Как решать действия с обыкновенными дробями. Умножение дроби на число. Взаимно обратные числа

Действия с дробями. В этой статье разберём примеры, всё подробно с пояснениями. Рассматривать будем обыкновенные дроби. В дальнейшем разберём и десятичные. Рекомендую посмотреть весь и изучать последовательно.

1. Сумма дробей, разность дробей.

Правило: при сложении дробей с равными знаменателями, в результате получаем дробь – знаменатель которой остаётся тот же, а числитель её будет равен сумме числителей дробей.

Правило: при вычислении разности дробей с одинаковыми знаменателями получаем дробь – знаменатель остаётся тот же, а из числителя первой дроби вычитается числитель второй.

Формальная запись суммы и разности дробей с равными знаменателями:


Примеры (1):


Понятно, что когда даны обыкновенные дроби, то всё просто, а если смешанные? Ничего сложного…

Вариант 1 – можно перевести их в обыкновенные и далее вычислять.

Вариант 2 – можно отдельно «работать» с целой и дробной частью.

Примеры (2):


Ещё:

А если будет дана разность двух смешанных дробей и числитель первой дроби будет меньше числителя второй? Тоже можно действовать двумя способами.

Примеры (3):

*Перевели в обыкновенные дроби, вычислили разность, перевели полученную неправильную дробь в смешанную.


*Разбили на целые и дробные части, получили тройку, далее представили 3 как сумму 2 и 1, при чём единицу представили как 11/11, далее нашли разность 11/11 и 7/11 и вычислили результат. Смысл изложенных преобразований заключается в том, чтобы взять (выделить) единицу и представить её в виде дроби с нужным нам знаменателем, далее от этой дроби мы уже можем вычесть другую.

Ещё пример:


Вывод: имеется универсальный подход – для того, чтобы вычислить сумму (разность) смешанных дробей с равными знаменателями их всегда можно перевести в неправильные, далее выполнить необходимое действие. После этого если в результате получаем неправильную дробь переводим её в смешанную.

Выше мы рассмотрели примеры с дробями, у которых равные знаменатели. А если знаменатели будут отличаться? В этом случае дроби приводятся к одному знаменателю и выполняется указанное действие. Для изменения (преобразования) дроби используется основное свойство дроби.

Рассмотрим простые примеры:


В данных примерах мы сразу видим каким образом можно преобразовать одну из дробей, чтобы получить равные знаменатели.

Если обозначить способы приведения дробей к одному знаменателю, то этот назовём СПОСОБ ПЕРВЫЙ .

То есть, сразу при «оценке» дроби нужно прикинуть сработает ли такой подход – проверяем делится ли больший знаменатель на меньший. И если делится, то выполняем преобразование — домножаем числитель и знаменатель так чтобы у обеих дробей знаменатели стали равными.

Теперь посмотрите на эти примеры:

К ним указанный подход не применим. Существуют ещё способы приведения дробей к общему знаменателю, рассмотрим их.

Способ ВТОРОЙ .

Умножаем числитель и знаменатель первой дроби на знаменатель второй, а числитель и знаменатель второй дроби на знаменатель первой:

*Фактически мы приводим дроби к виду, когда знаменатели становятся равными. Далее используем правило сложения робей с равными знаменателями.

Пример:

*Данный способ можно назвать универсальным, и он работает всегда. Единственный минус в том, что после вычислений может получится дробь которую необходимо будет ещё сократить.

Рассмотрим пример:

Видно что числитель и знаменатель делится на 5:

Способ ТРЕТИЙ.

Необходимо найти наименьшее общее кратное (НОК) знаменателей. Это и будет общий знаменатель. Что это за число такое? Это наименьшее натуральное число, которое делится на каждое из чисел.

Посмотрите, вот два числа: 3 и 4, есть множество чисел, которые делятся на них – это 12, 24, 36, … Наименьшее из них 12. Или 6 и 15, на них делятся 30, 60, 90 …. Наименьшее 30. Вопрос – а как определить это самое наименьшее общее кратное?

Имеется чёткий алгоритм, но часто это можно сделать и сразу без вычислений. Например, по указанным выше примерам (3 и 4, 6 и 15) никакого алгоритма не надо, мы взяли большие числа (4 и 15) увеличили их в два раза и увидели, что они делятся на второе число, но пары чисел могут быть и другими, например 51 и 119.

Алгоритм. Для того, чтобы определить наименьшее общее кратное нескольких чисел, необходимо:

— разложить каждое из чисел на ПРОСТЫЕ множители

— выписать разложение БОЛЬШЕГО из них

— умножить его на НЕДОСТАЮЩИЕ множители других чисел

Рассмотрим примеры:

50 и 60 => 50 = 2∙5∙5 60 = 2∙2∙3∙5

в разложении большего числа не хватает одной пятёрки

=> НОК(50,60) = 2∙2∙3∙5∙5 = 300

48 и 72 => 48 = 2∙2∙2∙2∙3 72 = 2∙2∙2∙3∙3

в разложении большего числа не хватает двойки и тройки

=> НОК(48,72) = 2∙2∙2∙2∙3∙3 = 144

* Наименьшее общее кратное двух простых чисел равно их произведению

Вопрос! А чем полезно нахождение наименьшего общего кратного, ведь можно пользоваться вторым способом и полученную дробь просто сократить? Да, можно, но это не всегда удобно. Посмотрите, какой получится знаменатель для чисел 48 и 72, если их просто перемножить 48∙72 = 3456. Согласитесь, что приятнее работать с меньшими числами.

Рассмотрим примеры:

*51 = 3∙17 119 = 7∙17

в разложении большего числа не хватает тройки

=> НОК(51,119) = 3∙7∙17

А теперь применим первый способ:

*Посмотрите какая разница в вычислениях, в первом случае их минимум, а во втором нужно потрудиться отдельно на листочке, да ещё и дробь которую получили сократить необходимо. Нахождение НОК упрощает работу значительно.

Ещё примеры:


*Во втором примере и так видно, что наименьшее число, которое делится на 40 и 60 равно 120.

ИТОГ! ОБЩИЙ АЛГОРИТМ ВЫЧИСЛЕНИЙ!

— приводим дроби к обыкновенным, если есть целая часть.

— приводим дроби к общему знаменателю (сначала смотрим делится ли один знаменатель на другой, если делится то умножаем числитель и знаменатель этой другой дроби; если не делится действуем посредством других указанных выше способов).

— получив дроби с равными знаменателями, выполняем действия (сложение, вычитание).

— если необходимо, то результат сокращаем.

— если необходимо, то выделяем целую часть.

2. Произведение дробей.

Правило простое. При умножении дробей умножаются их числители и знаменатели:

Примеры:

В данном разделе рассматриваются действия с обыкновенными дробями. В случае, если необходимо провести математическую операцию со смешанными числами, то достаточно перевести смешанную дробь в необыкновенную, провести необходимые операции и, в случае необходимости, конечный результат снова представить в виде смешанного числа. Данная операция будет описана ниже.

Сокращение дроби

Математическая операция. Сокращение дроби

Чтобы сократить дробь \frac{m}{n} нужно найти наибольший общий делитель ее числителя и знаменателя: НОД(m,n), после чего поделить числитель и знаменатель дроби на это число. Если НОД(m,n)=1, то дробь сократить нельзя. Пример: \frac{20}{80}=\frac{20:20}{80:20}=\frac{1}{4}

Обычно сразу найти наибольший общий делитель представляется сложной задачей и на практике дробь сокращают в несколько этапов, пошагово выделяя у числителя и знаменателя очевидные общие множители. \frac{140}{315}=\frac{28\cdot5}{63\cdot5}=\frac{4\cdot7\cdot5}{9\cdot7\cdot5}=\frac{4}{9}

Приведение дробей к общему знаменателю

Математическая операция. Приведение дробей к общему знаменателю

Чтобы привести две дроби \frac{a}{b} и \frac{c}{d} к общему знаменателю нужно:

  • найти наименьшее общее кратное знаменателей: M=НОК(b,d);
  • умножить числитель и знаменатель первой дроби на M/b (после чего знаменатель дроби становится равным числу M);
  • умножить числитель и знаменатель второй дроби на M/d (после чего знаменатель дроби становится равным числу M).

Тем самым мы преобразуем исходные дроби к дробям с одинаковыми знаменателями (которые будут равны числу M).

Например, дроби \frac{5}{6} и \frac{4}{9} имеют НОК(6,9) = 18. Тогда: \frac{5}{6}=\frac{5\cdot3}{6\cdot3}=\frac{15}{18};\quad\frac{4}{9}=\frac{4\cdot2}{9\cdot2}=\frac{8}{18} . Тем самым полученные дроби имеют общий знаменатель.

На практике нахождение наименьшего общего кратного (НОК) знаменателей является не всегда простой задачей. Поэтому в качестве общего знаменателя выбирается число, равное произведению знаменателей исходных дробей. Например, дроби \frac{5}{6} и \frac{4}{9} приводятся к общему знаменателю N=6\cdot9:

\frac{5}{6}=\frac{5\cdot9}{6\cdot9}=\frac{45}{54};\quad\frac{4}{9}=\frac{4\cdot6}{9\cdot6}=\frac{24}{54}

Сравнение дробей

Математическая операция. Сравнение дробей

Для сравнения двух обыкновенных дробей необходимо:

  • сравнить числители получившихся дробей; дробь с большим числителем будет больше.
Например, \frac{9}{14}

При сравнении дробей имеются несколько частных случаев:

  1. Из двух дробей с одинаковыми знаменателями больше та дробь, числитель которой больше. Например, \frac{3}{15}
  2. Из двух дробей с одинаковыми числителями больше та дробь, знаменатель которой меньше. Например, \frac{4}{11}>\frac{4}{13}
  3. Та дробь, у которой одновременно больший числитель и меньший знаменатель , больше. Например, \frac{11}{3}>\frac{10}{8}

Внимание! Правило 1 действует для любых дробей, если их общий знаменатель является положительным числом. Правила 2 и 3 действуют для положительных дробей (у которых и числитель и знаменатель больше нуля).

Сложение и вычитание дробей

Математическая операция. Сложение и вычитание дробей

Чтобы сложить две дроби, нужно:

  • привести их к общему знаменателю;
  • сложить их числители, а знаменатель оставить без изменений.

Пример: \frac{7}{9}+\frac{4}{7}=\frac{7\cdot7}{9\cdot7}+\frac{4\cdot9}{7\cdot9}=\frac{49}{63}+\frac{36}{63}=\frac{49+36}{63}=\frac{85}{63}

Чтобы из одной дроби вычесть другую, нужно:

  • привести дроби к общему знаменателю;
  • из числителя первой дроби вычесть числитель второй дроби, а знаменатель оставить без изменений.

Пример: \frac{4}{15}-\frac{3}{5}=\frac{4}{15}-\frac{3\cdot3}{5\cdot3}=\frac{4}{15}-\frac{9}{15}=\frac{4-9}{15}=\frac{-5}{15}=-\frac{5}{3\cdot5}=-\frac{1}{3}

Если исходные дроби изначально имеют общий знаменатель, то пункт 1 (приведение к общему знаменателю) пропускается.

Преобразование смешанного числа в неправильную дробь и обратно

Математическая операция. Преобразование смешанного числа в неправильную дробь и обратно

Чтобы преобразовать смешанную дробь в неправильную, достаточно просуммировать целую часть смешанной дроби с дробной частью. Результатом такой суммы станет неправильная дробь, числитель которой равен сумме произведения целой части на знаменатель дроби с числителем смешанной дроби, а знаменатель останется прежним. Например, 2\frac{6}{11}=2+\frac{6}{11}=\frac{2\cdot11}{11}+\frac{6}{11}=\frac{2\cdot11+6}{11}=\frac{28}{11}

Чтобы преобразовать неправильную дробь в смешанное число необходимо:

  • поделить числитель дроби на ее знаменатель;
  • остаток от деления записать в числитель, а знаменатель оставить прежним;
  • результат от деления записать в качестве целой части.

Например, дробь \frac{23}{4} . При делении 23:4=5,75, то есть целая часть 5, остаток от деления равен 23-5*4=3. Тогда смешанное число запишется: 5\frac{3}{4} . \frac{23}{4}=\frac{5\cdot4+3}{4}=5\frac{3}{4}

Преобразование десятичной дроби в обыкновенную

Математическая операция. Преобразование десятичной дроби в обыкновенную

Для того, чтобы обратить десятичную дробь в обыкновенную, надо:

  1. в качестве знаменателя взять n-ую степень десяти (здесь n – количество десятичных знаков);
  2. в качестве числителя взять число, стоящее после десятичной точки (если целая часть исходного числа не равна нулю, то брать в том числе и все стоящие впереди нули);
  3. отличная от нуля целая часть записывается в числителе в самом начале; нулевая целая часть опускается.

Пример 1: 0.0089=\frac{89}{10000} (десятичных знаков 4, поэтому в знаменателе 10 4 =10000, поскольку целая часть равна 0, то в числителе записано число после десятичной точки без начальных нулей)

Пример 2: 31.0109=\frac{310109}{10000} (в числитель записываем число после десятичной точки со всеми нулями: "0109", а затем перед ним дописываем целую часть исходного числа "31")

Если целая часть десятичной дроби отлична от нуля, то её можно перевести в смешанную дробь. Для этого переводим число в обыкновенную дробь как если бы целая часть равнялась нулю (пункты 1 и 2), а целую часть просто переписываем перед дробью - это будет целая часть смешанного числа. Пример:

3.014=3\frac{14}{100}

Чтобы перевести обыкновенную дробь в десятичную, достаточно просто произвести деление числителя на знаменатель. Иногда получится бесконечная десятичная дробь. В этом случае необходимо произвести округление до нужного десятичного знака. Примеры:

\frac{401}{5}=80.2;\quad \frac{2}{3}\approx0.6667

Умножение и деление дробей

Математическая операция. Умножение и деление дробей

Чтобы перемножить две обыкновенные дроби, надо перемножить числители и знаменатели дробей.

\frac{5}{9}\cdot\frac{7}{2}=\frac{5\cdot7}{9\cdot2}=\frac{35}{18}

Чтобы разделить одну обыкновенную дробь на другую, надо умножить первую дробь на дробь, обратную второй (обратная дробь - дробь, в которой поменяны местами числитель и знаменатель).

\frac{5}{9}:\frac{7}{2}=\frac{5}{9}\cdot\frac{2}{7}=\frac{5\cdot2}{9\cdot7}=\frac{10}{63}

В случае, если одна из дробей является натуральным числом, то указанные выше правила умножения и деления остаются в силе. Просто нужно учитывать, что целое число это та же дробь, знаменатель которой равен единице. Например: 3:\frac{3}{7}=\frac{3}{1}:\frac{3}{7}=\frac{3}{1}\cdot\frac{7}{3}=\frac{3\cdot7}{1\cdot3}=\frac{7}{1}=7

Выходим на битву с домашним заданием по математике! Враг — непокорные дроби. Программа 5 класса. Стратегически важная задача — объяснить ребенку дроби. Поменяемся ролями с учителем и попробуем сделать это «малой кровью», без нервов и в доступной форме. Обучить одного солдата куда легче, чем роту…

ria.ru

Как объяснить ребенку дроби

Не ждите, пока ребенок пойдет в 5 класс и встретится с дробями на страницах учебника по математике. Ответ на вопрос «Как объяснить ребенку дроби» рекомендуем поискать на кухне! И сделать это прямо сейчас! Даже если вашему малышу только 4-5 лет, смысл понятия «дроби» он в состоянии уяснить и даже может научиться простейшим действиям с дробями.

Мы делили апельсин.
Много нас, а он один
Эта долька для ежа, эта долька для чижа…
А для волка - кожура.

Помните стихотворение? Вот самый наглядный пример и самое эффективное руководство к действию! Объяснить ребенку дроби проще всего на примере еды: режем яблоко на половинки и четвертинки, делим пиццу между членами семьи, разрезаем буханку хлеба перед обедом и т.п. Главное, перед тем, как съесть «наглядное пособие» не забудьте озвучить, какую часть от целого вы «уничтожаете».

  • Введите понятие «доли».

Сделайте акцент на том, что ЦЕЛЫЙ апельсин (яблоко, шоколадка, арбуз и пр.) — это 1 (обозначаем цифрой 1).

  • Введите понятие «дробь».

Апельсин или шоколадку мы делим, можно еще сказать «дробим» на несколько частей.

Покажите ребенку хорошо знакомый предмет — линейку. Объясните, что между числами есть промежуточные значения - части.

i.ytimg.com

  • Объясните, как записывать дроби: что значит числитель, и на что указывает знаменатель.

Смысл понятия «дроби» и правильную запись легко показать на примере конструктора. В числителе НАД чертой пишем какая часть, а в знаменателе ПОД чертой — на сколько таких частей было разделено целое.

gladtolearn.ru

spacemath.xyz

Обязательно на наглядном примере покажите разницу между дробями с одинаковым числителем, но разными знаменателями.

gladtolearn.ru

На примере 4-х квадратов одинакового размера покажите, как можно разделить их на одинаковое/разное количество частей. Пусть ребенок сам разрежет ножницами бумажные заготовки, а затем запишет при помощи дробей результаты.


gladtolearn.ru

  • Объясните, как записать целое через дробь.

Вспомните квадрат и то, как мы делили его на 4 части. Квадрат — это целое, мы можем записать его как 1. Но как записать в виде дроби: что в числителе, что в знаменателе? Если мы делили квадрат на 4 части, то целый квадрат, это 4/4. Если мы делили квадрат на 8 частей, то целый квадрат это 8/8. Но это все равно квадрат, т.е. 1. И 4/4, и 8/8 — это единица, целое!

Как объяснить ребенку дроби: задаем ПРАВИЛЬНЫЕ вопросы

Чтобы ученик 5 класса понял тему «Дроби» и научился выполнять вычисления с дробями, заглянем в методику. Нам, родителям, важно понимать, как объясняет детям дроби учитель в школе, иначе мы можем окончательно запутать своего «солдата».

Дробь - это число, которое является частью целого предмета. Оно всегда меньше единицы.

Пример 1. Яблоко — это целое, а половинка — одна вторая. Она же меньше, чем целое яблоко? Половинки делим еще раз пополам. Каждая долька — одна четвертая от целого яблока, и она меньше, чем одна вторая.

Дробь - это количество частей от целого.

Пример 2. Например, в магазин одежды завезли новый товар: 30 рубашек. Продавцы успели разложить и развесить лишь одну треть всех рубашек из новой коллекции. Сколько рубашек они развесили?
Ребенок легко устно посчитает, что треть (одна третья) — это 10 рубашек, т.е. 10 развесили и вынесли в торговый зал, а еще 20 осталось на складе.

ВЫВОД: Дробями можно измерять все, что угодно, не только куски пиццы, но и литры в бочках, поголовье диких животных в лесу, площадь и т.п.

Приводите самые разные примеры из жизни, чтобы ребенок 5 класса понял СУТЬ дробей: это поможет в дальнейшем в решении задач и выполнении вычислений с правильными и неправильными дробями, и обучение в 5 классе будет не в тягость, а в радость.

Как убедиться, что ребенок усвоил, что в записи дробей обозначают числа в числителе и в знаменателе?

Пример 3. Спросите, что значит 5 в дроби 4/5?

— Это на сколько частей поделили.
— А что значит 4?
— Это сколько взяли.

Сравнение дробей — самая, пожалуй, сложная тема.

Пример 4. Предложите ребенку сказать, какая дробь больше: 3/10 или 3/20? Кажется, что раз 10 меньше 20, то и ответ очевиден, но это не так! Вспомните про квадраты, которые мы разрезали на части. Если два одинаковых по размеру квадрата разрезать — один на 10, второй на 20 частей — ответ очевиден? Так какая дробь больше?

Действия с дробями

Если вы видите, что ребенок хорошо усвоил смысл записи в виде дроби, можно переходить к простым арифметическим действиям с дробями. На примере конструктора можно сделать это очень наглядно.

Пример 5.

edinstvennaya.ua

Пример 6. Математическое лото на тему «Дроби».

www.kakprosto.ru

Уважаемые читатели, если вы знаете другие эффективные методики, как объяснить ребенку дроби, делитесь в комментариях. С радостью пополним нашу копилочку дельных школьных советов.

Калькулятор онлайн.
Вычисление выражения с числовыми дробями.
Умножение, вычитание, деление, сложение и сокращение дробей с разными знаменателями.

С помощью данного калькулятора онлайн вы можете умножить, вычесть, поделить, сложить и сократить числовые дроби с разными знаменателями.

Программа работает с правильными, неправильными и смешанными числовыми дробями.

Данная программа (калькулятор онлайн) умеет:
- выполнять сложение смешанных дробей с разными знаменателями
- выполнять вычетание смешанных дробей с разными знаменателями
- выполнять деление смешанных дробей с разными знаменателями
- выполнять умножение смешанных дробей с разными знаменателями
- приводить дроби к общему знаменателю
- преобразовывать смешанные дроби в неправильные
- сокращать дроби

Также можно ввести не выражение с дробями, а одну единственную дробь.
В этом случае дробь будет сокращена и из результата выделена целая часть.

Калькулятор онлайн для вычисления выражений с числовыми дробями не просто даёт ответ задачи, он приводит подробное решение с пояснениями, т.е. отображает процесс нахождения решения.

Данная программа может быть полезна учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.

Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.

Если вы не знакомы с правилами ввода выражений с числовыми дробями, рекомендуем с ними ознакомиться.

Правила ввода выражений с числовыми дробями

В качестве числителя, знаменателя и целой части дроби может выступать только целое число.

Знаменатель не может быть отрицательным.

При вводе числовой дроби числитель отделяется от знаменателя знаком деления: /
Ввод: -2/3 + 7/5
Результат: \(-\frac{2}{3} + \frac{7}{5} \)

Целая часть отделяется от дроби знаком амперсанд: &
Ввод: -1&2/3 * 5&8/3
Результат: \(-1\frac{2}{3} \cdot 5\frac{8}{3} \)

Деление дробей вводится знаком двоеточие: :
Ввод: -9&37/12: -3&5/14
Результат: \(-9\frac{37}{12} : \left(-3\frac{5}{14} \right) \)
Помните, что на ноль делить нельзя!

При вводе выражений с числовыми дробями можно использовать скобки.
Ввод: -2/3 * (6&1/2-5/9) : 2&1/4 + 1/3
Результат: \(-\frac{2}{3} \cdot \left(6 \frac{1}{2} - \frac{5}{9} \right) : 2\frac{1}{4} + \frac{1}{3} \)

Введите выражение с числовыми дробями.

Вычислить

Обнаружено что не загрузились некоторые скрипты, необходимые для решения этой задачи, и программа может не работать.
Возможно у вас включен AdBlock.
В этом случае отключите его и обновите страницу.

У вас в браузере отключено выполнение JavaScript.
Чтобы решение появилось нужно включить JavaScript.
Вот инструкции, как включить JavaScript в вашем браузере .

Т.к. желающих решить задачу очень много, ваш запрос поставлен в очередь.
Через несколько секунд решение появится ниже.
Пожалуйста подождите сек...


Если вы заметили ошибку в решении , то об этом вы можете написать в Форме обратной связи .
Не забудте указать какую задачу вы решаете и что вводите в поля .



Наши игры, головоломки, эмуляторы:

Немного теории.

Обыкновенные дроби. Деление с остатком

Если нам нужно разделить 497 на 4, то при делении мы увидим, что 497 не делится на 4 нацело, т.е. остаётся остаток от деления. В таких случаях говорят, что выполнено деление с остатком , и решение записывают в таком виде:
497: 4 = 124 (1 остаток).

Компоненты деления в левой части равенства называют так же, как при делении без остатка: 497 - делимое , 4 - делитель . Результат деления при делении с остатком называют неполным частным . В нашем случае это число 124. И, наконец, последний компонент, которого нет в обычном делении, - остаток . В тех случаях, когда остатка нет, говорят, что одно число разделилось на другое без остатка, или нацело . Считают, что при таком делении остаток равен нулю. В нашем случае остаток равен 1.

Остаток всегда меньше делителя.

Проверку при делении можно сделать умножением. Если, например, имеется равенство 64: 32 = 2, то проверку можно сделать так: 64 = 32 * 2.

Часто в случаях, когда выполняется деление с остатком, удобно использовать равенство
а = b * n + r ,
где а - делимое, b - делитель, n - неполное частное, r - остаток.

Частное от деления натуральных чисел можно записать в виде дроби.

Числитель дроби - это делимое, а знаменатель - делитель.

Поскольку числитель дроби - это делимое, а знаменатель - делитель, считают, что черта дроби означает действие деление . Иногда бывает удобно записывать деление в виде дроби, не используя знак «:».

Частное от деления натуральных чисел m и n можно записать в виде дроби \(\frac{m}{n} \), где числитель m - делимое, а знаменатель п - делитель:
\(m:n = \frac{m}{n} \)

Верны следующие правила:

Чтобы получить дробь \(\frac{m}{n} \), надо единицу разделить на n равных частей (долей) и взять m таких частей.

Чтобы получить дробь \(\frac{m}{n} \), надо число m разделить на число n.

Чтобы найти часть от целого, надо число, соответствующее целому, разделить на знаменатель и результат умножить на числитель дроби, которая выражает эту часть.

Чтобы найти целое по его части, надо число, соответствующее этой части, разделить на числитель и результат умножить на знаменатель дроби, которая выражает эту часть.

Если и числитель, и знаменатель дроби умножить на одно и то же число (кроме нуля), величина дроби не изменится:
\(\large \frac{a}{b} = \frac{a \cdot n}{b \cdot n} \)

Если и числитель, и знаменатель дроби разделить на одно и то же число (кроме нуля), величина дроби не изменится:
\(\large \frac{a}{b} = \frac{a: m}{b: m} \)
Это свойство называют основным свойством дроби .

Два последних преобразования называют сокращением дроби .

Если дроби нужно представить в виде дробей с одним и тем же знаменателем, то такое действие называют приведением дробей к общему знаменателю .

Правильные и неправильные дроби. Смешанные числа

Вы уже знаете, что дробь можно получить, если разделить целое на равные части и взять несколько таких частей. Например, дробь \(\frac{3}{4} \) означает три четвёртых доли единицы. Во многих задачах предыдущего параграфа обыкновенные дроби использовались для обозначения части целого. Здравый смысл подсказывает, что часть всегда должна быть меньше целого, но как тогда быть с такими дробями, как, например, \(\frac{5}{5} \) или \(\frac{8}{5} \)? Ясно, что это уже не часть единицы. Наверное, поэтому такие дроби, у которых числитель больше знаменателя или равен ему, называют неправильными дробями . Остальные дроби, т. е. дроби, у которых числитель меньше знаменателя, называют правильными дробями .

Как вы знаете, любую обыкновенную дробь, и правильную, и неправильную, можно рассматривать как результат деления числителя на знаменатель. Поэтому в математике, в отличие от обычного языка, термин «неправильная дробь» означает не то, что мы что-то сделали неправильно, а только то, что у этой дроби числитель больше знаменателя или равен ему.

Если число состоит из целой части и дроби, то такие дроби называются смешанными .

Например:
\(5:3 = 1\frac{2}{3} \) : 1 - целая часть, а \(\frac{2}{3} \) - дробная часть.

Если числитель дроби \(\frac{a}{b} \) делится на натуральное число n, то, чтобы разделить эту дробь на n, надо её числитель разделить на это число:
\(\large \frac{a}{b} : n = \frac{a:n}{b} \)

Если числитель дроби \(\frac{a}{b} \) не делится на натуральное число n, то, чтобы разделить эту дробь на n, надо её знаменатель умножить на это число:
\(\large \frac{a}{b} : n = \frac{a}{bn} \)

Заметим, что второе правило справедливо и в том случае, когда числитель делится на n. Поэтому мы можем его применять тогда, когда трудно с первого взгляда определить, делится числитель дроби на n или нет.

Действия с дробями. Сложение дробей.

С дробными числами, как и с натуральными числами, можно выполнять арифметические действия. Рассмотрим сначала сложение дробей. Легко сложить дроби с одинаковыми знаменателями. Найдем, например, сумму \(\frac{2}{7} \) и \(\frac{3}{7} \). Легко понять, что \(\frac{2}{7} + \frac{2}{7} = \frac{5}{7} \)

Чтобы сложить дроби с одинаковыми знаменателями, нужно сложить их числители, а знаменатель оставить прежним.

Используя буквы, правило сложения дробей с одинаковыми знаменателями можно записать так:
\(\large \frac{a}{c} + \frac{b}{c} = \frac{a+b}{c} \)

Если требуется сложить дроби с разными знаменателями, то их предварительно следует привести к общему знаменателю. Например:
\(\large \frac{2}{3}+\frac{4}{5} = \frac{2\cdot 5}{3\cdot 5}+\frac{4\cdot 3}{5\cdot 3} = \frac{10}{15}+\frac{12}{15} = \frac{10+12}{15} = \frac{22}{15} \)

Для дробей, как и для натуральных чисел, справедливы переместительное и сочетательное свойства сложения.

Сложение смешанных дробей

Такие записи, как \(2\frac{2}{3} \), называют смешанными дробями . При этом число 2 называют целой частью смешанной дроби, а число \(\frac{2}{3} \) - ее дробной частью . Запись \(2\frac{2}{3} \) читают так: «две и две трети».

При делении числа 8 на число 3 можно получить два ответа: \(\frac{8}{3} \) и \(2\frac{2}{3} \). Они выражают одно и то же дробное число, т.е \(\frac{8}{3} = 2 \frac{2}{3} \)

Таким образом, неправильная дробь \(\frac{8}{3} \) представлена в виде смешанной дроби \(2\frac{2}{3} \). В таких случаях говорят, что из неправильной дроби выделили целую часть .

Вычитание дробей (дробных чисел)

Вычитание дробных чисел, как и натуральных, определяется на основе действия сложения: вычесть из одного числа другое - это значит найти такое число, которое при сложении со вторым дает первое. Например:
\(\frac{8}{9}-\frac{1}{9} = \frac{7}{9} \) так как \(\frac{7}{9}+\frac{1}{9} = \frac{8}{9} \)

Правило вычитания дробей с одинаковыми знаменателями похоже на правило сложения таких дробей:
чтобы найти разность дробей с одинаковыми знаменателями, надо из числителя первой дроби вычесть числитель второй, а знаменатель оставить прежним.

С помощью букв это правило записывается так:
\(\large \frac{a}{c}-\frac{b}{c} = \frac{a-b}{c} \)

Умножение дробей

Чтобы умножить дробь на дробь, нужно перемножить их числители и знаменатели и первое произведение записать числителем, а второе - знаменателем.

С помощью букв правило умножения дробей можно записать так:
\(\large \frac{a}{b} \cdot \frac{c}{d} = \frac{a \cdot c}{b \cdot d} \)

Пользуясь сформулированным правилом, молено умножать дробь на натуральное число, на смешанную дробь, а также перемножать смешанные дроби. Для этого нужно натуральное число записать в виде дроби со знаменателем 1, смешанную дробь - в виде неправильной дроби.

Результат умножения надо упрощать (если это возможно), сокращая дробь и выделяя целую часть неправильной дроби.

Для дробей, как и для натуральных чисел, справедливы переместительное и сочетательное свойства умножения, а также распределительное свойство умножения относительно сложения.

Деление дробей

Возьмем дробь \(\frac{2}{3} \) и «перевернем» ее, поменяв местами числитель и знаменатель. Получим дробь \(\frac{3}{2} \). Эту дробь называют обратной дроби \(\frac{2}{3} \).

Если мы теперь «перевернем» дробь \(\frac{3}{2} \), то получим исходную дробь \(\frac{2}{3} \). Поэтому такие дроби, как \(\frac{2}{3} \) и \(\frac{3}{2} \) называют взаимно обратными .

Взаимно обратными являются, например, дроби \(\frac{6}{5} \) и \(\frac{5}{6} \), \(\frac{7}{18} \) и \(\frac{18}{7} \).

С помощью букв взаимно обратные дроби можно записать так: \(\frac{a}{b} \) и \(\frac{b}{a} \)

Понятно, что произведение взаимно обратных дробей равно 1 . Например: \(\frac{2}{3} \cdot \frac{3}{2} =1 \)

Используя взаимно обратные дроби, можно деление дробей свести к умножению.

Правило деления дроби на дробь:
чтобы разделить одну дробь на другую, нужно делимое умножить на дробь, обратную делителю.

Формулировка задачи: Найдите значение выражения (действия с дробями).

Задача входит в состав ЕГЭ по математике базового уровня для 11 класса под номером 1 (Действия с дробями).

Рассмотрим, как решаются подобные задачи на примерах.

Пример задачи 1:

Найдите значение выражения 5/4 + 7/6: 2/3.

Вычислим значение выражения. Для этого определим порядок действий: сначала умножение и деление, затем сложение и вычитание. И выполним необходимые действия в нужном порядке:

Ответ: 3

Пример задачи 2:

Найдите значение выражения (3,9 – 2,4) ∙ 8,2

Ответ: 12,3

Пример задачи 3:

Найдите значение выражения 27 ∙ (1/3 – 4/9 – 5/27).

Вычислим значение выражения. Для этого определим порядок действий: сначала умножение и деление, затем сложение и вычитание. При этом действия в скобках выполняются раньше, чем действия за скобками. И выполним необходимые действия в нужном порядке:

Ответ: –8

Пример задачи 4:

Найдите значение выражения 2,7 / (1,4 + 0,1)

Вычислим значение выражения. Для этого определим порядок действий: сначала умножение и деление, затем сложение и вычитание. При этом действия в скобках выполняются раньше, чем действия за скобками. И выполним необходимые действия в нужном порядке:

Ответ: 1,8

Пример задачи 5:

Найдите значение выражения 1 / (1/9 – 1/12).

Вычислим значение выражения. Для этого определим порядок действий: сначала умножение и деление, затем сложение и вычитание. При этом действия в скобках выполняются раньше, чем действия за скобками. И выполним необходимые действия в нужном порядке:

Ответ: 36

Пример задачи 6:

Найдите значение выражения (0,24 ∙ 10^6) / (0,6 ∙ 10^4).

Вычислим значение выражения. Для этого определим порядок действий: сначала умножение и деление, затем сложение и вычитание. При этом действия в скобках выполняются раньше, чем действия за скобками. И выполним необходимые действия в нужном порядке:

Ответ: 40

Пример задачи 7:

Найдите значение выражения (1,23 ∙ 45,7) / (12,3 ∙ 0,457).

Вычислим значение выражения. Для этого определим порядок действий: сначала умножение и деление, затем сложение и вычитание. При этом действия в скобках выполняются раньше, чем действия за скобками. И выполним необходимые действия в нужном порядке:

Ответ: 10

Пример задачи 8:

Найдите значение выражения (728^2 – 26^2) : 754.

Вычислим значение выражения. Для этого определим порядок действий: сначала умножение и деление, затем сложение и вычитание. При этом действия в скобках выполняются раньше, чем действия за скобками. И выполним необходимые действия в нужном порядке. Также в данном случае нужно применить формулу разности квадратов.



Статьи по теме: