Вынесение общего множителя за скобки примеры. Приведение дробей к наименьшему общему знаменателю, правило, примеры, решения

Для решения примеров с дробями необходимо уметь находить наименьший общий знаменатель. Ниже приведена подробная инструкция.

Как найти наименьший общий знаменатель – понятие

Наименьший общий знаменатель (НОЗ) простыми словами – это минимальное число, которое делится на знаменатели всех дробей данного примера. Другими словами его называют Наименьшим Общим Кратным (НОК). НОЗ используют только в том случае, если знаменатели у дробей различны.

Как найти наименьший общий знаменатель – примеры

Рассмотрим примеры нахождения НОЗ.

Вычислить: 3/5 + 2/15.

Решение (Последовательность действий):

  • Смотрим на знаменатели дробей, убеждаемся, что они разные и выражения максимально сокращены.
  • Находим наименьшее число, которое делится и на 5, и на 15. Таким числом будет 15. Таким образом, 3/5 + 2/15 = ?/15.
  • Со знаменателем разобрались. Что будет в числителе? Помочь выяснить это нам поможет дополнительный множитель. Дополнительный множитель – это число, получившееся при делении НОЗ на знаменатель конкретной дроби. Для 3/5 дополнительный множитель равен 3, так как 15/5 = 3. Для второй дроби дополнительным множителем будет 1, так как 15/15 = 1.
  • Выяснив дополнительный множитель, умножаем его на числители дробей и складываем получившиеся значения. 3/5 + 2/15 = (3*3+2*1)/15 = (9+2)/15 = 11/15.


Ответ: 3/5 + 2/15 = 11/15.

Если в примере складываются или вычитаются не 2, а 3 или больше дробей, то НОЗ нужно искать уже для стольких дробей, сколько дано.

Вычислить: 1/2 – 5/12 + 3/6

Решение (последовательность действий):

  • Находим наименьший общий знаменатель. Минимальным числом, делящимся на 2, 12 и 6 будет 12.
  • Получим: 1/2 – 5/12 + 3/6 = ?/12.
  • Ищем дополнительные множители. Для 1/2 – 6; для 5/12 – 1; для 3/6 – 2.
  • Умножаем на числители и приписываем соответствующие знаки: 1/2 – 5/12 + 3/6 = (1*6 – 5*1 + 2*3)/12 = 7/12.

Ответ: 1/2 – 5/12 + 3/6 = 7/12.


Материал этой статьи объясняет, как найти наименьший общий знаменатель и как привести дроби к общему знаменателю . Сначала даны определения общего знаменателя дробей и наименьшего общего знаменателя, а также показано, как найти общий знаменатель дробей. Дальше приведено правило приведения дробей к общему знаменателю и рассмотрены примеры применения этого правила. В заключение разобраны примеры приведения трех и большего количества дробей к общему знаменателю.

Навигация по странице.

Что называют приведением дробей к общему знаменателю?

Теперь мы можем сказать, что такое приведение дробей к общему знаменателю. Приведение дробей к общему знаменателю – это умножение числителей и знаменателей данных дробей на такие дополнительные множители, что в результате получаются дроби с одинаковыми знаменателями.

Общий знаменатель, определение, примеры

Теперь пришло время дать определение общего знаменателя дробей.

Иными словами, общим знаменателем некоторого набора обыкновенных дробей является любое натуральное число, которое делится на все знаменатели данных дробей.

Из озвученного определения следует, что данный набор дробей имеет бесконечно много общих знаменателей, так как существует бесконечное множество общих кратных всех знаменателей исходного набора дробей.

Определение общего знаменателя дробей позволяет находить общие знаменатели данных дробей. Пусть, к примеру, даны дроби 1/4 и 5/6 , их знаменатели равны 4 и 6 соответственно. Положительными общими кратными чисел 4 и 6 являются числа 12 , 24 , 36 , 48 , … Любое из этих чисел является общим знаменателем дробей 1/4 и 5/6 .

Для закрепления материала рассмотрим решение следующего примера.

Пример.

Можно ли дроби 2/3 , 23/6 и 7/12 привести к общему знаменателю 150 ?

Решение.

Для ответа на поставленный вопрос нам нужно выяснить, является ли число 150 общим кратным знаменателей 3 , 6 и 12 . Для этого проверим, делится ли 150 нацело на каждое из этих чисел (при необходимости смотрите правила и примеры деления натуральных чисел , а также правила и примеры деления натуральных чисел с остатком): 150:3=50 , 150:6=25 , 150:12=12 (ост. 6) .

Итак, 150 не делится нацело на 12 , следовательно, 150 не является общим кратным чисел 3 , 6 и 12 . Следовательно, число 150 не может быть общим знаменателем исходных дробей.

Ответ:

Нельзя.

Наименьший общий знаменатель, как его найти?

В множестве чисел, являющихся общими знаменателями данных дробей, существует наименьшее натуральное число , которое называют наименьшим общим знаменателем. Сформулируем определение наименьшего общего знаменателя данных дробей.

Определение.

Наименьший общий знаменатель – это наименьшее число, из всех общих знаменателей данных дробей.

Осталось разобраться с вопросом, как найти наименьший общий делитель.

Так как является наименьшим положительным общим делителем данного набора чисел, то НОК знаменателей данных дробей представляет собой наименьший общий знаменатель данных дробей.

Таким образом, нахождение наименьшего общего знаменателя дробей сводится к знаменателей этих дробей. Разберем решение примера.

Пример.

Найдите наименьший общий знаменатель дробей 3/10 и 277/28 .

Решение.

Знаменатели данных дробей равны 10 и 28 . Искомый наименьший общий знаменатель находится как НОК чисел 10 и 28 . В нашем случае легко : так как 10=2·5 , а 28=2·2·7 , то НОК(15, 28)=2·2·5·7=140 .

Ответ:

140 .

Как привести дроби к общему знаменателю? Правило, примеры, решения

Обычно обыкновенные дроби приводят к наименьшему общему знаменателю. Сейчас мы запишем правило, которое объясняет, как привести дроби к наименьшему общему знаменателю.

Правило приведения дробей к наименьшему общему знаменателю состоит из трех шагов:

  • Во-первых, находится наименьший общий знаменатель дробей.
  • Во-вторых, для каждой дроби вычисляется дополнительный множитель, для чего наименьший общий знаменатель делится на знаменатель каждой дроби.
  • В-третьих, числитель и знаменатель каждой дроби умножается на ее дополнительный множитель.

Применим озвученное правило к решению следующего примера.

Пример.

Приведите дроби 5/14 и 7/18 к наименьшему общему знаменателю.

Решение.

Выполним все шаги алгоритма приведения дробей к наименьшему общему знаменателю.

Сначала находим наименьший общий знаменатель, который равен наименьшему общему кратному чисел 14 и 18 . Так как 14=2·7 и 18=2·3·3 , то НОК(14, 18)=2·3·3·7=126 .

Теперь вычисляем дополнительные множители, с помощью которых дроби 5/14 и 7/18 будут приведены к знаменателю 126 . Для дроби 5/14 дополнительный множитель равен 126:14=9 , а для дроби 7/18 дополнительный множитель равен 126:18=7 .

Осталось умножить числители и знаменатели дробей 5/14 и 7/18 на дополнительные множители 9 и 7 соответственно. Имеем и .

Итак, приведение дробей 5/14 и 7/18 к наименьшему общему знаменателю завершено. В итоге получились дроби 45/126 и 49/126 .

Этот метод имеет смысл, если степень многочлена не ниже второй. При этом общим множителем может быть не только двучлен первой степени, но и более высоких степеней.

Чтобы найти общий множитель слагаемых многочлена, необходимо выполнить ряд преобразований. Простейший двучлен или одночлен, который можно вынести за скобки, будет одним из корней многочлена. Очевидно, что в случае, когда многочлен не имеет свободного члена, будет неизвестное в первой степени – многочлена, равный 0.

Более сложным для поиска общего множителя является случай, когда свободный член не равен нулю. Тогда применимы способы простого подбора или группировки. Например, пусть все корни многочлена рациональные, при этом все коэффициенты многочлена – целые числа:y^4 + 3·y³ – y² – 9·y – 18.

Выпишите все целочисленные делители свободного члена. Если у многочлена есть рациональные корни, то они находятся среди них. В результате подбора получаются корни 2 и -3. Значит, общими множителями этого многочлена будут двучлены (y - 2) и (y + 3).

Метод вынесения общего множителя является одним из составляющих разложения на множители. Описанный выше способ применим, если коэффициент при старшей степени равен 1. Если это не так, то сначала необходимо выполнить ряд преобразований. Например:2y³ + 19·y² + 41·y + 15.

Выполните замену вида t = 2³·y³. Для этого умножьте все коэффициенты многочлена на 4:2³·y³ + 19·2²·y² + 82·2·y + 60. После замены: t³ + 19·t² + 82·t + 60. Теперь для поиска общего множителя применим вышеописанный способ.

Кроме того, эффективным методом поиска общего множителя является элементов многочлена. Особенно он полезен, когда первый способ не , т.е. у многочлена нет рациональных корней. Однако группировки не всегда очевидной. Например:У многочлена y^4 + 4·y³ – y² – 8·y – 2 нет целых корней.

Воспользуйтесь группировкой:y^4 + 4·y³ – y² – 8·y – 2 = y^4 + 4·y³ – 2·y² + y² – 8·y – 2 = (y^4 – 2·y²) + (4·y³ – 8·y) + y² – 2 = (y² - 2)*(y² + 4·y + 1).Общий множитель элементов этого многочлена (y² - 2).

Умножение и деление, точно так же, как сложение и вычитание, являются основными арифметическими действиями. Не научившись решать примеры на умножение и деление, человек столкнется со множеством трудностей не только при изучении более сложных разделов математики, но даже и в самых обычных житейских делах. Умножение и деление тесно связаны между собой, и неизвестные компоненты примеров и задач на одно из этих действий вычисляются с помощью другого действия. При этом необходимо четко понимать, что при решении примеров абсолютно все равно, какие именно предметы вы делите или умножаете.

Вам понадобится

  • - таблица умножения;
  • - калькулятор или лист бумаги и карандаш.

Инструкция

Запишите нужный вам пример. Обозначьте неизвестный множитель как х. Пример может выглядеть, например, так: a*x=b. Вместо множителя а и произведения b в примере могут стоять любые или цифры. Вспомните основное умножения: от перемены мест множителей произведение не меняется. Так что неизвестный множитель х может стоять абсолютно в любом месте.

Для того чтобы найти неизвестный множитель в примере, где сомножителей всего два, необходимо просто разделить произведение на известный множитель . То есть делается это следующим образом: х=b/a. Если вам сложно оперировать абстрактными величинами, попробуйте представить эту задачу в виде конкретных предметов. Вы , у вас всего яблок и сколько их будет есть, но не знаете, по сколько яблок достанется каждому. Например, у вас 5 членов семьи, а яблок получилось 15. Количество яблок, предназначенное каждому, обозначьте как x. Тогда уравнение будет выглядеть так: 5(яблок)*х=15(яблок). Неизвестный множитель находится тем же самым способом, что и в уравнении с буквами, то есть 15 яблок разделите на пятерых членов семьи, в итоге получится, что каждый из них съел по 3 яблока.

Тем же самым способом находится неизвестный множитель при количестве сомножителей. Например, пример выглядит как a*b*c*x*=d. По идее, найти сомножитель можно и так же, как в более постом примере: x=d/a*b*c. Но можно привести уравнение и к более простому виду, обозначив произведение известных сомножителей -нибудь другой буквой - например, m. Найдите, чему равняется m, перемножив числа a,b и с: m=a*b*c. Тогда весь пример можно представить как m*x=d, а неизвестная величина будет равна x=d/m.

Если известный множитель и произведение представляют собой дроби, пример решается точно так же, как и с . Но в этом случае необходимо помнить действий . При умножении дробей числители и знаменатели их перемножаются. При делении дробей числитель делимого умножается на знаменатель делителя, а знаменатель делимого - на числитель делителя. То есть в этом случае пример будет выглядеть так: a/b*x=c/d. Для того чтобы найти неизвестную величину, нужно произведение разделить на известный множитель . То есть x=a/b:c/d =a*d/b*c.

Видео по теме

Обратите внимание

При решении примеров с дробями дробь известного сомножителя можно просто перевернуть и выполнять действие как умножение дробей.

Многочлен - это сумма одночленов. Одночлен же - это произведение нескольких сомножителей, которые являются числом или буквой. Степень неизвестной - это количество ее перемножений на саму себя.

Инструкция

Приведите , если этого еще не сделано. Подобные одночлены - это одночлены одинакового вида, то есть одночлены с одинаковыми неизвестными одинаковой степени.

Возьмите, например, многочлен 2*y²*x³+4*y*x+5*x²+3-y²*x³+6*y²*y²-6*y²*y². В этом многочлене две неизвестных - x и y.

Соедините подобные одночлены. Одночлены со второй степенью y и третьей степенью x придут к виду y²*x³, а одночлены с четвертой степенью y сократятся. Получится y²*x³+4*y*x+5*x²+3-y²*x³.

Примите за главную неизвестную букву y. Найдите максимальную степень при неизвестной y. Это одночлен y²*x³ и, соответственно, степень 2.

Сделайте вывод. Степень многочлена 2*y²*x³+4*y*x+5*x²+3-y²*x³+6*y²*y²-6*y²*y² по x равна трем, а по y равна двум.

Найдите степень многочлена √x+5*y по y. Она равна максимальной степени y, то есть единице.

Найдите степень многочлена √x+5*y по x. Неизвестная x находится , значит ее степень будет дробью. Так как корень квадратный, то степень x равна 1/2.

Сделайте вывод. Для многочлена √x+5*y степень по x равна 1/2, а степень по y равна 1.

Видео по теме

Упрощение алгебраических выражений требуется во многих разделах математики, в том числе при решении уравнений высших степеней, дифференцировании и интегрировании. При этом используется несколько методов, включая разложение на множители. Чтобы применить этот способ, нужно найти и вынести общий множитель за скобки .

Чичаева Дарина 8в класс

В работе ученица 8 класса расписала правило разложения многочлена на множители путём вынесения общего множителя за скобки с подробным ходом решения множества примеровм по данной теме. На каждый разобранный пример предложено по 2 примера для самостоятельного решения, к которым есть ответы. Работа поможет изучить данную тему тем ученикам, которые по каким-то причинам её не усвоил при прохождении программного материала 7 класса и (или) при повторении курса алгебры в 8 классе после летних каникул.

Скачать:

Предварительный просмотр:

Муниципальное бюджетное образовательное учреждение

средняя общеобразовательная школа №32

«Ассоциированная школа ЮНЕСКО «Эврика-развитие»

г. Волжского Волгоградской области

Работу выполнила:

Ученица 8В класса

Чичаева Дарина

г. Волжский

2014

Вынесение общего множителя за скобки

  • - Одним из способов разложения многочлена на множители является вынесение общего множителя за скобки;
  • - При вынесении общего множителя за скобки применяется распределительное свойство ;
  • - Если все члены многочлена содержат общий множитель , то этот множитель можно вынести за скобки .

При решении уравнений, в вычислениях и ряде других задач бывает полезно заменить многочлен произведением нескольких многочленов (среди которых могут быть и одночлены). Представление многочлена в виде произведения двух или нескольких многочленов называют разложение многочлена на множители.

Рассмотрим многочлен 6a 2 b+15b 2 . Каждый его член можно заменить произведением двух множителей, один из которых равен 3b: →6a 2 b = 3b*2a 2 , + 15b 2 = 3b*5b →из этого мы получим: 6a 2 b+15b 2 =3b*2a 2 +3b*5b.

Полученное выражение на основе распределительного свойства умножения можно представить в виде произведения двух множителей. Один из них – общий множитель 3b , а другой – сумма 2а 2 и 5b→ 3b*2a 2 +3b*5b=3b(2a 2 +5b) →Таким образом, мы разложили многочлен: 6a 2 b+15b 2 на множители, представив его в виде произведения одночлена 3b и многочлена 2a 2 +5b. Данный способ разложения многочлена на множители называют вынесение общего множителя за скобки.

Примеры:

Разложите на множители:

А) kx-px.

Множитель х х выносим за скобки.

kx:x=k; px:x=p.

Получим: kx-px=x*(k-p).

б) 4a-4b.

Множитель 4 есть и в 1 слагаемом и во 2 слагаемом. Поэтому 4 выносим за скобки.

4а:4=а; 4b:4=b.

Получим: 4a-4b=4*(a-b).

в) -9m-27n.

9m и -27n делятся на -9 . Поэтому выносим за скобки числовой множитель -9.

9m: (-9)=m; -27n: (-9)=3n.

Имеем: -9m-27n=-9*(m+3n).

г) 5y 2 -15y.

5 и 15 делятся на 5; y 2 и у делятся на у.

Поэтому выносим за скобки общий множитель 5у .

5y 2 : 5у=у; -15y: 5у=-3.

Итак: 5y 2 -15y=5у*(у-3).

Замечание: Из двух степеней с одинаковым основанием выносим степень с меньшим показателем.

д) 16у 3 +12у 2 .

16 и 12 делятся на 4; y 3 и y 2 делятся на y 2 .

Значит, общий множитель 4y 2 .

16y 3 : 4y 2 =4y; 12y 2 : 4y 2 =3.

В результате мы получим: 16y 3 +12y 2 =4y 2 *(4у+3).

е) Разложите на множители многочлен 8b(7y+a)+n(7y+a).

В данном выражении мы видим, присутствует один и тот же множитель (7y+a) , который можно вынести за скобки. Итак, получим: 8b(7y+a)+n(7y+a)=(8b+n)*(7y+a).

ж) a(b-c)+d(c-b).

Выражения b-c и c-b являются противоположными. Поэтому, чтобы сделать их одинаковыми, перед d меняем знак «+» на «-»:

a(b-c)+d(c-b)=a(b-c)-d(b-c).

a(b-c)+d(c-b)=a(b-c)-d(b-c)=(b-c)*(a-d).

Примеры для самостоятельного решения:

  1. mx+my;
  2. ах+ау;
  3. 5x+5y ;
  4. 12x+48y;
  5. 7ax+7bx;
  6. 14x+21y;
  7. –ma-a ;
  8. 8mn-4m 2 ;
  9. -12y 4 -16y;
  10. 15y 3 -30y 2 ;
  11. 5c(y-2c)+y 2 (y-2c);
  12. 8m(a-3)+n(a-3);
  13. x(y-5)-y(5-y);
  14. 3a(2x-7)+5b(7-2x);

Ответы.

1) m(х+у); 2) а(х+у); 3) 5(х+у); 4) 12(х+4у); 5) 7х(a+b); 6) 7(2х+3у); 7) -а(m+1); 8) 4m(2n-m);

9) -4y(3y 3 +4); 10) 15у 2 (у-2); 11) (y-2c)(5с+у 2 ); 12) (a-3)(8m+n); 13) (y-5)(x+y); 14) (2x-7)(3a-5b).

На этом уроке мы познакомимся с правилами вынесения за скобки общего множителя, научимся находить его в различных примерах и выражениях. Поговорим о том, как простая операция, вынесение общего множителя за скобки, позволяет упростить вычисления. Полученные знания и навыки закрепим, рассмотрев примеры разных сложностей.

Что такое общий множитель, зачем его искать и с какой целью выносить за скобки? Ответим на эти вопросы, разобрав простейший пример.

Решим уравнение . Левая часть уравнения является многочленом, состоящим из подобных членов. Буквенная часть является общей для данных членов, значит, она и будет общим множителем. Вынесем за скобки:

В данном случае вынесение за скобки общего множителя помогло нам преобразовать многочлен в одночлен. Таким образом, мы смогли упростить многочлен и его преобразование помогло нам решить уравнение.

В рассмотренном примере общий множитель был очевиден, но будет ли так просто найти его в произвольном многочлене?

Найдём значение выражения: .

В данном примере вынесение общего множителя за скобки значительно упростило вычисление.

Решим еще один пример. Докажем делимость на выражения .

Полученное выражение делится на , что и требовалось доказать. И снова вынесение общего множителя позволило нам решить задачу.

Решим еще один пример. Докажем, что выражение делится на при любом натуральном : .

Выражение является произведением двух соседних чисел натурального ряда. Одно из двух чисел обязательно будет четным, значит, выражение будет делиться на .

Мы разобрали разные примеры, но применяли один и тот же метод решения: выносили общий множитель за скобки. Мы видим, что эта простая операция значительно упрощает вычисления. Было легко найти общий множитель для этих частных случаев, а что делать в общем случае, для произвольного многочлена?

Вспомним, что многочлен - сумма одночленов.

Рассмотрим многочлен . Данный многочлен является суммой двух одночленов. Одночлен - произведение числа, коэффициента, и буквенной части. Таким образом, в нашем многочлене каждый одночлен представлен произведением числа и степеней, произведение множителей. Множители могут быть одинаковыми для всех одночленов. Именно эти множители нужно определить и вынести за скобку. Сначала находим общий множитель для коэффициентов, причем целочисленных.

Было легко найти общий множитель, но давайте определим НОД коэффициентов: .

Рассмотрим ещё один пример: .

Найдем , что позволит нам определить общий множитель для данного выражения: .

Мы вывели правило для целых коэффициентов. Нужно найти их НОД и вынести за скобку. Закрепим это правило, решив ещё один пример.

Мы рассмотрели правило вынесения общего множителя для целочисленных коэффициентов, перейдем к буквенной части. Сначала ищем те буквы, которые входят во все одночлены, а потом определяем наибольшую степень буквы, которая входит во все одночлены: .

В этом примере была всего одна общая буквенная переменная, но их может быть несколько, как в следующем примере:

Усложним пример, увеличив количество одночленов:

После вынесения общего множителя мы преобразовали алгебраическую сумму в произведение.

Мы рассмотрели правила вынесения для целых коэффициентов и буквенных переменных отдельно, но чаще всего для решения примера нужно применять их вместе. Рассмотрим пример:

Иногда бывает сложно определить, какое выражение остается в скобках, рассмотрим легкий прием, который позволит вам быстро решить эту проблему.

Общим множителем также может быть искомое значение :

Общим множителем может быть не только число или одночлен, но и любое выражение, как, например, в следующем уравнении.



Статьи по теме: