Простейшие задачи с прямой на плоскости. Взаимное расположение прямых. Угол между прямыми. Простой алгоритм определения пересечения двух отрезков

Для того, чтобы решить геометрическую задачу методом координат, необходима точка пересечения, координаты которой используются при решении. Возникает ситуация, когда требуется искать координаты пересечения двух прямых на плоскости или определить координаты тех же прямых в пространстве. Данная статья рассматривает случаи нахождения координат точек, где пересекаются заданные прямые.

Yandex.RTB R-A-339285-1

Необходимо дать определение точкам пересечения двух прямых.

Раздел взаимного расположения прямых на плоскости показывает, что они могут совпадать, быть параллельными, пересекаться в одной общей точке или скрещивающимися. Две прямые, находящиеся в пространстве, называют пересекающимися, если они имеют одну общую точку.

Определение точки пересечения прямых звучит так:

Определение 1

Точка, в которой пересекаются две прямые, называют их точкой пересечения. Иначе говоря, что точка пересекающихся прямых и есть точка пересечения.

Рассмотрим на рисунке, приведенном ниже.

Перед нахождением координат точки пересечения двух прямых, необходимо рассмотреть предлагаемый ниже пример.

Если на плоскости имеется система координат О х у, то задаются две прямые a и b . Прямой a соответствует общее уравнение вида A 1 x + B 1 y + C 1 = 0 , для прямой b - A 2 x + B 2 y + C 2 = 0 . Тогда M 0 (x 0 , y 0) является некоторой точкой плоскости необходимо выявить, будет ли точка М 0 являться точкой пересечения этих прямых.

Чтобы решить поставленную задачу, необходимо придерживаться определения. Тогда прямые должны пересекаться в точке, координаты которой являются решением заданных уравнений A 1 x + B 1 y + C 1 = 0 и A 2 x + B 2 y + C 2 = 0 . Значит, координаты точки пересечения подставляются во все заданные уравнения. Если они при подстановке дают верное тождество, тогда M 0 (x 0 , y 0) считается их точкой пересечения.

Пример 1

Даны две пересекающиеся прямые 5 x - 2 y - 16 = 0 и 2 x - 5 y - 19 = 0 . Будет ли точка М 0 с координатами (2 , - 3) являться точкой пересечения.

Решение

Чтобы пересечение прямых было действительным, необходимо, чтобы координаты точки М 0 удовлетворяли уравнениям прямых. Это проверяется при помощи их подстановки. Получаем, что

5 · 2 - 2 · (- 3) - 16 = 0 ⇔ 0 = 0 2 · 2 - 5 · (- 3) - 19 = 0 ⇔ 0 = 0

Оба равенства верные, значит М 0 (2 , - 3) является точкой пересечения заданных прямых.

Изобразим данное решение на координатной прямой рисунка, приведенного ниже.

Ответ: заданная точка с координатами (2 , - 3) будет являться точкой пересечения заданных прямых.

Пример 2

Пересекутся ли прямые 5 x + 3 y - 1 = 0 и 7 x - 2 y + 11 = 0 в точке M 0 (2 , - 3) ?

Решение

Для решения задачи необходимо подставить координаты точки во все уравнения. Получим, что

5 · 2 + 3 · (- 3) - 1 = 0 ⇔ 0 = 0 7 · 2 - 2 · (- 3) + 11 = 0 ⇔ 31 = 0

Второе равенство не является верным, значит, что заданная точка не принадлежит прямой 7 x - 2 y + 11 = 0 . Отсюда имеем, что точка М 0 не точка пересечения прямых.

Чертеж наглядно показывает, что М 0 - это не точка пересечения прямых. Они имеют общую точку с координатами (- 1 , 2) .

Ответ: точка с координатами (2 , - 3) не является точкой пересечения заданных прямых.

Переходим к нахождению координат точек пересечения двух прямых при помощи заданных уравнений на плоскости.

Задаются две пересекающиеся прямые a и b уравнениями вида A 1 x + B 1 y + C 1 = 0 и A 2 x + B 2 y + C 2 = 0 , расположенных в О х у. При обозначении точки пересечения М 0 получим, что следует продолжить поиск координат по уравнениям A 1 x + B 1 y + C 1 = 0 и A 2 x + B 2 y + C 2 = 0 .

Из определения очевидно, что М 0 является общей точкой пересечения прямых. В этом случае ее координаты должны удовлетворять уравнениям A 1 x + B 1 y + C 1 = 0 и A 2 x + B 2 y + C 2 = 0 . Иными словами это и есть решение полученной системы A 1 x + B 1 y + C 1 = 0 A 2 x + B 2 y + C 2 = 0 .

Значит, для нахождения координат точки пересечения, необходимо все уравнения добавить в систему и решить ее.

Пример 3

Заданы две прямые x - 9 y + 14 = 0 и 5 x - 2 y - 16 = 0 на плоскости. необходимо найти их пересечение.

Решение

Данные по условию уравнения необходимо собрать в систему, после чего получим x - 9 y + 14 = 0 5 x - 2 y - 16 = 0 . Чтобы решить его, разрешается первое уравнение относительно x , подставляется выражение во второе:

x - 9 y + 14 = 0 5 x - 2 y - 16 = 0 ⇔ x = 9 y - 14 5 x - 2 y - 16 = 0 ⇔ ⇔ x = 9 y - 14 5 · 9 y - 14 - 2 y - 16 = 0 ⇔ x = 9 y - 14 43 y - 86 = 0 ⇔ ⇔ x = 9 y - 14 y = 2 ⇔ x = 9 · 2 - 14 y = 2 ⇔ x = 4 y = 2

Получившиеся числа являются координатами, которые необходимо было найти.

Ответ: M 0 (4 , 2) является точкой пересечения прямых x - 9 y + 14 = 0 и 5 x - 2 y - 16 = 0 .

Поиск координат сводится к решению системы линейных уравнений. Если по условию дан другой вид уравнения, тогда следует привести его к нормальному виду.

Пример 4

Определить координаты точек пересечения прямых x - 5 = y - 4 - 3 и x = 4 + 9 · λ y = 2 + λ , λ ∈ R .

Решение

Для начала необходимо привести уравнения к общему виду. Тогда получаем, что x = 4 + 9 · λ y = 2 + λ , λ ∈ R преобразуется таким образом:

x = 4 + 9 · λ y = 2 + λ ⇔ λ = x - 4 9 λ = y - 2 1 ⇔ x - 4 9 = y - 2 1 ⇔ ⇔ 1 · (x - 4) = 9 · (y - 2) ⇔ x - 9 y + 14 = 0

После чего беремся за уравнение канонического вида x - 5 = y - 4 - 3 и преобразуем. Получаем, что

x - 5 = y - 4 - 3 ⇔ - 3 · x = - 5 · y - 4 ⇔ 3 x - 5 y + 20 = 0

Отсюда имеем, что координаты – это точка пересечения

x - 9 y + 14 = 0 3 x - 5 y + 20 = 0 ⇔ x - 9 y = - 14 3 x - 5 y = - 20

Применим метод Крамера для нахождения координат:

∆ = 1 - 9 3 - 5 = 1 · (- 5) - (- 9) · 3 = 22 ∆ x = - 14 - 9 - 20 - 5 = - 14 · (- 5) - (- 9) · (- 20) = - 110 ⇒ x = ∆ x ∆ = - 110 22 = - 5 ∆ y = 1 - 14 3 - 20 = 1 · (- 20) - (- 14) · 3 = 22 ⇒ y = ∆ y ∆ = 22 22 = 1

Ответ: M 0 (- 5 , 1) .

Имеется еще способ для нахождения координат точки пересечения прямых, находящихся на плоскости. Он применим, когда одна из прямых задается параметрическими уравнениями, имеющими вид x = x 1 + a x · λ y = y 1 + a y · λ , λ ∈ R . Тогда вместо значения x подставляется x = x 1 + a x · λ и y = y 1 + a y · λ , где получим λ = λ 0 , соответствующее точке пересечения, имеющей координаты x 1 + a x · λ 0 , y 1 + a y · λ 0 .

Пример 5

Определить координаты точки пересечения прямой x = 4 + 9 · λ y = 2 + λ , λ ∈ R и x - 5 = y - 4 - 3 .

Решение

Необходимо выполнить подстановку в x - 5 = y - 4 - 3 выражением x = 4 + 9 · λ , y = 2 + λ , тогда получим:

4 + 9 · λ - 5 = 2 + λ - 4 - 3

При решении получаем, что λ = - 1 . Отсюда следует, что имеется точка пересечения между прямыми x = 4 + 9 · λ y = 2 + λ , λ ∈ R и x - 5 = y - 4 - 3 . Для вычисления координат необходимо подставить выражение λ = - 1 в параметрическое уравнение. Тогда получаем, что x = 4 + 9 · (- 1) y = 2 + (- 1) ⇔ x = - 5 y = 1 .

Ответ: M 0 (- 5 , 1) .

Для полного понимания темы, необходимо знать некоторые нюансы.

Предварительно необходимо понять расположение прямых. При их пересечении мы найдем координаты, в других случаях решения существовать не будет. Чтобы не делать эту проверку, можно составлять систему вида A 1 x + B 1 y + C 1 = 0 A 2 x + B 2 + C 2 = 0 При наличии решения делаем вывод о том, что прямые пересекаются. Если решение отсутствует, то они параллельны. Когда система имеет бесконечное множество решений, тогда говорят, что они совпадают.

Пример 6

Даны прямые x 3 + y - 4 = 1 и y = 4 3 x - 4 . Определить, имеют ли они общую точку.

Решение

Упрощая заданные уравнения, получаем 1 3 x - 1 4 y - 1 = 0 и 4 3 x - y - 4 = 0 .

Следует собрать уравнения в систему для последующего решения:

1 3 x - 1 4 y - 1 = 0 1 3 x - y - 4 = 0 ⇔ 1 3 x - 1 4 y = 1 4 3 x - y = 4

Отсюда видно, что уравнения выражаются друг через друга, тогда получим бесконечное множество решений. Тогда уравнения x 3 + y - 4 = 1 и y = 4 3 x - 4 определяют одну и ту же прямую. Поэтому нет точек пересечения.

Ответ: заданные уравнения определяют одну и ту же прямую.

Пример 7

Найти координаты точки пересекающихся прямых 2 x + (2 - 3) y + 7 = 0 и 2 3 + 2 x - 7 y - 1 = 0 .

Решение

По условию возможно такое, прямые не будут пересекаться. Необходимо составить систему уравнений и решать. Для решения необходимо использовать метод Гаусса, так как с его помощью есть возможность проверить уравнение на совместимость. Получаем систему вида:

2 x + (2 - 3) y + 7 = 0 2 (3 + 2) x - 7 y - 1 = 0 ⇔ 2 x + (2 - 3) y = - 7 2 (3 + 2) x - 7 y = 1 ⇔ ⇔ 2 x + 2 - 3 y = - 7 2 (3 + 2) x - 7 y + (2 x + (2 - 3) y) · (- (3 + 2)) = 1 + - 7 · (- (3 + 2)) ⇔ ⇔ 2 x + (2 - 3) y = - 7 0 = 22 - 7 2

Получили неверное равенство, значит система не имеет решений. Делаем вывод, что прямые являются параллельными. Точек пересечения нет.

Второй способ решения.

Для начала нужно определить наличие пересечения прямых.

n 1 → = (2 , 2 - 3) является нормальным вектором прямой 2 x + (2 - 3) y + 7 = 0 , тогда вектор n 2 → = (2 (3 + 2) , - 7 - нормальный вектор для прямой 2 3 + 2 x - 7 y - 1 = 0 .

Необходимо выполнить проверку коллинеарности векторов n 1 → = (2 , 2 - 3) и n 2 → = (2 (3 + 2) , - 7) . Получим равенство вида 2 2 (3 + 2) = 2 - 3 - 7 . Оно верное, потому как 2 2 3 + 2 - 2 - 3 - 7 = 7 + 2 - 3 (3 + 2) 7 (3 + 2) = 7 - 7 7 (3 + 2) = 0 . Отсюда следует, что векторы коллинеарны. Значит, прямые являются параллельными и не имеют точек пересечения.

Ответ: точек пересечения нет, прямые параллельны.

Пример 8

Найти координаты пересечения заданных прямых 2 x - 1 = 0 и y = 5 4 x - 2 .

Решение

Для решения составляем систему уравнений. Получаем

2 x - 1 = 0 5 4 x - y - 2 = 0 ⇔ 2 x = 1 5 4 x - y = 2

Найдем определитель основной матрицы. Для этого 2 0 5 4 - 1 = 2 · (- 1) - 0 · 5 4 = - 2 . Так как он не равен нулю, система имеет 1 решение. Отсюда следует, что прямые пересекаются. Решим систему для нахождения координат точек пересечения:

2 x = 1 5 4 x - y = 2 ⇔ x = 1 2 4 5 x - y = 2 ⇔ x = 1 2 5 4 · 1 2 - y = 2 ⇔ x = 1 2 y = - 11 8

Получили, что точка пересечения заданных прямых имеет координаты M 0 (1 2 , - 11 8) .

Ответ: M 0 (1 2 , - 11 8) .

Нахождения координат точки пересечения двух прямых в пространстве

Таким же образом находятся точки пересечения прямых пространства.

Когда заданы прямые a и b в координатной плоскости О х у z уравнениями пересекающихся плоскостей, то имеется прямая a , которая может быть определена при помощи заданной системы A 1 x + B 1 y + C 1 z + D 1 = 0 A 2 x + B 2 y + C 2 z + D 1 = 0 а прямая b - A 3 x + B 3 y + C 3 z + D 3 = 0 A 4 x + B 4 y + C 4 z + D 4 = 0 .

Когда точка М 0 является точкой пересечения прямых, тогда ее координаты должны быть решениями обоих уравнений. Получим линейные уравнения в системе:

A 1 x + B 1 y + C 1 z + D 1 = 0 A 2 x + B 2 y + C 2 z + D 2 = 0 A 3 x + B 3 y + C 3 z + D 3 = 0 A 4 x + B 4 y + C 4 z + D 4 = 0

Рассмотрим подобные задания на примерах.

Пример 9

Найти координаты точки пересечения заданных прямых x - 1 = 0 y + 2 z + 3 = 0 и 3 x + 2 y + 3 = 0 4 x - 2 z - 4 = 0

Решение

Составляем систему x - 1 = 0 y + 2 z + 3 = 0 3 x + 2 y + 3 = 0 4 x - 2 z - 4 = 0 и решим ее. Чтобы найти координаты, необходимо решать через матрицу. Тогда получим основную матрицу вида   A = 1 0 0 0 1 2 3 2 0 4 0 - 2 и расширенную T = 1 0 0 1 0 1 2 - 3 4 0 - 2 4 . Определяем ранг матрицы по Гауссу.

Получаем, что

1 = 1 ≠ 0 , 1 0 0 1 = 1 ≠ 0 , 1 0 0 0 1 2 3 2 0 = - 4 ≠ 0 , 1 0 0 1 0 1 2 - 3 3 2 0 - 3 4 0 - 2 4 = 0

Отсюда следует, что ранг расширенной матрицы имеет значение 3 . Тогда система уравнений x - 1 = 0 y + 2 z + 3 = 0 3 x + 2 y + 3 = 0 4 x - 27 - 4 = 0 в результате дает только одно решение.

Базисный минор имеет определитель 1 0 0 0 1 2 3 2 0 = - 4 ≠ 0 , тогда последнее уравнение не подходит. Получим, что x - 1 = 0 y + 2 z + 3 = 0 3 x + 2 y + 3 = 0 4 x - 2 z - 4 = 0 ⇔ x = 1 y + 2 z = - 3 3 x + 2 y - 3 . Решение системы x = 1 y + 2 z = - 3 3 x + 2 y = - 3 ⇔ x = 1 y + 2 z = - 3 3 · 1 + 2 y = - 3 ⇔ x = 1 y + 2 z = - 3 y = - 3 ⇔ ⇔ x = 1 - 3 + 2 z = - 3 y = - 3 ⇔ x = 1 z = 0 y = - 3 .

Значит, имеем, что точка пересечения x - 1 = 0 y + 2 z + 3 = 0 и 3 x + 2 y + 3 = 0 4 x - 2 z - 4 = 0 имеет координаты (1 , - 3 , 0) .

Ответ: (1 , - 3 , 0) .

Система вида A 1 x + B 1 y + C 1 z + D 1 = 0 A 2 x + B 2 y + C 2 z + D 2 = 0 A 3 x + B 3 y + C 3 z + D 3 = 0 A 4 x + B 4 y + C 4 z + D 4 = 0 имеет только одно решение. Значит, прямые a и b пересекаются.

В остальных случаях уравнение не имеет решения, то есть и общих точек тоже. То есть невозможно найти точку с координатами, так как ее нет.

Поэтому система вида A 1 x + B 1 y + C 1 z + D 1 = 0 A 2 x + B 2 y + C 2 z + D 2 = 0 A 3 x + B 3 y + C 3 z + D 3 = 0 A 4 x + B 4 y + C 4 z + D 4 = 0 решается методом Гаусса. При ее несовместимости прямые не являются пересекающимися. Если решений бесконечное множество, то они совпадают.

Можно произвести решение при помощи вычисления основного и расширенного ранга матрицы, после чего применить теорему Кронекера-Капелли. Получим одно, множество или полное отсутствие решений.

Пример 10

Заданы уравнения прямых x + 2 y - 3 z - 4 = 0 2 x - y + 5 = 0 и x - 3 z = 0 3 x - 2 y + 2 z - 1 = 0 . Найти точку пересечения.

Решение

Для начала составим систему уравнений. Получим, что x + 2 y - 3 z - 4 = 0 2 x - y + 5 = 0 x - 3 z = 0 3 x - 2 y + 2 z - 1 = 0 . решаем ее методом Гаусса:

1 2 - 3 4 2 - 1 0 - 5 1 0 - 3 0 3 - 2 2 1 ~ 1 2 - 3 4 0 - 5 6 - 13 0 - 2 0 - 4 0 - 8 11 - 11 ~ ~ 1 2 - 3 4 0 - 5 6 - 13 0 0 - 12 5 6 5 0 0 7 5 - 159 5 ~ 1 2 - 3 4 0 - 5 6 - 13 0 0 - 12 5 6 5 0 0 0 311 10

Очевидно, что система не имеет решений, значит прямые не пересекаются. Точки пересечения нет.

Ответ: нет точки пересечения.

Если прямые заданы при помощи кононических или параметрических уравнений, нужно привести к виду уравнений пересекающихся плоскостей, после чего найти координаты.

Пример 11

Заданы две прямые x = - 3 - λ y = - 3 · λ z = - 2 + 3 · λ , λ ∈ R и x 2 = y - 3 0 = z 5 в О х у z . Найти точку пересечения.

Решение

Задаем прямые уравнениями двух пересекающихся плоскостей. Получаем, что

x = - 3 - λ y = - 3 · λ z = - 2 + 3 · λ ⇔ λ = x + 3 - 1 λ = y - 3 λ = z + 2 3 ⇔ x + 3 - 1 = y - 3 = z + 2 3 ⇔ ⇔ x + 3 - 1 = y - 3 x + 3 - 1 = z + 2 3 ⇔ 3 x - y + 9 = 0 3 x + z + 11 = 0 x 2 = y - 3 0 = z 5 ⇔ y - 3 = 0 x 2 = z 5 ⇔ y - 3 = 0 5 x - 2 z = 0

Находим координаты 3 x - y + 9 = 0 3 x + z + 11 = 0 y - 3 = 0 5 x - 2 z = 0 , для этого посчитаем ранги матрицы. Ранг матрицы равен 3 , а базисный минор 3 - 1 0 3 0 1 0 1 0 = - 3 ≠ 0 , значит, что из системы необходимо исключить последнее уравнение. Получаем, что

3 x - y + 9 = 0 3 x + z + 11 = 0 y - 3 = 0 5 x - 2 z = 0 ⇔ 3 x - y + 9 = 0 3 x + z + 11 = 0 y - 3 = 0

Решим систему методом Крамер. Получаем, что x = - 2 y = 3 z = - 5 . Отсюда получаем, что пересечение заданных прямых дает точку с координатами (- 2 , 3 , - 5) .

Ответ: (- 2 , 3 , - 5) .

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Урок из серии «Геометрические алгоритмы»

Здравствуйте, дорогой читатель!

Продолжим знакомиться с геометрическими алгоритмами. На прошлом уроке мы нашли уравнение прямой линии по координатам двух точек. У нас получилось уравнение вида:

Сегодня мы напишем функцию, которая по уравнениям двух прямых линий будет находить координаты их точки пересечения (если такая имеется). Для проверки равенства вещественных чисел, будем использовать специальную функцию RealEq().

Точки на плоскости описываются парой вещественных чисел. При использовании вещественного типа операции сравнения лучше оформить специальными функциями.

Причина известна: на типе Real в системе программирования Паскаль нет отношения порядка, поэтому записи вида a = b, где a и b вещественные числа, лучше не использовать.
Сегодня мы введем в употребление функцию RealEq() для реализации операции “=” (строго равно) :

Function RealEq(Const a, b:Real):Boolean; {строго равно} begin RealEq:=Abs(a-b)<=_Eps End; {RealEq}

Задача. Заданы уравнения двух прямых: и . Найти точку их пересечения.

Решение. Очевидное решение состоит в том, чтобы решить систему уравнений прямых: Давайте перепишем эту системе несколько иначе:
(1)

Введем обозначения: , , . Здесь D – определитель системы, а - определители, получающиеся в результате замены столбца коэффициентов при соответствующем неизвестном столбцом свободных членов. Если , то система (1) является определенной, то есть имеет единственное решение. Это решение можно найти по следующим формулам: , , которые называются формулами Крамера . Напомню, как вычисляется определитель второго порядка. В определителе различают две диагонали: главную и побочную. Главная диагональ состоит из элементов, взятых по направлению от верхнего левого угла определителя в нижний правый угол. Побочная диагональ – из правого верхнего в нижний левый. Определитель второго порядка равен произведению элементов главной диагонали минус произведение элементов побочной диагонали.

В программном коде для проверки проверка равенства используется функция RealEq(). Вычисления над вещественными числами производятся с точностью до _Eps=1e-7.

Program geom2; Const _Eps: Real=1e-7;{точность вычислений} var a1,b1,c1,a2,b2,c2,x,y,d,dx,dy:Real; Function RealEq(Const a, b:Real):Boolean; {строго равно} begin RealEq:=Abs(a-b)<=_Eps End; {RealEq} Function LineToPoint(a1,b1,c1,a2,b2,c2: real; var x,y:real):Boolean; {Определение координат точки пересечения двух линий. Значение функции равно true, если точка пересечения есть, и false, если прямые параллельны. } var d:real; begin d:=a1*b2-b1*a2; if Not(RealEq(d,0)) then begin LineToPoint:=True; dx:=-c1*b2+b1*c2; dy:=-a1*c2+c1*a2; x:=dx/d; y:=dy/d; end else LineToPoint:=False End;{LineToPoint} begin {main} writeln("Введите коэффициенты уравнений: a1,b1,c1,a2,b2,c2 "); readln(a1,b1,c1,a2,b2,c2); if LineToPoint(a1,b1,c1,a2,b2,c2,x,y) then writeln(x:5:1,y:5:1) else writeln("Прямые параллельны."); end.

Мы составили программу, с помощью которой можно, зная уравнения линий, найти координаты их точки пересечения.

Тема 3. Теория

Аналитическая геометрия в пространстве.

Уравнения плоскости и прямой линии.

 Общее уравнение плоскости является алгебраическим уравнением первого порядка относительно координат (x ; y ; z )

- нормаль , вектор, перпендикулярный плоскости.


Условия параллельности и перпендикулярности плоскостей определяются условиями коллинеарности и перпендикулярности нормалей.

Некоторые стандартные виды уравнений плоскости:

Уравнение плоскости, перпендикулярной вектору
, проходящей через данную точкуМ 0 0 , y 0 , z 0 )

A(x-x 0 )+B(y-y 0 )+C(z-z 0 )=0

Плоскость, проходящая через три заданные точки М 1 1 , y 1 , z 1 ) , M 2 (x 2 , y 2 , z 2 ) , M 3 (x 3 , y 3 , z 3 )

Параллельная двум заданным векторам
и
, (неколлинеарный), проходящим через точкуМ 0 0 , y 0 , z 0 )

Проходящая через две заданные точки М 1 и М 2 , параллельно вектору , (неколлинеарный
)

Проходящая через заданную точку М 0 (x 0 , y 0 , z 0 ) , перпендикулярно двум заданным плоскостям:

    A 1 x+B 1 y+C 1 z+D 1 =0 ;

    A 2 x+B 2 y+C 2 z+D 2 =0 .

Собственно уравнения плоскости будут получены, если раскрыть соответствующий определитель по первой строке.

 Формула для вычисления расстояния от заданной точки М 1 (x 1 , y 1 , z 1 ) до плоскости , заданной уравнением Ах+ By + Cz + D =0 :

.

Очевидно, если d =0 , то точка М 1 принадлежит плоскости.

Прямая линия в пространстве определяется как линия пересечения двух не параллельных плоскостей (любых, проходящих через прямую).

Виды уравнений прямой в пространстве:

Общие уравнения прямой (пересечение двух плоскостей)

,

М 0 (x 0 , y 0 , z 0 ) – любая точка, лежащая на прямой.
-направляющий вектор прямой

Канонические уравнения

прямой или уравнения прямой, проходящей через заданную точку с заданным направляющим вектором

Параметрическое уравнение

Уравнения прямой, проходящей через две заданные точки М 1 и М 2

Условия параллельности и перпендикулярности прямых в пространстве определяются как условия соответственно коллинеарности и перпендикулярности их направляющих векторов. Пусть прямые (1) и (2) заданы в каноническом или параметрическом виде, тогда

.

Условие пересечения двух прямых в пространстве – это условие комплонарности трех векторов:

Переход от общих уравнений прямой к уравнениям в каноническом или параметрическом виде осуществляется следующим образом (возможен и обратный переход).

Заданы уравнения прямой в общем виде:
.

Найдем координаты направляющего вектора:
как векторное произведение нормалей плоскостей, задающих прямую.

Найдем любую точку, принадлежащую прямой. Она также принадлежит обеим плоскостям, задающим прямую, поэтому ее координаты (x 0 , y 0 , z 0) можно найти из системы уравнений:

,

в которой одну из координат надо задать произвольно (т.к. находим любую точку), но так, чтобы система имела единственное решение. Координаты вектора и найденной точки подставляют в канонические или параметрические уравнения.

Условия параллельности и перпендикулярности прямой и плоскости формулируют как условия перпендикулярности и параллельности нормали и направляющего вектора.

,

Al+Bm+Cn=0.

,

.

При решении некоторых геометрических задач методом координат приходится находить координаты точки пересечения прямых. Наиболее часто приходится искать координаты точки пересечения двух прямых на плоскости, однако иногда возникает необходимость в определении координат точки пересечения двух прямых в пространстве. В этой статье мы как раз разберемся с нахождением координат точки, в которой пересекаются две прямые.

Навигация по странице.

Точка пересечения двух прямых – определение.

Давайте для начала дадим определение точки пересечения двух прямых.

В разделе взаимное расположение прямых на плоскости показано, что две прямые на плоскости могут либо совпадать (при этом они имеют бесконечно много общих точек), либо быть параллельными (при этом две прямые не имеют общих точек), либо пересекаться, имея одну общую точку. Вариантов взаимного расположения двух прямых в пространстве больше – они могут совпадать (иметь бесконечно много общих точек), могут быть параллельными (то есть, лежать в одной плоскости и не пересекаться), могут быть скрещивающимися (не лежащими в одной плоскости), а также могут иметь одну общую точку, то есть, пересекаться. Итак, две прямые и на плоскости и в пространстве называются пересекающимися, если они имеют одну общую точку.

Из определения пересекающихся прямых следует определение точки пересечения прямых : точка, в которой пересекаются две прямые, называется точкой пересечения этих прямых. Другими словами, единственная общая точка двух пересекающихся прямых есть точка пересечения этих прямых.

Приведем для наглядности графическую иллюстрацию точки пересечения двух прямых на плоскости и в пространстве.

К началу страницы

Нахождение координат точки пересечения двух прямых на плоскости.

Прежде чем находить координаты точки пересечения двух прямых на плоскости по их известным уравнениям, рассмотрим вспомогательную задачу.

Oxy a и b . Будем считать, что прямой a соответствует общее уравнение прямой вида , а прямой b – вида . Пусть – некоторая точка плоскости, и требуется выяснить, является ли точка М 0 точкой пересечения заданных прямых.

Решим поставленную задачу.

Если M 0 a и b , то по определению она принадлежит и прямой a и прямой b , то есть, ее координаты должны удовлетворять одновременно и уравнению и уравнению . Следовательно, нам нужно подставить координаты точки М 0 в уравнения заданных прямых и посмотреть, получаются ли при этом два верных равенства. Если координаты точки М 0 удовлетворяют обоим уравнениям и , то – точка пересечения прямых a и b , в противном случае М 0 .

Является ли точка М 0 с координатами (2, -3) точкой пересечения прямых 5x-2y-16=0 и2x-5y-19=0 ?

Если М 0 действительно точка пересечения заданных прямых, то ее координаты удовлетворяют уравнениям прямых. Проверим это, подставив координаты точки М 0 в заданные уравнения:

Получили два верных равенства, следовательно, М 0 (2, -3) - точка пересечения прямых5x-2y-16=0 и 2x-5y-19=0 .

Для наглядности приведем чертеж, на котором изображены прямые и видны координаты точки их пересечения.

да, точка М 0 (2, -3) является точкой пересечения прямых 5x-2y-16=0 и 2x-5y-19=0 .

Пересекаются ли прямые 5x+3y-1=0 и 7x-2y+11=0 в точке M 0 (2, -3) ?

Подставим координаты точки М 0 в уравнения прямых, этим действием будем осуществлена проверка принадлежности точки М 0 обеим прямым одновременно:

Так как второе уравнение при подстановке в него координат точки М 0 не обратилось в верное равенство, то точка М 0 не принадлежит прямой 7x-2y+11=0 . Из этого факта можно сделать вывод о том, что точка М 0 не является точкой пересечения заданных прямых.

На чертеже также хорошо видно, что точка М 0 не является точкой пересечения прямых5x+3y-1=0 и 7x-2y+11=0 . Очевидно, заданные прямые пересекаются в точке с координатами (-1, 2) .

М 0 (2, -3) не является точкой пересечения прямых 5x+3y-1=0 и 7x-2y+11=0 .

Теперь можно переходить к задаче нахождения координат точки пересечения двух прямых по заданным уравнениям прямых на плоскости.

Пусть на плоскости зафиксирована прямоугольная декартова система координат Oxy и заданы две пересекающиеся прямые a и b уравнениями и соответственно. Обозначим точку пересечения заданных прямых как М 0 и решим следующую задачу: найти координаты точки пересечения двух прямых a и b по известным уравнениям этих прямых и .

Точка M 0 принадлежит каждой из пересекающихся прямых a и b по определению. Тогда координаты точки пересечения прямых a и b удовлетворяют одновременно и уравнению и уравнению . Следовательно, координаты точки пересечения двух прямых a и b являются решением системы уравнений (смотрите статью решение систем линейных алгебраических уравнений).

Таким образом, чтобы найти координаты точки пересечения двух прямых, определенных на плоскости общими уравнениями, нужно решить систему, составленную из уравнений заданных прямых.

Рассмотрим решение примера.

Найдите точку пересечения двух прямых, определенных в прямоугольной системе координат на плоскости уравнениями x-9y+14=0 и 5x-2y-16=0 .

Нам даны два общих уравнения прямых, составим из них систему: . Решения полученной системы уравнений легко находятся, если разрешить ее первое уравнение относительно переменной x и подставить это выражение во второе уравнение:

Найденное решение системы уравнений дает нам искомые координаты точки пересечения двух прямых.

M 0 (4, 2) – точка пересечения прямых x-9y+14=0 и 5x-2y-16=0 .

Итак, нахождение координат точки пересечения двух прямых, определенных общими уравнениями на плоскости, сводится к решению системы из двух линейных уравнений с двумя неизвестными переменными. А как же быть, если прямые на плоскости заданы не общими уравнениями, а уравнениями другого вида (смотрите виды уравнения прямой на плоскости)? В этих случаях можно сначала привести уравнения прямых к общему виду, а уже после этого находить координаты точки пересечения.

Перед нахождением координат точки пересечения заданных прямых приведем их уравнения к общему виду. Переход от параметрических уравнений прямой к общему уравнению этой прямой выглядит следующим образом:

Теперь проведем необходимые действия с каноническим уравнением прямой :

Таким образом, искомые координаты точки пересечения прямых являются решением системы уравнений вида . Используем для ее решения метод Крамера:

M 0 (-5, 1)

Существует еще один способ нахождения координат точки пересечения двух прямых на плоскости. Его удобно применять, когда одна из прямых задана параметрическими уравнениями вида , а другая – уравнением прямой иного вида. В этом случае в другое уравнение вместо переменных x и y можно подставить выражения и , откуда можно будет получить значение , которое соответствует точке пересечения заданных прямых. При этом точка пересечения прямых имеет координаты .

Найдем координаты точки пересечения прямых из предыдущего примера этим способом.

Определите координаты точки пересечения прямых и .

Подставим в уравнение прямой выражения :

Решив полученное уравнение, получаем . Это значение соответствует общей точке прямых и . Вычисляем координаты точки пересечения, подставив в параметрические уравнения прямой:
.

M 0 (-5, 1) .

Для полноты картины следует обговорить еще один момент.

Перед нахождением координат точки пересечения двух прямых на плоскости полезно убедиться в том, что заданные прямые действительно пересекаются. Если выяснится, что исходные прямые совпадают или параллельны, то о нахождении координат точки пересечения таких прямых не может быть и речи.

Можно, конечно, обойтись и без такой проверки, а сразу составить систему уравнений вида и решить ее. Если система уравнений имеет единственное решение, то оно дает координаты точки, в которой исходные прямые пересекаются. Если система уравнений решений не имеет, то можно делать вывод о параллельности исходных прямых (так как не существует такой пары действительных чисел x и y , которая бы удовлетворяла одновременно обоим уравнениям заданных прямых). Из наличия бесконечного множества решений системы уравнений следует, что исходные прямые имеют бесконечно много общих точек, то есть, совпадают.

Рассмотрим примеры, подходящие под эти ситуации.

Выясните, пересекаются ли прямые и , и если пересекаются, то найдите координаты точки пересечения.

Заданным уравнениям прямых соответствуют уравнения и . Решим систему, составленную из этих уравнений .

Очевидно, что уравнения системы линейно выражаются друг через друга (второе уравнение системы получается из первого умножением обеих его частей на 4 ), следовательно, система уравнений имеет бесконечное множество решений. Таким образом, уравнения и определяют одну и ту же прямую, и мы не можем говорить о нахождении координат точки пересечения этих прямых.

уравнения и определяют в прямоугольной системе координатOxy одну и ту же прямую, поэтому мы не можем говорить о нахождении координат точки пересечения.

Найдите координаты точки пересечения прямых и , если это возможно.

Условие задачи допускает, что прямые могут быть не пересекающимися. Составим систему из данных уравнений. Применим для ее решения метод Гаусса, так как он позволяет установить совместность или несовместность системы уравнений, а в случае ее совместности найти решение:

Последнее уравнение системы после прямого хода метода Гаусса обратилось в неверное равенство, следовательно, система уравнений не имеет решений. Отсюда можно сделать вывод, что исходные прямые параллельны, и мы не можем говорить о нахождении координат точки пересечения этих прямых.

Второй способ решения.

Давайте выясним, пересекаются ли заданные прямые.

Нормальный вектор прямой , а вектор является нормальным вектором прямой . Проверим выполнение условия коллинеарности векторов и : равенство верно, так как , следовательно, нормальные векторы заданных прямых коллинеарны. Тогда, эти прямые параллельны или совпадают. Таким образом, мы не можем найти координаты точки пересечения исходных прямых.

координаты точки пересечения заданных прямых найти невозможно, так как эти прямые параллельны.

Найдите координаты точки пересечения прямых 2x-1=0 и , если они пересекаются.

Составим систему из уравнений, которые являются общими уравнениями заданных прямых: . Определитель основной матрицы этой системы уравнений отличен от нуля , поэтому система уравнений имеет единственное решение, что свидетельствует о пересечении заданных прямых.

Для нахождения координат точки пересечения прямых нам нужно решить систему:

Полученное решение дает нам координаты точки пересечения прямых, то есть, - точка пересечения прямых 2x-1=0 и .

К началу страницы

Нахождение координат точки пересечения двух прямых в пространстве.

Координаты точки пересечения двух прямых в трехмерном пространстве находятся аналогично.

Пусть пересекающиеся прямые a и b заданы в прямоугольной системе координат Oxyz уравнениями двух пересекающихся плоскостей, то есть, прямая a определяется системой вида , а прямая b - . Пусть М 0 – точка пересечения прямых a и b . Тогда точка М 0 по определению принадлежит и прямой a и прямойb , следовательно, ее координаты удовлетворяют уравнениям обеих прямых. Таким образом, координаты точки пересечения прямых a и b представляют собой решение системы линейных уравнений вида . Здесь нам пригодится информация из разделарешение систем линейных уравнений, в которых число уравнений не совпадает с числом неизвестных переменных.

Рассмотрим решения примеров.

Найдите координаты точки пересечения двух прямых, заданных в пространстве уравнениями и .

Составим систему уравнений из уравнений заданных прямых: . Решение этой системы даст нам искомые координаты точки пересечения прямых в пространстве. Найдем решение записанной системы уравнений.

Основная матрица системы имеет вид , а расширенная - .

Определим ранг матрицы А и ранг матрицы T . Используем метод окаймляющих миноров, при этом не будем подробно описывать вычисление определителей (при необходимости обращайтесь к статье вычисление определителя матрицы):

Таким образом, ранг основной матрицы равен рангу расширенной матрицы и равен трем.

Следовательно, система уравнений имеет единственное решение.

Базисным минором примем определитель , поэтому из системы уравнений следует исключить последнее уравнение, так как оно не участвует в образовании базисного минора. Итак,

Решение полученной системы легко находится:

Таким образом, точка пересечения прямых и имеет координаты (1, -3, 0) .

(1, -3, 0) .

Следует отметить, что система уравнений имеет единственное решение тогда и только тогда, когда прямые a и b пересекаются. Если же прямые а и b параллельные или скрещивающиеся, то последняя система уравнений решений не имеет, так как в этом случае прямые не имеют общих точек. Если прямые a и b совпадают, то они имеют бесконечное множество общих точек, следовательно, указанная система уравнений имеет бесконечное множество решений. Однако в этих случаях мы не можем говорить о нахождении координат точки пересечения прямых, так как прямые не являются пересекающимися.

Таким образом, если мы заранее не знаем, пересекаются заданные прямые a и b или нет, то разумно составить систему уравнений вида и решить ее методом Гаусса. Если получим единственное решение, то оно будет соответствовать координатам точки пересечения прямых a и b . Если система окажется несовместной, то прямые a и b не пересекаются. Если же система будет иметь бесконечное множество решений, то прямые a и b совпадают.

Можно обойтись и без использования метода Гаусса. Как вариант, можно вычислить ранги основной и расширенной матриц этой системы, и на основании полученных данных и теоремы Кронекера-Капелли сделать вывод или о существовании единственного решения, или о существовании множества решений, или об отсутствии решений. Это дело вкуса.

Если прямые и пересекаются, то определите координаты точки пересечения.

Составим систему из заданных уравнений: . Решим ее методом Гаусса в матричной форме:

Стало видно, что система уравнений не имеет решений, следовательно, заданные прямые не пересекаются, и не может быть и речи о поиске координат точки пересечения этих прямых.

мы не можем найти координаты точки пересечения заданных прямых, так как эти прямые не пересекаются.

Когда пересекающиеся прямые заданы каноническими уравнениями прямой в пространствеили параметрическими уравнениями прямой в пространстве, то следует сначала получить их уравнения в виде двух пересекающихся плоскостей, а уже после этого находить координаты точки пересечения.

Две пересекающиеся прямые заданы в прямоугольной системе координат Oxyz уравнениями и . Найдите координаты точки пересечения этих прямых.

Зададим исходные прямые уравнениями двух пересекающихся плоскостей:

Для нахождения координат точки пересечения прямых осталось решить систему уравнений . Ранг основной матрицы этой системы равен рангу расширенной матрицы и равен трем (рекомендуем проверить этот факт). В качестве базисного минора примем , следовательно, из системы можно исключить последнее уравнение . Решив полученную систему любым методом (например методом Крамера) получаем решение . Таким образом, точка пересечения прямых и имеет координаты (-2, 3, -5) .

Точка пересечения прямых

Пусть нам даны две прямые, заданные своими коэффициентами и . Требуется найти их точку пересечения, или выяснить, что прямые параллельны.

Решение

Если две прямые не параллельны, то они пересекаются. Чтобы найти точку пересечения, достаточно составить из двух уравнений прямых систему и решить её:

Пользуясь формулой Крамера, сразу находим решение системы, которое и будет искомой точкой пересечения :



Если знаменатель нулевой, т.е.

то система решений не имеет (прямые параллельны и не совпадают) или имеет бесконечно много (прямые совпадают ). Если необходимо различить эти два случая, надо проверить, что коэффициенты прямых пропорциональны с тем же коэффициентом пропорциональности, что и коэффициенты и , для чего достаточно посчитать два определителя, если они оба равны нулю, то прямые совпадают:

Реализация

struct pt {double x, y;}; struct line {double a, b, c;}; constdouble EPS =1e-9; double det (double a, double b, double c, double d){return a * d — b * c;} bool intersect (line m, line n, pt & res){double zn = det (m.a, m.b, n.a, n.b);if(abs(zn)< EPS)returnfalse; res.x=- det (m.c, m.b, n.c, n.b)/ zn; res.y=- det (m.a, m.c, n.a, n.c)/ zn;returntrue;} bool parallel (line m, line n){returnabs(det (m.a, m.b, n.a, n.b))< EPS;} bool equivalent (line m, line n){returnabs(det (m.a, m.b, n.a, n.b))< EPS &&abs(det (m.a, m.c, n.a, n.c))< EPS &&abs(det (m.b, m.c, n.b, n.c))< EPS;}

Урок из серии «Геометрические алгоритмы »

Здравствуйте, дорогой читатель.

Совет 1: Как найти координаты точки пересечения двух прямых

Напишем еще три новые функции.

Функция LinesCross() будет определять, пересекаются ли два отрезка . В ней взаимное расположение отрезков определяется с помощью векторных произведений. Для вычисления векторных произведений напишем функцию – VektorMulti().

Функция RealLess() будет использоваться для реализации операции сравнения “<” (строго меньше) для вещественных чисел.

Задача1. Два отрезка заданы своими координатами. Составить программу, которая определяет, пересекаются ли эти отрезки , не находя точку пересечения.

Решение
. Второй задан точками .



Рассмотрим отрезок и точки и .

Точка лежит слева от прямой , для нее векторное произведение > 0, так как векторы положительно ориентированы.

Точка расположена справа от прямой, для нее векторное произведение < 0, так как векторы отрицательно ориентированы.

Для того чтобы точки и , лежали по разные стороны от прямой , достаточно, чтобы выполнялось условие < 0 (векторные произведения имели противоположные знаки).

Аналогичные рассуждения можно провести для отрезка и точек и .

Итак, если , то отрезки пересекаются.

Для проверки этого условия используется функцию LinesCross(), а для вычисления векторных произведений – функция VektorMulti().

ax, ay – координаты первого вектора,

bx, by – координаты второго вектора.

Program geometr4; {Пересекаются ли 2 отрезка?} Const _Eps: Real=1e-4; {точность вычслений} var x1,y1,x2,y2,x3,y3,x4,y4: real; var v1,v2,v3,v4: real;function RealLess(Const a, b: Real): Boolean; {Строго меньше} begin RealLess:= b-a> _Eps end; {RealLess}function VektorMulti(ax,ay,bx,by:real): real; {ax,ay — координаты a bx,by — координаты b } begin vektormulti:= ax*by-bx*ay; end;Function LinesCross(x1,y1,x2,y2,x3,y3,x4,y4:real): boolean; {Пересекаются ли отрезки?} begin v1:=vektormulti(x4-x3,y4-y3,x1-x3,y1-y3); v2:=vektormulti(x4-x3,y4-y3,x2-x3,y2-y3); v3:=vektormulti(x2-x1,y2-y1,x3-x1,y3-y1); v4:=vektormulti(x2-x1,y2-y1,x4-x1,y4-y1); if RealLess(v1*v2,0) and RealLess(v3*v4,0) {v1v2<0 и v3v4<0, отрезки пересекаются} then LinesCross:= true else LinesCross:= false end; {LinesCross}begin {main} writeln(‘Введите координаты отрезков: x1,y1,x2,y2,x3,y3,x4,y4’); readln(x1,y1,x2,y2,x3,y3,x4,y4); if LinesCross(x1,y1,x2,y2,x3,y3,x4,y4) then writeln (‘Да’) else writeln (‘Нет’) end.

Результаты выполнения программы:

Введите координаты отрезков: -1 1 2 2.52 2 1 -1 3
Да.

Мы написали программу, определяющую, пересекаются ли отрезки, заданные своими координатами.

На следующем уроке мы составим алгоритм, с помощью которого можно будет определить, лежит ли точка внутри треугольника.

Уважаемый читатель.

Вы уже познакомились с несколькими уроками из серии «Геометрические алгоритмы». Все ли доступно написано? Я буду Вам очень признательна, если Вы оставите отзыв об этих уроках. Возможно, что-то нужно еще доработать.

С уважением, Вера Господарец.

Пусть даны два отрезка. Первый задан точками P 1 (x 1 ;y 1) и P 2 (x 2 ;y 2) . Второй задан точками P 3 (x 3 ;y 3) и P 4 (x 4 ;y 4) .

Взаимное расположение отрезков можно проверить с помощью векторных произведений:

Рассмотрим отрезок P 3 P 4 и точки P 1 и P 2 .

Точка P 1 лежит слева от прямой P 3 P 4 , для нее векторное произведение v 1 > 0 , так как векторы положительно ориентированы.
Точка P 2 расположена справа от прямой, для нее векторное произведение v 2 < 0 , так как векторы отрицательно ориентированы.

Для того чтобы точки P 1 и P 2 лежали по разные стороны от прямой P 3 P 4 , достаточно, чтобы выполнялось условие v 1 v 2 < 0 (векторные произведения имели противоположные знаки).

Аналогичные рассуждения можно провести для отрезка P 1 P 2 и точек P 3 и P 4 .

Итак, если v 1 v 2 < 0 и v 3 v 4 < 0 , то отрезки пересекаются.

Векторное произведение двух векторов вычисляется по формуле:

где:
ax , ay — координаты первого вектора,
bx , by — координаты второго вектора.

Уравнение прямой, проходящей через две различные точки, заданные своими координатами.

Пусть на прямой заданы две не совпадающие точки:P 1 с координатами (x 1 ;y 1) и P 2 с координатами (x 2 ; y 2) .

Пересечение прямых

Соответственно вектор с началом в точке P 1 и концом в точке P 2 имеет координаты (x 2 -x 1 , y 2 -y 1) . Если P(x, y) – произвольная точка на прямой, то координаты вектора P 1 P равны (x — x 1 , y – y 1).

С помощью векторного произведения условие коллинеарности векторов P 1 P и P 1 P 2 можно записать так:
|P 1 P,P 1 P 2 |=0 , т.е. (x-x 1)(y 2 -y 1)-(y-y 1)(x 2 -x 1)=0
или
(y 2 -y 1)x + (x 1 -x 2)y + x 1 (y 1 -y 2) + y 1 (x 2 -x 1) = 0

Последнее уравнение переписывается следующим образом:
ax + by + c = 0, (1)
где
a = (y 2 -y 1),
b = (x 1 -x 2),
c = x 1 (y 1 -y 2) + y 1 (x 2 -x 1)

Итак, прямую можно задать уравнением вида (1).

Как найти точку пересечения прямых?
Очевидное решение состоит в том, чтобы решить систему уравнений прямых:

ax 1 +by 1 =-c 1
ax 2 +by 2 =-c 2
(2)

Ввести обозначения:

Здесь D – определитель системы, а D x ,D y — определители, получающиеся в результате замены столбца коэффициентов при соответствующем неизвестном столбцом свободных членов. Если D ≠ 0 , то система (2) является определенной, то есть имеет единственное решение. Это решение можно найти по следующим формулам: x 1 =D x /D, y 1 =D y /D , которые называются формулами Крамера. Небольшое напоминание, как вычисляется определитель второго порядка. В определителе различают две диагонали: главную и побочную. Главная диагональ состоит из элементов, взятых по направлению от верхнего левого угла определителя в нижний правый угол. Побочная диагональ – из правого верхнего в нижний левый. Определитель второго порядка равен произведению элементов главной диагонали минус произведение элементов побочной диагонали.



Статьи по теме: