На что делится 2 5. Старт в науке

Математика в 6 классе начинается с изучения понятия делимости и признаков делимости. Часто ограничиваются признаками делимости на такие числа:

  • На 2 : последняя цифра должна быть 0, 2, 4, 6 или 8;
  • На 3 : сумма цифр числа должна делиться на 3;
  • На 4 : число, образованное последними двумя цифрами, должно делиться на 4;
  • На 5 : последняя цифра должна быть 0 или 5;
  • На 6 : число должно обладать признаками делимости на 2 и на 3;
  • Признак делимости на 7 часто пропускается;
  • Редко таже рассказывают и о признаке делимости на 8 , хотя он аналогичен признакам делимости на 2 и на 4. Чтобы число делилось на 8, необходимо и достаточно, чтобы трёхцифреное окончание делилось на 8.
  • Признак делимости на 9 знают все: сумма цифр числа должна делиться на 9. Что, правда, не развивает иммунитет против всяческих трюков с датами, которые используют нумерологи.
  • Признак делимости на 10 , наверное, самый простой: число должно оканчиваться нулём.
  • Иногда шестиклассникам рассказывают и о признаке делимости на 11 . Нужно цифры числа, стоящие на чётных местах сложить, из результата вычесть цифры, стоящие на нечётных местах. Если результат будет делиться на 11, то и само число делится на 11.
Вернёмся теперь к признаку делимости на 7. Если о нём рассказывают, тот объединяют с признаком делимости на 13 и советуют использовать так.

Берём число. Разбиваем его на блоки по 3 цифры в каждом (самый левый блок может содержать одну или 2 цифры) и попеременно складываем/вычитаем эти блоки.

Если результат делится на 7, 13 (или 11), то и само число делится на 7, 13 (илb 11).

Основан этот способ, как и ряд математических фокусов на том, что 7х11х13 = 1001. Однако что делать с трехзначными числами, для которых вопрос делимости, бывает, тоже не решить без самого деления.

Используя универсальный признак делимости , можно построить относительно простые алгоритмы определения, делится ли число на 7 и другие "неудобные" числа.

Усовершенствованный признак делимости на 7
Чтобы проверить, делится ли число на 7, надо от числа отбросить последнюю цифру и от получившегося результата эту цифру дважды отнять. Если результат делится на 7, то и само число делится на 7.

Пример 1:
Делится ли на 7 число 238?
23-8-8 = 7. Значит, число 238 делится на 7.
Действительно, 238 = 34х7

Это действие можно проводить многократно.
Пример 2:
Делится ли на 7 число 65835?
6583-5-5 = 6573
657-3-3 = 651
65-1-1 = 63
63 делится на 7 (если бы мы этого не заметили, то могли бы сделать ещё 1 шаг: 6-3-3 = 0, а 0 уж точно делится на 7).

Значит, и число 65835 делится на 7.

На основе универсиального признака делимости, можно усовершенствовать признаки делимости на 4 и на 8.

Усовершенствованный признак делимости на 4
Если половина числа единиц в сумме с числом десятков - чётнное число, то число делится на 4.

Пример 3
Делится ли число 52 на 4?
5+2/2 = 6, число чётное, значит, число на 4 делится.

Пример 4
Делится ли число 134 на 4?
3+4/2 = 5, число нечётное, значит, 134 на 4 не делится.

Усовершенствованный признак делимости на 8
Если сложить удвоенное число сотен, число десятков и половину числа единиц, и результат будет делиться на 4, то само число делится на 8.

Пример 5
Делится ли число 512 на 8?
5*2+1+2/2 = 12, число делится на 4, значит, 512 делится на 8.

Пример 6
Делится ли число 1984 на 8?
9*2+8+4/2 = 28, число делится на 4, значит, 1984 делится на 8.

Признак делимости на 12 - это объединение признаков делимсоти на 3 и на 4. Это же работает и для любых n, являющихся произведением взаимнопростых p и q. Чтобы число делилось на n (которое равно произведению pq,актих, что НОД(p,q)=1), одно должно делиться одновремено на p и на q.

Однако будьте внимательны! Чтобы работали составные признаки делимости, множители числа должны быть именно взаимнопростыми. Нельзая сказать, что число делится на 8, если оно делится на 2 и на 4.

Усовершенствованный признак делимости на 13
Чтобы проверить, делится ли число на 13, надо от числа отбросить последнюю цифру и к получившемуся результату её четырежды прибавить. Если результат делится на 13, то и само число делится на 13.

Пример 7
Делится ли на 8 число 65835?
6583+4*5 = 6603
660+4*3 = 672
67+4*2 = 79
7+4*9 = 43

Число 43 не делится на 13, значит, и число 65835 не делится на 13.

Пример 8
Делится ли на 13 число 715?
71+4*5 = 91
9+4*1 = 13
13 делится на 13, значит, и число 715 делится на 13.

Признаки делимости на 14, 15, 18, 20, 21, 24, 26, 28 и прочие составные числа, не являющиеся степенями простых, аналогичны признакам делимости на 12. Мы проверяем делимость на взаимно-простыем множители этих чисел.

  • Для14: на 2 и на 7;
  • Для 15: на 3 и на 5;
  • Для 18: на 2 и на 9;
  • Для 21: на 3 и на 7;
  • Для 20: на 4 и на 5 (или, по-другому, последняя цифра должна быть нулём, а предпоследняя - чётной);
  • Для 24: на 3 и на 8;
  • Для 26: на 2 и на 13;
  • Для 28: на 4 и на 7.
Усовершенствованный признак делимости на 16.
Вместо того, чтобы проверять, делится ли 4-циферное окончание числа на 16, можно сложить цифру единиц с увеличенной в 10 раз цифрой десятков, с учетверённой цифрой сотен и с
увеличенной в восемь раз цифрой тысяч, и проверить, делится ли результат на 16.

Пример 9
Делится ли число 1984 на 16?
4+10*8+4*9+2*1 = 4+80+36+2 = 126
6+10*2+4*1=6+20+4=30
30 не делится на 16, значит, и 1984 не делится на 16.

Пример 10
Делится ли число 1526 на 16?
6+10*2+4*5+2*1 = 6+20+20+2 = 48
48 не делитсся на 16, значит, и 1526 делится на 16.

Усовершенствованный признак делимости на 17.
Чтобы проверить, делится ли число на 17, надо от числа отбросить последнюю цифру и от получившегося результата эту цифру пять раз отнять. Если результат делится на 13, то и само число делится на 13.

Пример 11
Делится ли число 59772 на 17?
5977-5*2 = 5967
596-5*7 = 561
56-5*1 = 51
5-5*5 = 0
0 делится на 17, значит и число 59772 делится на 17.

Пример 12
Делится ли число 4913 на 17?
491-5*3 = 476
47-5*6 = 17
17 делится на 17, значит и число 4913 делится на 17.

Усовершенствованный признак делимости на 19.
Чтобы проверить, делится ли число на 19, надо удвоенную последнюю цифру прибавить к числу, оставшемуся после отбрасывания последней цифры.

Пример 13
Делится ли число 9044 на 19?
904+4+4 = 912
91+2+2 = 95
9+5+5 = 19
19 делится на 19, значит и число 9044 делится на 19.

Усовершенствованный признак делимости на 23.
Чтобы проверить, делится ли число на 23, надо последнюю цифру, увеличенную в 7 раз, прибавить к числу, оставшемуся после отбрасывания последней цифры.

Пример 14
Делится ли число 208012 на 23?
20801+7*2 = 20815
2081+7*5 = 2116
211+7*6 = 253
Вообще-то, уже можно заметить, что 253 - это 23,

Данный материал посвящен такому понятию, как признак делимости на 2 . В первом пункте мы сформулируем его и приведем примеры – задачи, в которым нужно выяснить, делится ли конкретное число на 2 . Затем мы докажем этот признак и поясним, какие еще существуют методы определения делимости на два чисел, заданных в виде значения выражений.

Формулировка и примеры признака делимости на 2

Чтобы лучше понять, что такое признаки делимости, нужно повторить тему, связанную с делимостью целых чисел. Определение основного понятия выглядит так:

Определение 1

Целое число, которое заканчивается цифрами 8 , 6 , 4 , 2 и 0 , может быть разделено на 2 без остатка. Если в конце числа стоит цифра 9 , 7 , 5 , 3 или 1 , то такое число делимостью на 2 не обладает.

С помощью данного признака можно выявить делимость не только целого положительного (натурального), но и целого отрицательного числа, поскольку они тоже могут быть разделены на 2 без остатка.

Приведем несколько примеров использования признака в задачах.

Пример 1

Условие: определите, какие из чисел 8 , − 946 , 53 , 10 900 , − 988 123 761 можно разделить на два.

Решение

Разумеется, мы можем просто разделить все эти числа на два в столбик и проверить, будет ли в конце остаток или нет. Но зная признак делимости на два, можно решить эту задачу гораздо быстрее.

Три числа из перечисленных, а именно 8 , - 946 и 10 900 , имеют в конце цифры 8 , 6 и 0 , значит, их деление на 2 возможно.

Остальные числа (53 и − 988 123 761) заканчиваются на 3 и 1 , значит, нацело на два они не делятся.

Ответ: на два можно разделить 8 , − 946 и 10 900 , а все прочие заданные числа нельзя.

Этот признак широко используется в задачах, где нужно раскладывать число на простые множители. Решим один такой пример.

Пример 2

Условие: выполните разложение 352 на простые множители.

Решение

Поскольку последняя цифра в исходном числе – 2 , то согласно признаку делимости, мы можем разделить его на два без остатка. Сделаем это: 352: 2 = 176 , а 352 = 2 · 176 . Полученное число 176 тоже делится на два: 176: 2 = 88 , а 176 = 2 · 88 . Это число тоже можно разделить: 88: 2 = 44 , 88 = 2 · 44 и 352 = 2 · 2 · 88 = 2 · 2 · 2 · 44 . Продолжаем разложение: 44: 2 = 22 и 44 = 2 · 22 , следовательно, 352 = 2 · 2 · 2 · 44 = 2 · 2 · 2 · 2 · 22 ; потом 22: 2 = 11 , откуда 22 = 2 · 11 и 352 = 2 · 2 · 2 · 2 · 22 = 2 · 2 · 2 · 2 · 2 · 11 . Наконец мы дошли до числа, которое на 2 не делится. Таблица простых чисел говорит нам, что это число является простым, значит, на этом разложение на множители заканчивается.

Ответ: 352 = 2 · 2 · 2 · 2 · 2 · 11 .

Деление чисел на четные и нечетные основано как раз на том, делятся ли они на 2 или нет. Зная этот признак делимости, можно сказать, что все четные числа имеют в конце цифру 0 , 2 , 4 , 6 или 8 , а все нечетные – 1 , 3 , 5 , 7 или 9 .

Как можно доказать признак делимости на 2

Перед тем, как перейти непосредственно к доказательству этого признака, нам надо доказать дополнительное утверждение. Оно формулируется так:

Определение 2

Все натуральные числа, которые заканчиваются на нуль, могут быть разделены на два без остатка.

Пользуясь правилом умножения натурального числа на 10 , мы можем представить некое число a как a = a 1 · 10 . Число a 1 , в свою очередь, получится из a , если убрать у него последнюю цифру.

Приведем примеры такого действия: 470 = 47 · 10 , где a = 470 и a 1 = 47 ; или же 38 010 · 10 , здесь a = 380 100 и a 1 = 38 010 . Второй множитель в этом произведении (10) может быть разделен на 2 , значит, все произведение может быть разделено на 2 . Это утверждение основано на соответствующем свойстве делимости.

Переходим к доказательству признака делимости на 2 . Чтобы было удобнее, представим его как теорему, т.е. как необходимое и достаточное условие делимости целого числа на два.

Теорема 1

Для деления целого числа a на два необходимым и достаточным условием является наличие последней цифры 0 , 2 , 4 , 6 или 8 .

Доказательство 1

Как доказать это утверждение? Для начала представим исходное число a в виде суммы десятков и единиц, т.е. запишем его как a = a 1 · 10 + a 0 . Здесь a 1 будет числом, получившимся из a при устранении последней цифры, а a 0 соответствует последней цифре данного числа (примерами такого представления также могут быть выражения 49 = 4 · 10 + 9 , 28 378 = 2 837 · 10 + 8). Произведение a 1 · 10 , взятое из равенства a = a 1 · 10 + a 0 , всегда будет делиться на два, что и показано с помощью этой теоремы.

Остальная часть доказательства основана на определенном свойстве делимости, а именно: если у нас есть три числа, образующие равенство t = u + v , и два из них делятся на целое число z , то и третье число также можно разделить на z .

Если a можно разделить на два, то согласно этому свойству, а также представлению a = a 1 · 10 + a 0 , число a 0 будет делиться на два, а такое возможно, только если a 0 = 0 , 2 , 4 , 6 или 8 .

А если a на 2 не делится, то исходя из того же самого свойства, число a 0 на 2 тоже делиться не будет, что возможно только при a 0 = 1 , 3 , 5 , 7 или 9 . Это и есть нужное нам доказательство необходимости.

Теперь разберем обратную ситуацию. Если у нас есть число a , последней цифрой которого является число 0 , 2 , 4 , 6 или 8 , то a 0 делится на 2 . Указанное свойство делимости и представление a = a 1 · 10 + a 0 позволяют нам заключить, что a делится на 2 . Если a имеет последнюю цифру 1 , 3 , 5 , 7 или 9 , то то a 0 не делится на 2 , значит, a тоже не делится на 2 , иначе само представление a = a 1 · 10 + a 0 делилось бы на 2 , что невозможно. Достаточность условия доказана.

В конце отметим, что числа с последней цифрой 1 , 3 , 5 , 7 или 9 при делении на два всегда дают в остатке единицу.

Возьмем случай, когда заданное число кончается одной из этих цифр. Тогда мы можем представить a как a = b + 1 , при этом число b будет иметь в качестве последней цифры 0 , 2 , 4 , 6 или 8 . В силу признака делимости на 2 число b можно разделить на 2 , значит, по определению делимости оно также может быть представлено в виде b = 2 · q , где q будет некоторым целым числом. Мы получили, что a = 2 · q + 1 . Данное представление показывает нам, что при делении числа a на 2 получается неполное частное q и остаток 1 (если нужно, перечитайте статью о делении целых чисел с остатком).

Прочие случаи определения делимости на 2

В этом пункте мы разберем те случаи, когда число, делимость которого на 2 нужно определить, не задано непосредственно, а определяется некоторым значением буквенного выражения. Здесь воспользоваться признаком, приведенным выше, мы не можем, и непосредственно разделить это выражение на 2 тоже невозможно. Значит, нужно найти какое-то другое решение.

Существует подход к решению таких задач, который основан на следующем свойстве делимости: произведение целых чисел можно разделить на некое число тогда, когда на него делится хотя бы один из множителей. Следовательно, если мы сможем преобразовать буквенное выражение в произведение отдельных множителей, один из которых делится на два, то тогда возможно будет доказать делимость на 2 и исходного выражения.

Чтобы преобразовать заданное выражение, мы можем воспользоваться формулой бинома Ньютона. Посмотрим такую задачу.

Пример 3

Условие: определите, можно ли разделить на 2 значение выражения 3 n + 4 n - 1 для некоторого натурального n .

Решение

Сначала запишем очевидное равенство 3 n + 4 n - 1 = 2 + 1 n + 4 n - 1 . Теперь берем формулу бинома Ньютона, применяем ее и упрощаем то, что у нас получилось:

3 n + 4 n - 1 = 2 + 1 n + 4 n - 1 = = C n 0 · 2 n + C n 1 · 2 n - 1 · 1 + ⋯ + C n n - 2 · 2 2 + 1 n - 2 + C n n · 2 + 1 n - 1 + C n n · 1 n + + 4 n - 1 = 2 n + C n 1 · 2 n - 1 + … + C n n - 2 · 2 2 + n · 2 + 1 + + 4 n - 1 = 2 n + C n 1 · 2 n - 1 + … + C n n - 2 · 2 2 + 6 n

В последнем равенстве выносим два за скобки и получаем следующее равенство:

3 n + 4 n - 1 = 2 · 2 n - 1 + C n 1 · 2 n - 2 + … + C n n - 2 · 2 + 3 n

В данном равенстве можно разделить правую часть на два при любом натуральном значении n , поскольку там есть множитель, равный 2 . Поскольку между выражениями стоит знак равенства, то выполнить деление на 2 можно и для левой части.

Ответ: данное выражение можно разделить на 2 .

Довольно часто доказать делимость можно с помощью метода математической индукции. Возьмем то же выражение, что и в примере выше, и покажем, как применить данный метод на практике.

Пример 4

Условие: выясните, будет ли выражение 3 n + 4 n - 1 делиться на 2 при любом натуральном значении n .

Решение

Используем математическую индукцию. Для начала докажем, что значение выражения 3 n + 4 n - 1 при n , равном единице, можно разделить на 2 . У нас получится 3 1 + 4 · 1 - 1 = 6 , шесть делится на два без остатка. Идем дальше. Возьмем n , равное k , и сделаем предположение, что 3 k + 4 k - 1 делится на два.

Используя данное предположение, докажем, что 3 n + 4 n - 1 можно разделить на 2 , если это возможно для 3 k + 4 k - 1 . Чтобы это доказать, нам нужно выполнить несколько преобразований.

3 · 3 k + 4 k - 1 делится на два, поскольку это возможно для 3 k + 4 k - 1 , выражение 2 · 4 k - 3 тоже можно поделить на 2 , потому что у него есть множитель 2 , значит, разность этих двух выражений тоже делится на 2 , что объясняется соответствующим свойством делимости.

Ответ : выражение 3 n + 4 n - 1 делится на 2 при любом натуральном n .

Отдельно остановимся на случае, когда в произведении рядом стоят два числа, идущие друг за другом в натуральном ряду чисел. Такое произведение тоже делится на два.

Пример 5

К примеру, выражение вида (n + 7) · (n − 1) · (n + 2) · (n + 6) делится на 2 при любом натуральном значении n , поскольку в нем есть числа, идущие в натуральном ряду друг за другом – это n + 6 и n + 7 .

Точно также при наличии двух множителей, между которыми расположено четное число членов натурального ряда, произведение может быть разделено на 2 . Так, на два делится значение (n + 1) · (n + 6) при любом натуральном n , поскольку между n + 5 и n + 6 расположено четное количество чисел: n + 2 , n + 3 , n + 4 и n + 5 .

Объединим все, о чем мы говорили в предыдущих пунктах. Если можно показать, что значение выражения делится на два при n = 2 · m , а также при n = 2 · m + 1 и произвольном целом m , то это будет доказательством делимости исходного выражения на 2 при любых целых значениях n .

Пример 6

Условие: выясните, делится ли на 2 выражение n 3 + 7 · n 2 + 16 · n + 12 при любых натуральных значениях n .

Решение

Сначала представим данное выражение в виде произведения (n + 2) 2 · (n + 3) . При необходимости повторите, как правильно раскладывать многочлен на множители. Мы имеем два множителя n + 2 и n + 3 , которые соответствуют числам, стоящим рядом в натуральном ряду. Одно из них в любом случае делится на 2 , значит, и все произведение тоже делится на 2 . То же относится и к исходному выражению.

У этой задачи есть и другое решение. Если n = 2 · m , то n + 2 2 · n + 3 = 2 m + 2 2 · 2 m + 2 2 = 4 · m + 1 2 · 2 m + 3 . Здесь есть множитель, равный четырем, благодаря чему все произведение будет делиться на 2 .

Если же n = 2 · m + 1 , то

(n + 2) 2 · n + 3 = 2 m + 1 + 2 2 · 2 m + 1 + 3 = 2 m + 3 2 · 2 m + 4 = = 2 m + 3 2 · 2 · 2

Здесь присутствует множитель 2 , значит, все произведение обладает делимостью на 2 .

Ответ: это и есть доказательство того, что выражение n 3 + 7 · n 2 + 16 · n + 12 = (n + 2) 2 · (n + 3) можно разделить на два при любом натуральном значении n .

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Признак делимости на 2
Число делится на 2 тогда и только тогда, когда его последняя цифра делится на 2, то есть является чётной.

Признак делимости на 3
Число делится на 3 тогда и только тогда, когда сумма его цифр делится на 3.

Признак делимости на 4
Число делится на 4 тогда и только тогда, когда число из двух последних его цифр нули или делится на 4.

Признак делимости на 5
Число делится на 5 тогда и только тогда, когда последняя цифра делится на 5 (то есть равна 0 или 5).

Признак делимости на 6
Число делится на 6 тогда и только тогда, когда оно делится на 2 и на 3.

Признак делимости на 7
Число делится на 7 тогда и только тогда, когда результат вычитания удвоенной последней цифры из этого числа без последней цифры делится на 7 (например, 259 делится на 7, так как 25 - (2 · 9) = 7 делится на 7).

Признак делимости на 8
Число делится на 8 тогда и только тогда, когда три его последние цифры - нули или образуют число, которое делится на 8.

Признак делимости на 9
Число делится на 9 тогда и только тогда, когда сумма его цифр делится на 9.

Признак делимости на 10
Число делится на 10 тогда и только тогда, когда оно оканчивается на ноль.

Признак делимости на 11
Число делится на 11 тогда и только тогда, когда сумма цифр с чередующимися знаками делится на 11 (то есть 182919 делится на 11, так как 1 - 8 + 2 - 9 + 1 - 9 = -22 делится на 11) - следствие факта, что все числа вида 10 n при делении на 11 дают в остатке (-1) n .

Признак делимости на 12
Число делится на 12 тогда и только тогда, когда оно делится на 3 и на 4.

Признак делимости на 13
Число делится на 13 тогда и только тогда, когда число его десятков, сложенное с учетверённым числом единиц, кратно 13 (например, 845 делится на 13, так как 84 + (4 · 5) = 104 делится на 13).

Признак делимости на 14
Число делится на 14 тогда и только тогда, когда оно делится на 2 и на 7.

Признак делимости на 15
Число делится на 15 тогда и только тогда, когда оно делится на 3 и на 5.

Признак делимости на 17
Число делится на 17 тогда и только тогда, когда число его десятков, сложенное с увеличенным в 12 раз числом единиц, кратно 17 (например, 29053→2905+36=2941→294+12=306→30+72=102→10+24=34. Поскольку 34 делится на 17, то и 29053 делится на 17). Признак не всегда удобен, но имеет определенное значение в математике. Есть способ немного попроще – Число делится на 17 тогда и только тогда, когда разность между числом его десятков и упятеренным числом единиц, кратно 17(например, 32952→3295-10=3285→328-25=303→30-15=15. поскольку 15 не делится на 17, то и 32952 не делится на 17)

Признак делимости на 19
Число делится на 19 тогда и только тогда, когда число его десятков, сложенное с удвоенным числом единиц, кратно 19 (например, 646 делится на 19, так как 64 + (6 · 2) = 76 делится на 19).

Признак делимости на 23
Число делится на 23 тогда и только тогда, когда число его сотен, сложенное с утроенным числом десятков, кратно 23 (например, 28842 делится на 23, так как 288 + (3 * 42) = 414 продолжаем 4 + (3 * 14) = 46 очевидно делится на 23).

Признак делимости на 25
Число делится на 25 тогда и только тогда, когда две его последние цифры делятся на 25 (то есть образуют 00, 25, 50 или 75)или число кратно 5.

Признак делимости на 99
Разобьем число на группы по 2 цифры справа налево (в самой левой группе может быть одна цифра) и найдем сумму этих групп, считая их двузначными числами. Эта сумма делится на 99 тогда и только тогда, когда само число делится на 99.

Признак делимости на 101
Разобьем число на группы по 2 цифры справа налево (в самой левой группе может быть одна цифра) и найдем сумму этих групп с переменными знаками, считая их двузначными числами. Эта сумма делится на 101 тогда и только тогда, когда само число делится на 101. Например, 590547 делится на 101, так как 59-05+47=101 делится на 101).

Признаки делимости чисел на 2, 3, 4, 5, 6, 8, 9, 10, 11, 25 и другие числа полезно знать для быстрого решения задач на Цифровую запись числа. Вместо того, чтобы делить одно число на другое, достаточно проверить ряд признаков, на основании которых можно однозначно определить, делится ли одно число на другое нацело (кратно ли оно) или нет.

Основные признаки делимости

Приведем основные признаки делимости чисел :

  • Признак делимости числа на «2» Число делится нацело на 2, если число является четным (последняя цифра равна 0, 2, 4, 6 или 8)
    Пример: Число 1256 кратно 2, поскольку оно заканчивается на 6. А число 49603 не делится нацело на 2, поскольку оно заканчивается на 3.
  • Признак делимости числа на «3» Число делится нацело на 3, если сумма его цифр делится на 3
    Пример: Число 4761 делится на 3 нацело, поскольку сумма его цифр равна 18 и она делится на 3. А число 143 не кратно 3, поскольку сумма его цифр равна 8 и она не делится на 3.
  • Признак делимости числа на «4» Число делится нацело на 4, если последние две цифры числа равны нулю или число, составленное из двух последних цифр, делится на 4
    Пример: Число 2344 кратно 4, поскольку 44 / 4 = 11. А число 3951 не делится нацело на 4, поскольку 51 на 4 не делится.
  • Признак делимости числа на «5» Число делится нацело на 5, если последняя цифра числа равна 0 или 5
    Пример: Число 5830 делится нацело на 5, поскольку оно заканчивается на 0. А число 4921 не делится на 5 нацело, поскольку оно заканчивается на 1.
  • Признак делимости числа на «6» Число делится нацело на 6, если оно делится нацело на 2 и на 3
    Пример: Число 3504 кратно 6, поскольку оно заканчивается на 4 (признак делимости на 2) и сумма цифр числа равна 12 и она делится на 3 (признак делимости на 3). А число 5432 на 6 нацело не делится, хотя число заканчивается на 2 (соблюдается признак делимости на 2), однако сумма цифр равна 14 и она не делится на 3 нацело.
  • Признак делимости числа на «8» Число делится нацело на 8, если три последние цифры числа равны нулю или число, составленное из трех последних цифр числа, делится на 8
    Пример: Число 93112 делится нацело на 8, поскольку число 112 / 8 = 14. А число 9212 не кратно 8, поскольку 212 не делится на 8.
  • Признак делимости числа на «9» Число делится нацело на 9, если сумма его цифр делится на 9
    Пример: Число 2916 кратно 9, поскольку сумма цифр равна 18 и она делится на 9. А число 831 не делится на 9 нацело, поскольку сумма цифр числа равна 12 и она не делится на 9.
  • Признак делимости числа на «10» Число делится нацело на 10, если оно заканчивается на 0
    Пример: Число 39590 делится на 10 нацело, поскольку оно заканчивается на 0. А число 5964 не делится на 10 нацело, поскольку оно заканчивается не на 0.
  • Признак делимости числа на «11» Число делится нацело на 11, если сумма цифр, стоящих на нечетных местах, равна сумме цифр, стоящих на четных местах или суммы должны отличаться на 11
    Пример: Число 3762 делится нацело на 11, поскольку 3 + 6 = 7 + 2 = 9. А число 2374 на 11 не делится, поскольку 2 + 7 = 9, а 3 + 4 = 7.
  • Признак делимости числа на «25» Число делится нацело на 25, если оно заканчивается на 00, 25, 50 или 75
    Пример: Число 4950 кратно 25, поскольку оно заканчивается на 50. А 4935 не делится на 25, поскольку заканчивается на 35.

Признаки делимости на составное число

Чтобы узнать, делится ли заданное число на составное, нужно разложить это составное число на взаимно простые множители , признаки делимости которых известны. Взаимно простые числа - это числа, не имеющие общих делителей кроме 1. Например, число делится нацело на 15, если оно делится нацело на 3 и на 5.

Рассмотрим другой пример составного делителя: число делится нацело на 18, если оно делится нацело на 2 и 9. В данном случае нельзя раскладывать 18 на 3 и 6, поскольку они не являются взаимно простыми, так как имеют общий делитель 3. Убедимся в этом на примере.

Число 456 делится на 3, так как сумма его цифр равна 15, и делится на 6, так как оно делится и на 3 и на 2. Но если разделить 456 на 18 вручную, то получится остаток. Если же для числа 456 проверять признаки делимости на 2 и 9, сразу же видно, что оно делится на 2, но не делится на 9, так как сумма цифр числа равна 15 и она не делится на 9.



Статьи по теме: