чтобы было проще понять, какие именно элементы известны, можно изобразить фигуру.

Поскольку речь идёт о правильной призме, можно сделать вывод, что в основании находится квадрат с диагональю 6√2. Диагональ боковой грани имеет такую же величину, следовательно, боковая грань тоже имеет форму квадрата, равного основанию. Получается, что все три измерения - длина, ширина и высота - равны. Можно сделать вывод, что ABCDA₁B₁C₁D₁ является кубом.

Длина любого ребра определяется через известную диагональ:

a = d / √2 = 6√2 / √2 = 6

Площадь полной поверхности находится по формуле для куба:

Sполн = 6a² = 6·6² = 216


Задание 3.

В комнате производится ремонт. Известно, что её пол имеет форму квадрата с площадью 9 м². Высота помещения составляет 2,5 м. Какова наименьшая стоимость оклейки комнаты обоями, если 1 м² стоит 50 рублей?

Поскольку пол и потолок являются квадратами, т. е. правильными четырёхугольниками, и стены её перпендикулярны горизонтальным поверхностям, можно сделать вывод, что она является правильной призмой. Необходимо определить площадь её боковой поверхности.

Длина комнаты составляет a = √9 = 3 м.

Обоями будет оклеена площадь Sбок = 4·3·2,5 = 30 м² .

Наименьшая стоимость обоев для этой комнаты составит 50·30 = 1500 рублей.

Таким образом, для решения задач на прямоугольную призму достаточно уметь вычислять площадь и периметр квадрата и прямоугольника, а также владеть формулами для нахождения объёма и площади поверхности.

Как найти площадь куба

















Статьи по теме: