Пересечение прямых по координатам. П.6.3.Как найти точку пересечения двух прямых

  1. Чтобы найти координаты точки пересечения графиков функций нужно приравнять обе функции друг к другу, перенести в левую часть все члена, содержащие $ x $, а в правую остальные и найти корни, полученного уравнения.
  2. Второй способ заключается в том, что нужно составить систему уравнений и решить её путём подстановки одной функции в другую
  3. Третий способ подразумевает графическое построение функций и визуальное определение точки пересечения.

Случай двух линейных функций

Рассмотрим две линейные функции $ f(x) = k_1 x+m_1 $ и $ g(x) = k_2 x + m_2 $. Эти функции называются прямыми. Построить их достаточно легко, нужно взять любые два значения $ x_1 $ и $ x_2 $ и найти $ f(x_1) $ и $ (x_2) $. Затем повторить тоже самое и с функцией $ g(x) $. Далее визуально найти координату точки пересечения графиков функций.

Следует знать, что линейные функции имеют только одну точку пересечения и только тогда, когда $ k_1 \neq k_2 $. Иначе, в случае $ k_1=k_2 $ функции параллельны друг другу, так как $ k $ - это коэффициент угла наклона. Если $ k_1 \neq k_2 $, но $ m_1=m_2 $, тогда точкой пересечения будет $ M(0;m) $. Это правило желательно запомнить для ускоренного решения задач.

Пример 1
Пусть даны $ f(x) = 2x-5 $ и $ g(x)=x+3 $. Найти координаты точки пересечения графиков функций.
Решение

Как это сделать? Так как представлены две линейные функции, то первым делом смотрим на коэффициент угла наклона обеих функций $ k_1 = 2 $ и $ k_2 = 1 $. Замечаем, что $ k_1 \neq k_2 $, поэтому существует одна точка пересечения. Найдём её с помощью уравнения $ f(x)=g(x) $:

$$ 2x-5 = x+3 $$

Переносим слагаемые с $ x $ в левую часть, а остальные в правую:

$$ 2x - x = 3+5 $$

Получили $ x=8 $ абциссу точки пересечения графиков, а теперь найдём ординату. Для этого подставим $ x = 8 $ в любое из уравнений хоть в $ f(x) $, либо в $ g(x) $:

$$ f(8) = 2\cdot 8 - 5 = 16 - 5 = 11 $$

Итак, $ M (8;11) $ - является точкой пересечения графиков двух линейных функций.

Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя!

Ответ
$$ M (8;11) $$

Случай двух нелинейных функций

Пример 3
Найти координаты точки пересечения графиков функций: $ f(x)=x^2-2x+1 $ и $ g(x)=x^2+1 $
Решение

Как быть с двумя нелинейными функциями? Алгоритм простой: приравниваем уравнения друг к другу и находим корни:

$$ x^2-2x+1=x^2+1 $$

Разносим по разным сторонам уравнения члены с $ x $ и без него:

$$ x^2-2x-x^2=1-1 $$

Найдена абцисса искомой точки, но её недостаточно. Ещё нехватает ординаты $ y $. Подставляем $ x = 0 $ в любое из двух уравнений условия задачи. Например:

$$ f(0)=0^2-2\cdot 0 + 1 = 1 $$

$ M (0;1) $ - точка пересечения графиков функций

Ответ
$$ M (0;1) $$

Не прошло и минуты, как я создал новый вёрдовский файл и продолжил столь увлекательную тему. Нужно ловить моменты рабочего настроя, поэтому лирического вступления не будет. Будет прозаическая порка =)

Две прямые пространства могут:

1) скрещиваться;

2) пересекаться в точке ;

3) быть параллельными ;

4) совпадать.

Случай № 1 принципиально отличается от других случаев. Две прямые скрещиваются, если они не лежат в одной плоскости . Поднимите одну руку вверх, а другую руку вытяните вперёд – вот вам и пример скрещивающихся прямых. В пунктах же № 2-4 прямые обязательно лежат в одной плоскости .

Как выяснить взаимное расположение прямых в пространстве?

Рассмотрим две прямые пространства:

– прямую , заданную точкой и направляющим вектором ;
– прямую , заданную точкой и направляющим вектором .

Для лучшего понимания выполним схематический чертёж:

На чертеже в качестве примера изображены скрещивающиеся прямые.

Как разобраться с этими прямыми?

Так как известны точки , то легко найти вектор .

Если прямые скрещиваются , то векторы не компланарны (см. урок Линейная (не) зависимость векторов. Базис векторов ), а, значит, определитель, составленный из их координат, ненулевой. Или, что фактически то же самое, будет отлично от нуля: .

В случаях № 2-4 наша конструкция «падает» в одну плоскость, при этом векторы компланарны , а смешанное произведение линейно зависимых векторов равняется нулю: .

Раскручиваем алгоритм дальше. Предположим, что , следовательно, прямые либо пересекаются, либо параллельны, либо совпадают.

Если направляющие векторы коллинеарны , то прямые либо параллельны, либо совпадают. Финальным гвоздём предлагаю следующий приём: берём какую-либо точку одной прямой и подставляем её координаты в уравнение второй прямой; если координаты «подошли», то прямые совпадают, если «не подошли», то прямые параллельны.

Ход алгоритма незатейлив, но практические примеры всё равно не помешают:

Пример 11

Выяснить взаимное расположение двух прямых

Решение : как и во многих задачах геометрии, решение удобно оформить по пунктам:

1) Вытаскиваем из уравнений точки и направляющие векторы:

2) Найдём вектор:

Таким образом, векторы компланарны, а значит, прямые лежат в одной плоскости и могут пересекаться, быть параллельными или совпадать.

4) Проверим направляющие векторы на коллинеарность.

Составим систему из соответствующих координат данных векторов:

Из каждого уравнения следует, что , следовательно, система совместна, соответствующие координаты векторов пропорциональны, и векторы коллинеарны.

Вывод: прямые параллельны либо совпадают.

5) Выясним, есть ли у прямых общие точки. Возьмём точку , принадлежащую первой прямой, и подставим её координаты в уравнения прямой :

Таким образом, общих точек у прямых нет, и им ничего не остаётся, как быть параллельными.

Ответ :

Интересный пример для самостоятельного решения:

Пример 12

Выяснить взаимное расположение прямых

Это пример для самостоятельного решения. Обратите внимание, что у второй прямой в качестве параметра выступает буква . Логично. В общем случае – это же две различные прямые, поэтому у каждой прямой свой параметр.

И снова призываю не пропускать примеры, пороть буду предлагаемые мной задачи далеко не случайны;-)

Задачи с прямой в пространстве

В заключительной части урока я постараюсь рассмотреть максимальное количество различных задач с пространственными прямыми. При этом будет соблюдён начатый порядок повествования: сначала мы рассмотрим задачи со скрещивающимися прямыми, затем с пересекающимися прямыми, и в конце поговорим о параллельных прямых в пространстве. Однако должен сказать, что некоторые задачи данного урока можно сформулировать сразу для нескольких случаев расположения прямых, и в этой связи разбиение раздела на параграфы несколько условно. Есть более простые примеры, есть более сложные примеры, и, надеюсь, каждый найдёт то, что нужно.

Скрещивающиеся прямые

Напоминаю, что прямые скрещиваются, если не существует плоскости, в которой бы они обе лежали. Когда я продумывал практику, в голову пришла задача-монстр, и сейчас рад представить вашему вниманию дракона с четырьмя головами:

Пример 13

Даны прямые . Требуется:

а) доказать, что прямые скрещиваются;

б) найти уравнения прямой , проходящей через точку перпендикулярно данным прямым;

в) составить уравнения прямой , которая содержит общий перпендикуляр скрещивающихся прямых;

г) найти расстояние между прямыми.

Решение : Дорогу осилит идущий:

а) Докажем, что прямые скрещиваются. Найдём точки и направляющие векторы данных прямых:

Найдём вектор:

Вычислим смешанное произведение векторов :

Таким образом, векторы не компланарны , а значит, прямые скрещиваются, что и требовалось доказать.

Наверное, все уже давно подметили, что для скрещивающихся прямых алгоритм проверки получается короче всего.

б) Найдём уравнения прямой , которая проходит через точку и перпендикулярна прямым . Выполним схематический чертёж:

Для разнообразия я разместил прямую ЗА прямыми , посмотрите, как она немного стёрта в точках скрещивания. Скрещивания? Да, в общем случае прямая «дэ» будет скрещиваться с исходными прямыми. Хотя данный момент нас пока не интересует, надо просто построить перпендикулярную прямую и всё.

Что известно о прямой «дэ»? Известна принадлежащая ей точка . Не хватает направляющего вектора.

По условию прямая должна быть перпендикулярна прямым , а значит, её направляющий вектор будет ортогонален направляющим векторам . Уже знакомый из Примера № 9 мотив, найдём векторное произведение:

Составим уравнения прямой «дэ» по точке и направляющему вектору :

Готово. В принципе, можно сменить знаки в знаменателях и записать ответ в виде , но необходимости в этом нет никакой.

Для проверки необходимо подставить координаты точки в полученные уравнения прямой, затем с помощью скалярного произведения векторов убедиться, что вектор действительно ортогонален направляющим векторам «пэ один» и «пэ два».

Как найти уравнения прямой, содержащей общий перпендикуляр?

в) Эта задачка посложнее будет. Чайникам рекомендую пропустить данный пункт, не хочу охлаждать вашу искреннюю симпатию к аналитической геометрии =) Кстати, и более подготовленным читателям, возможно, лучше тоже повременить, дело в том, что по сложности пример надо бы поставить последним в статье, но по логике изложения он должен располагаться здесь.

Итак, требуется найти уравнения прямой , которая содержит общий перпендикуляр скрещивающихся прямых.

– это отрезок, соединяющий данные прямые и перпендикулярный данным прямым:

Вот наш красавец: – общий перпендикуляр скрещивающихся прямых . Он единственный. Другого такого нет. Нам же требуется составить уравнения прямой , которая содержит данный отрезок.

Что известно о прямой «эм»? Известен её направляющий вектор , найденный в предыдущем пункте. Но, к сожалению, мы не знаем ни одной точки, принадлежащей прямой «эм», не знаем и концов перпендикуляра – точек . Где эта перпендикулярная прямая пересекает две исходные прямые? В Африке, в Антарктиде? Из первоначального обзора и анализа условия вообще не видно, как решать задачу…. Но есть хитрый ход, связанный с использованием параметрических уравнений прямой.

Решение оформим по пунктам:

1) Перепишем уравнения первой прямой в параметрической форме:

Рассмотрим точку . Координат мы не знаем. НО . Если точка принадлежит данной прямой, то её координатам соответствует , обозначим его через . Тогда координаты точки запишутся в виде:

Жизнь налаживается, одна неизвестная – всё-таки не три неизвестных.

2) Такое же надругательство нужно осуществить над второй точкой. Перепишем уравнения второй прямой в параметрическом виде:

Если точка принадлежит данной прямой, то при вполне конкретном значении её координаты должны удовлетворять параметрическим уравнениям:

Или:

3) Вектор , как и ранее найденный вектор , будет направляющим вектором прямой . Как составить вектор по двум точкам, рассматривалось в незапамятные времена на уроке Векторы для чайников . Сейчас отличие состоит в том, что координаты векторов записаны с неизвестными значениям параметров. Ну и что? Никто же не запрещает из координат конца вектора вычесть соответствующие координаты начала вектора.

Есть две точки: .

Находим вектор:

4) Поскольку направляющие векторы коллинеарны, то один вектор линейно выражается через другой с некоторым коэффициентом пропорциональности «лямбда»:

Или покоординатно:

Получилась самая, что ни на есть обычная система линейных уравнений с тремя неизвестными , которая стандартно разрешима, например, методом Крамера . Но здесь есть возможность отделаться малой кровью, из третьего уравнения выразим «лямбду» и подставим её в первое и второе уравнение:

Таким образом: , а «лямбда» нам не потребуется. То, что значения параметров получились одинаковыми – чистая случайность.

5) Небо полностью проясняется, подставим найденные значения в наши точки:

Направляющий вектор особо не нужен, так как уже найден его коллега .

После длинного пути всегда интересно выполнить проверку.

:

Получены верные равенства.

Подставим координаты точки в уравнения :

Получены верные равенства.

6) Заключительный аккорд: составим уравнения прямой по точке (можно взять ) и направляющему вектору :

В принципе, можно подобрать «хорошую» точку с целыми координатами, но это уже косметика.

Как найти расстояние между скрещивающимися прямыми?

г) Срубаем четвёртую голову дракона.

Способ первый . Даже не способ, а небольшой частный случай. Расстояние между скрещивающимися прямыми равно длине их общего перпендикуляра: .

Крайние точки общего перпендикуляра найдены в предыдущем пункте, и задача элементарна:

Способ второй . На практике чаще всего концы общего перпендикуляра неизвестны, поэтому используют другой подход. Через две скрещивающиеся прямые можно провести параллельные плоскости, и расстояние между данными плоскостями равно расстоянию между данными прямыми. В частности, между этими плоскостями и торчит общий перпендикуляр.

В курсе аналитической геометрии из вышесказанных соображений выведена формула нахождения расстояния между скрещивающимися прямыми:
(вместо наших точек «эм один, два» можно взять произвольные точки прямых).

Смешанное произведение векторов уже найдено в пункте «а»: .

Векторное произведение векторов найдено в пункте «бэ»: , вычислим его длину:

Таким образом:

Гордо выложим трофеи в один ряд:

Ответ :
а) , значит, прямые скрещиваются, что и требовалось доказать;
б) ;
в) ;
г)

Что ещё можно рассказать про скрещивающиеся прямые? Между ними определён угол. Но универсальную формулу угла рассмотрим в следующем параграфе:

Пересекающиеся прямые пространства обязательно лежат в одной плоскости:

Первая мысль – всеми силами навалиться на точку пересечения . И сразу же подумалось, зачем себе отказывать в правильных желаниях?! Давайте навалимся на неё прямо сейчас!

Как найти точку пересечения пространственных прямых?

Пример 14

Найти точку пересечения прямых

Решение : Перепишем уравнения прямых в параметрической форме:

Данная задача подробно рассматривалась в Примере № 7 данного урока (см. Уравнения прямой в пространстве ). А сами прямые, к слову, я взял из Примера № 12. Врать не буду, новые лень придумывать.

Приём решения стандартен и уже встречался, когда мы вымучивали уравнения общего перпендикуляра скрещивающихся прямых.

Точка пересечения прямых принадлежит прямой , поэтому её координаты удовлетворяют параметрическим уравнениям данной прямой, и им соответствует вполне конкретное значение параметра :

Но эта же точка принадлежит и второй прямой, следовательно:

Приравниваем соответствующие уравнения и проводим упрощения:

Получена система трёх линейных уравнений с двумя неизвестными. Если прямые пересекаются (что доказано в Примере № 12), то система обязательно совместна и имеет единственное решение. Её можно решить методом Гаусса , но уж таким детсадовским фетишизмом грешить не будем, поступим проще: из первого уравнения выразим «тэ нулевое» и подставим его во второе и третье уравнение:

Последние два уравнения получились, по сути, одинаковыми, и из них следует, что . Тогда:

Подставим найденное значение параметра в уравнения:

Ответ :

Для проверки подставим найденное значение параметра в уравнения:
Получены те же самые координаты, что и требовалось проверить. Дотошные читатели могу подставить координаты точки и в исходные канонические уравнения прямых.

Кстати, можно было поступить наоборот: точку найти через «эс нулевое», а проверить – через «тэ нулевое».

Известная математический примета гласит: там, где обсуждают пересечение прямых, всегда пахнет перпендикулярами.

Как построить прямую пространства, перпендикулярную данной?

(прямые пересекаются)

Пример 15

а) Составить уравнения прямой, проходящей через точку перпендикулярно прямой (прямые пересекаются).

б) Найти расстояние от точки до прямой .

Примечание : оговорка «прямые пересекаются» – существенна . Через точку
можно провести бесконечно много перпендикулярных прямых, которые будут скрещиваться с прямой «эль». Единственное решение имеет место в случае, когда через данную точку проводится прямая, перпендикулярная двум заданным прямым (см. Пример № 13, пункт «б»).

а) Решение : Неизвестную прямую обозначим через . Выполним схематический чертёж:

Что известно о прямой ? По условию дана точка . Для того, чтобы составить уравнения прямой, необходимо найти направляющий вектор. В качестве такого вектора вполне подойдёт вектор , им и займемся. Точнее, возьмём за шкирку неизвестный конец вектора.

1) Вытащим из уравнений прямой «эль» её направляющий вектор , а сами уравнения перепишем в параметрической форме:

Многие догадались, сейчас уже в третий раз за урок фокусник достанет белого лебедя из шляпы. Рассмотрим точку с неизвестными координатами. Поскольку точка , то её координаты удовлетворяют параметрическим уравнениям прямой «эль» и им соответствует конкретное значение параметра:

Или одной строкой:

2) По условию прямые должны быть перпендикулярны, следовательно, их направляющие векторы – ортогональны. А если векторы ортогональны, то их скалярное произведение равно нулю:

Что получилось? Простейшее линейное уравнение с одной неизвестной:

3) Значение параметра известно, найдём точку:

И направляющий вектор:
.

4) Уравнения прямой составим по точке и направляющему вектору :

Знаменатели пропорции получились дробные, и это как раз тот случай, когда от дробей уместно избавиться. Я просто умножу их на –2:

Ответ :

Примечание : более строгая концовка решения оформляется так: составим уравнения прямой по точке и направляющему вектору . Действительно, если вектор является навправляющим вектором прямой, то коллинеарный ему вектор , естественно, тоже будет направляющим вектором данной прямой.

Проверка состоит из двух этапов:

1) проверяем направляющие векторы прямых на ортогональность;

2) подставляем координаты точки в уравнения каждой прямой, они должны «подходить» и там и там.

О типовых действиях говорилось очень много, поэтому я выполнил проверку на черновике.

Кстати, запамятовал ещё пунктик – построить точку «зю» симметричную точке «эн» относительно прямой «эль». Впрочем, есть хороший «плоский аналог», с которым можно ознакомиться в статье Простейшие задачи с прямой на плоскости . Здесь же всё отличие будет в дополнительной «зетовой» координате.

Как найти расстояние от точки до прямой в пространстве?

б) Решение : Найдём расстояние от точки до прямой .

Способ первый . Данное расстояние в точности равно длине перпендикуляра : . Решение очевидно: если известны точки , то:

Способ второй . В практических задачах основание перпендикуляра частенько тайна за семью печатями, поэтому рациональнее пользоваться готовой формулой.

Расстояние от точки до прямой выражается формулой:
, где – направляющий вектор прямой «эль», а – произвольная точка, принадлежащая данной прямой.

1) Из уравнений прямой достаём направляющий вектор и самую доступную точку .

2) Точка известна из условия, заточим вектор:

3) Найдём векторное произведение и вычислим его длину:

4) Рассчитаем длину направляющего вектора:

5) Таким образом, расстояние от точки до прямой:

Перпендикулярная прямая

Это задача наверное одна из самых популярных и востребованных в школьных учебниках. Задачи, основанные на эту тему многообразны. Это и определение точки пересечения двух прямых, это и определение уравнения прямой, проходящяя через точку на исходной прямой под каким либо углом.

Эту тему мы раскроем, используя в своих вычислениях данные полученные с помощью

Именно там было рассмотрено преобразование общего уравнения прямой, в уравнение с угловым коэффициентом и обратно, и определения остальных парметров прямой по заданным условиям.

Что же нам не хвататет для того, что бы решать те задачи, которым посвящена эта страница?

1. Формулы вычисления одного из углов между двумя пересекающимися прямыми.

Если мы имеем две прямые которые заданы уравнениями:

то один из углов вычисляется так:

2. Уравнение прямой с угловым коэффициентом, проходящяя через заданную точку

Из формулы 1, мы можем увидеть два пограничных состояния

а) когда тогда и следовательно эти две заданные прямые паралельны (или совпадают)

б) когда , тогда , и следовательно эти прямые перпендикулярны, то есть пересекаются под прямым углом.

Какие могут быть исходные данные для решения подобных задач, кроме заданной прямой?

Точка на прямой и угол под которым вторая прямая его пересекает

Второе уравнение прямой

Какие же задачи может позволить решить бот?

1. Заданы две прямые (явным или не явным образом например по двум точкам). Вычислить точку пересечения и углы по которыми они пересекаются.

2. Задана одна прямая, точка на прямой и один угол. Определить уравнение прямой, перескающую заданную под указанным углом

Примеры

Две прямые заданы уравнениями. Найти точку пересечения этих прямых и углы под которым они пересекаются

line_p A=11;B=-5;C=6,k=3/7;b=-5

Получаем следующий результат

Уравнение первой прямой

y = 2.2 x + (1.2)

Уравнение второй прямой

y = 0.4285714285714 x + (-5)

Угол пересечения двух прямых(в градусах)

-42.357454705937

Точка пересечения двух прямых

x = -3.5

y = -6.5


Не забудьте что параметры двух линий разделяются запятой, а параметры каждой линии точкой с запятой.

Прямая проходит через две точки (1:-4) и (5:2) . Найти уравнение прямой, которая проходит через точку (-2:-8) и пересекает исходную прямую под углом 30 градусов.

Одна прямая нам известна, так как известны две точки через которые она проходит.

Осталось определить уравнение второй прямой. Одна точка нам известна, а вместо второй указан угол, под которым первая прямая пересекает вторую.

Вроде все известно, но тут главное не ошибится. Речь идет об угле(30 градусов) не между осью абсцисс и линией, а между первой и второй линией.

Для этого мы постим так. Определим параметры первой линии, и узнаем под каким углом она пересекает ось абсцисс.

line xa=1;xb=5;ya=-4;yb=2

Общее уравнение Ax+By+C = 0

Коэффициент А = -6

Коэффициент B = 4

Коэффициент C = 22

Коэффициент a= 3.6666666666667

Коэффициент b = -5.5

Коэффициент k = 1.5

Угол наклона к оси (в градусах) f = 56.309932474019

Коэффициент p = 3.0508510792386

Коэффициент q = 2.5535900500422

Расстояние между точками=7.211102550928

Видим что первая линия пересекает ось под углом 56.309932474019 градусов.

В искходных данных не сказано как именно пересекает вторая линия, первую. Можно ведь построить две линии удовлетворяющих условиям, первая повернутая на 30 градусов ПО часовой стрелке, а вторая на 30 градусов ПРОТИВ часовой стрелке.

Давайте их и посчитаем

Если вторая линия повернута на 30 градусов ПРОТИВ часовой стрелке, то вторая линия будет иметь градус пересечения с осью абсцисс 30+56.309932474019 = 86 .309932474019 градусов

line_p xa=-2;ya=-8;f=86.309932474019

Параметры прямой линии по заданным параметрам

Общее уравнение Ax+By+C = 0

Коэффициент А = 23.011106998916

Коэффициент B = -1.4840558255286

Коэффициент C = 34.149767393603

Уравнение прямой в отрезках x/a+y/b = 1

Коэффициент a= -1.4840558255286

Коэффициент b = 23.011106998916

Уравнение прямой c угловым коэфициентом y = kx + b

Коэффициент k = 15.505553499458

Угол наклона к оси (в градусах) f = 86.309932474019

Нормальное уравнение прямой x*cos(q)+y*sin(q)-p = 0

Коэффициент p = -1.4809790664999

Коэффициент q = 3.0771888256405

Расстояние между точками=23.058912962428

Расстояние от точки до прямой li =

то есть наше уравнение второй линии есть y=15.505553499458x + 23.011106998916

Точка пересечения прямых

Пусть нам даны две прямые, заданные своими коэффициентами и . Требуется найти их точку пересечения, или выяснить, что прямые параллельны.

Решение

Если две прямые не параллельны, то они пересекаются. Чтобы найти точку пересечения, достаточно составить из двух уравнений прямых систему и решить её:

Пользуясь формулой Крамера, сразу находим решение системы, которое и будет искомой точкой пересечения :



Если знаменатель нулевой, т.е.

то система решений не имеет (прямые параллельны и не совпадают) или имеет бесконечно много (прямые совпадают ). Если необходимо различить эти два случая, надо проверить, что коэффициенты прямых пропорциональны с тем же коэффициентом пропорциональности, что и коэффициенты и , для чего достаточно посчитать два определителя, если они оба равны нулю, то прямые совпадают:

Реализация

struct pt {double x, y;}; struct line {double a, b, c;}; constdouble EPS =1e-9; double det (double a, double b, double c, double d){return a * d — b * c;} bool intersect (line m, line n, pt & res){double zn = det (m.a, m.b, n.a, n.b);if(abs(zn)< EPS)returnfalse; res.x=- det (m.c, m.b, n.c, n.b)/ zn; res.y=- det (m.a, m.c, n.a, n.c)/ zn;returntrue;} bool parallel (line m, line n){returnabs(det (m.a, m.b, n.a, n.b))< EPS;} bool equivalent (line m, line n){returnabs(det (m.a, m.b, n.a, n.b))< EPS &&abs(det (m.a, m.c, n.a, n.c))< EPS &&abs(det (m.b, m.c, n.b, n.c))< EPS;}

Урок из серии «Геометрические алгоритмы »

Здравствуйте, дорогой читатель.

Совет 1: Как найти координаты точки пересечения двух прямых

Напишем еще три новые функции.

Функция LinesCross() будет определять, пересекаются ли два отрезка . В ней взаимное расположение отрезков определяется с помощью векторных произведений. Для вычисления векторных произведений напишем функцию – VektorMulti().

Функция RealLess() будет использоваться для реализации операции сравнения “<” (строго меньше) для вещественных чисел.

Задача1. Два отрезка заданы своими координатами. Составить программу, которая определяет, пересекаются ли эти отрезки , не находя точку пересечения.

Решение
. Второй задан точками .



Рассмотрим отрезок и точки и .

Точка лежит слева от прямой , для нее векторное произведение > 0, так как векторы положительно ориентированы.

Точка расположена справа от прямой, для нее векторное произведение < 0, так как векторы отрицательно ориентированы.

Для того чтобы точки и , лежали по разные стороны от прямой , достаточно, чтобы выполнялось условие < 0 (векторные произведения имели противоположные знаки).

Аналогичные рассуждения можно провести для отрезка и точек и .

Итак, если , то отрезки пересекаются.

Для проверки этого условия используется функцию LinesCross(), а для вычисления векторных произведений – функция VektorMulti().

ax, ay – координаты первого вектора,

bx, by – координаты второго вектора.

Program geometr4; {Пересекаются ли 2 отрезка?} Const _Eps: Real=1e-4; {точность вычслений} var x1,y1,x2,y2,x3,y3,x4,y4: real; var v1,v2,v3,v4: real;function RealLess(Const a, b: Real): Boolean; {Строго меньше} begin RealLess:= b-a> _Eps end; {RealLess}function VektorMulti(ax,ay,bx,by:real): real; {ax,ay — координаты a bx,by — координаты b } begin vektormulti:= ax*by-bx*ay; end;Function LinesCross(x1,y1,x2,y2,x3,y3,x4,y4:real): boolean; {Пересекаются ли отрезки?} begin v1:=vektormulti(x4-x3,y4-y3,x1-x3,y1-y3); v2:=vektormulti(x4-x3,y4-y3,x2-x3,y2-y3); v3:=vektormulti(x2-x1,y2-y1,x3-x1,y3-y1); v4:=vektormulti(x2-x1,y2-y1,x4-x1,y4-y1); if RealLess(v1*v2,0) and RealLess(v3*v4,0) {v1v2<0 и v3v4<0, отрезки пересекаются} then LinesCross:= true else LinesCross:= false end; {LinesCross}begin {main} writeln(‘Введите координаты отрезков: x1,y1,x2,y2,x3,y3,x4,y4’); readln(x1,y1,x2,y2,x3,y3,x4,y4); if LinesCross(x1,y1,x2,y2,x3,y3,x4,y4) then writeln (‘Да’) else writeln (‘Нет’) end.

Результаты выполнения программы:

Введите координаты отрезков: -1 1 2 2.52 2 1 -1 3
Да.

Мы написали программу, определяющую, пересекаются ли отрезки, заданные своими координатами.

На следующем уроке мы составим алгоритм, с помощью которого можно будет определить, лежит ли точка внутри треугольника.

Уважаемый читатель.

Вы уже познакомились с несколькими уроками из серии «Геометрические алгоритмы». Все ли доступно написано? Я буду Вам очень признательна, если Вы оставите отзыв об этих уроках. Возможно, что-то нужно еще доработать.

С уважением, Вера Господарец.

Пусть даны два отрезка. Первый задан точками P 1 (x 1 ;y 1) и P 2 (x 2 ;y 2) . Второй задан точками P 3 (x 3 ;y 3) и P 4 (x 4 ;y 4) .

Взаимное расположение отрезков можно проверить с помощью векторных произведений:

Рассмотрим отрезок P 3 P 4 и точки P 1 и P 2 .

Точка P 1 лежит слева от прямой P 3 P 4 , для нее векторное произведение v 1 > 0 , так как векторы положительно ориентированы.
Точка P 2 расположена справа от прямой, для нее векторное произведение v 2 < 0 , так как векторы отрицательно ориентированы.

Для того чтобы точки P 1 и P 2 лежали по разные стороны от прямой P 3 P 4 , достаточно, чтобы выполнялось условие v 1 v 2 < 0 (векторные произведения имели противоположные знаки).

Аналогичные рассуждения можно провести для отрезка P 1 P 2 и точек P 3 и P 4 .

Итак, если v 1 v 2 < 0 и v 3 v 4 < 0 , то отрезки пересекаются.

Векторное произведение двух векторов вычисляется по формуле:

где:
ax , ay — координаты первого вектора,
bx , by — координаты второго вектора.

Уравнение прямой, проходящей через две различные точки, заданные своими координатами.

Пусть на прямой заданы две не совпадающие точки:P 1 с координатами (x 1 ;y 1) и P 2 с координатами (x 2 ; y 2) .

Пересечение прямых

Соответственно вектор с началом в точке P 1 и концом в точке P 2 имеет координаты (x 2 -x 1 , y 2 -y 1) . Если P(x, y) – произвольная точка на прямой, то координаты вектора P 1 P равны (x — x 1 , y – y 1).

С помощью векторного произведения условие коллинеарности векторов P 1 P и P 1 P 2 можно записать так:
|P 1 P,P 1 P 2 |=0 , т.е. (x-x 1)(y 2 -y 1)-(y-y 1)(x 2 -x 1)=0
или
(y 2 -y 1)x + (x 1 -x 2)y + x 1 (y 1 -y 2) + y 1 (x 2 -x 1) = 0

Последнее уравнение переписывается следующим образом:
ax + by + c = 0, (1)
где
a = (y 2 -y 1),
b = (x 1 -x 2),
c = x 1 (y 1 -y 2) + y 1 (x 2 -x 1)

Итак, прямую можно задать уравнением вида (1).

Как найти точку пересечения прямых?
Очевидное решение состоит в том, чтобы решить систему уравнений прямых:

ax 1 +by 1 =-c 1
ax 2 +by 2 =-c 2
(2)

Ввести обозначения:

Здесь D – определитель системы, а D x ,D y — определители, получающиеся в результате замены столбца коэффициентов при соответствующем неизвестном столбцом свободных членов. Если D ≠ 0 , то система (2) является определенной, то есть имеет единственное решение. Это решение можно найти по следующим формулам: x 1 =D x /D, y 1 =D y /D , которые называются формулами Крамера. Небольшое напоминание, как вычисляется определитель второго порядка. В определителе различают две диагонали: главную и побочную. Главная диагональ состоит из элементов, взятых по направлению от верхнего левого угла определителя в нижний правый угол. Побочная диагональ – из правого верхнего в нижний левый. Определитель второго порядка равен произведению элементов главной диагонали минус произведение элементов побочной диагонали.

Для того, чтобы решить геометрическую задачу методом координат, необходима точка пересечения, координаты которой используются при решении. Возникает ситуация, когда требуется искать координаты пересечения двух прямых на плоскости или определить координаты тех же прямых в пространстве. Данная статья рассматривает случаи нахождения координат точек, где пересекаются заданные прямые.

Yandex.RTB R-A-339285-1

Необходимо дать определение точкам пересечения двух прямых.

Раздел взаимного расположения прямых на плоскости показывает, что они могут совпадать, быть параллельными, пересекаться в одной общей точке или скрещивающимися. Две прямые, находящиеся в пространстве, называют пересекающимися, если они имеют одну общую точку.

Определение точки пересечения прямых звучит так:

Определение 1

Точка, в которой пересекаются две прямые, называют их точкой пересечения. Иначе говоря, что точка пересекающихся прямых и есть точка пересечения.

Рассмотрим на рисунке, приведенном ниже.

Перед нахождением координат точки пересечения двух прямых, необходимо рассмотреть предлагаемый ниже пример.

Если на плоскости имеется система координат О х у, то задаются две прямые a и b . Прямой a соответствует общее уравнение вида A 1 x + B 1 y + C 1 = 0 , для прямой b - A 2 x + B 2 y + C 2 = 0 . Тогда M 0 (x 0 , y 0) является некоторой точкой плоскости необходимо выявить, будет ли точка М 0 являться точкой пересечения этих прямых.

Чтобы решить поставленную задачу, необходимо придерживаться определения. Тогда прямые должны пересекаться в точке, координаты которой являются решением заданных уравнений A 1 x + B 1 y + C 1 = 0 и A 2 x + B 2 y + C 2 = 0 . Значит, координаты точки пересечения подставляются во все заданные уравнения. Если они при подстановке дают верное тождество, тогда M 0 (x 0 , y 0) считается их точкой пересечения.

Пример 1

Даны две пересекающиеся прямые 5 x - 2 y - 16 = 0 и 2 x - 5 y - 19 = 0 . Будет ли точка М 0 с координатами (2 , - 3) являться точкой пересечения.

Решение

Чтобы пересечение прямых было действительным, необходимо, чтобы координаты точки М 0 удовлетворяли уравнениям прямых. Это проверяется при помощи их подстановки. Получаем, что

5 · 2 - 2 · (- 3) - 16 = 0 ⇔ 0 = 0 2 · 2 - 5 · (- 3) - 19 = 0 ⇔ 0 = 0

Оба равенства верные, значит М 0 (2 , - 3) является точкой пересечения заданных прямых.

Изобразим данное решение на координатной прямой рисунка, приведенного ниже.

Ответ: заданная точка с координатами (2 , - 3) будет являться точкой пересечения заданных прямых.

Пример 2

Пересекутся ли прямые 5 x + 3 y - 1 = 0 и 7 x - 2 y + 11 = 0 в точке M 0 (2 , - 3) ?

Решение

Для решения задачи необходимо подставить координаты точки во все уравнения. Получим, что

5 · 2 + 3 · (- 3) - 1 = 0 ⇔ 0 = 0 7 · 2 - 2 · (- 3) + 11 = 0 ⇔ 31 = 0

Второе равенство не является верным, значит, что заданная точка не принадлежит прямой 7 x - 2 y + 11 = 0 . Отсюда имеем, что точка М 0 не точка пересечения прямых.

Чертеж наглядно показывает, что М 0 - это не точка пересечения прямых. Они имеют общую точку с координатами (- 1 , 2) .

Ответ: точка с координатами (2 , - 3) не является точкой пересечения заданных прямых.

Переходим к нахождению координат точек пересечения двух прямых при помощи заданных уравнений на плоскости.

Задаются две пересекающиеся прямые a и b уравнениями вида A 1 x + B 1 y + C 1 = 0 и A 2 x + B 2 y + C 2 = 0 , расположенных в О х у. При обозначении точки пересечения М 0 получим, что следует продолжить поиск координат по уравнениям A 1 x + B 1 y + C 1 = 0 и A 2 x + B 2 y + C 2 = 0 .

Из определения очевидно, что М 0 является общей точкой пересечения прямых. В этом случае ее координаты должны удовлетворять уравнениям A 1 x + B 1 y + C 1 = 0 и A 2 x + B 2 y + C 2 = 0 . Иными словами это и есть решение полученной системы A 1 x + B 1 y + C 1 = 0 A 2 x + B 2 y + C 2 = 0 .

Значит, для нахождения координат точки пересечения, необходимо все уравнения добавить в систему и решить ее.

Пример 3

Заданы две прямые x - 9 y + 14 = 0 и 5 x - 2 y - 16 = 0 на плоскости. необходимо найти их пересечение.

Решение

Данные по условию уравнения необходимо собрать в систему, после чего получим x - 9 y + 14 = 0 5 x - 2 y - 16 = 0 . Чтобы решить его, разрешается первое уравнение относительно x , подставляется выражение во второе:

x - 9 y + 14 = 0 5 x - 2 y - 16 = 0 ⇔ x = 9 y - 14 5 x - 2 y - 16 = 0 ⇔ ⇔ x = 9 y - 14 5 · 9 y - 14 - 2 y - 16 = 0 ⇔ x = 9 y - 14 43 y - 86 = 0 ⇔ ⇔ x = 9 y - 14 y = 2 ⇔ x = 9 · 2 - 14 y = 2 ⇔ x = 4 y = 2

Получившиеся числа являются координатами, которые необходимо было найти.

Ответ: M 0 (4 , 2) является точкой пересечения прямых x - 9 y + 14 = 0 и 5 x - 2 y - 16 = 0 .

Поиск координат сводится к решению системы линейных уравнений. Если по условию дан другой вид уравнения, тогда следует привести его к нормальному виду.

Пример 4

Определить координаты точек пересечения прямых x - 5 = y - 4 - 3 и x = 4 + 9 · λ y = 2 + λ , λ ∈ R .

Решение

Для начала необходимо привести уравнения к общему виду. Тогда получаем, что x = 4 + 9 · λ y = 2 + λ , λ ∈ R преобразуется таким образом:

x = 4 + 9 · λ y = 2 + λ ⇔ λ = x - 4 9 λ = y - 2 1 ⇔ x - 4 9 = y - 2 1 ⇔ ⇔ 1 · (x - 4) = 9 · (y - 2) ⇔ x - 9 y + 14 = 0

После чего беремся за уравнение канонического вида x - 5 = y - 4 - 3 и преобразуем. Получаем, что

x - 5 = y - 4 - 3 ⇔ - 3 · x = - 5 · y - 4 ⇔ 3 x - 5 y + 20 = 0

Отсюда имеем, что координаты – это точка пересечения

x - 9 y + 14 = 0 3 x - 5 y + 20 = 0 ⇔ x - 9 y = - 14 3 x - 5 y = - 20

Применим метод Крамера для нахождения координат:

∆ = 1 - 9 3 - 5 = 1 · (- 5) - (- 9) · 3 = 22 ∆ x = - 14 - 9 - 20 - 5 = - 14 · (- 5) - (- 9) · (- 20) = - 110 ⇒ x = ∆ x ∆ = - 110 22 = - 5 ∆ y = 1 - 14 3 - 20 = 1 · (- 20) - (- 14) · 3 = 22 ⇒ y = ∆ y ∆ = 22 22 = 1

Ответ: M 0 (- 5 , 1) .

Имеется еще способ для нахождения координат точки пересечения прямых, находящихся на плоскости. Он применим, когда одна из прямых задается параметрическими уравнениями, имеющими вид x = x 1 + a x · λ y = y 1 + a y · λ , λ ∈ R . Тогда вместо значения x подставляется x = x 1 + a x · λ и y = y 1 + a y · λ , где получим λ = λ 0 , соответствующее точке пересечения, имеющей координаты x 1 + a x · λ 0 , y 1 + a y · λ 0 .

Пример 5

Определить координаты точки пересечения прямой x = 4 + 9 · λ y = 2 + λ , λ ∈ R и x - 5 = y - 4 - 3 .

Решение

Необходимо выполнить подстановку в x - 5 = y - 4 - 3 выражением x = 4 + 9 · λ , y = 2 + λ , тогда получим:

4 + 9 · λ - 5 = 2 + λ - 4 - 3

При решении получаем, что λ = - 1 . Отсюда следует, что имеется точка пересечения между прямыми x = 4 + 9 · λ y = 2 + λ , λ ∈ R и x - 5 = y - 4 - 3 . Для вычисления координат необходимо подставить выражение λ = - 1 в параметрическое уравнение. Тогда получаем, что x = 4 + 9 · (- 1) y = 2 + (- 1) ⇔ x = - 5 y = 1 .

Ответ: M 0 (- 5 , 1) .

Для полного понимания темы, необходимо знать некоторые нюансы.

Предварительно необходимо понять расположение прямых. При их пересечении мы найдем координаты, в других случаях решения существовать не будет. Чтобы не делать эту проверку, можно составлять систему вида A 1 x + B 1 y + C 1 = 0 A 2 x + B 2 + C 2 = 0 При наличии решения делаем вывод о том, что прямые пересекаются. Если решение отсутствует, то они параллельны. Когда система имеет бесконечное множество решений, тогда говорят, что они совпадают.

Пример 6

Даны прямые x 3 + y - 4 = 1 и y = 4 3 x - 4 . Определить, имеют ли они общую точку.

Решение

Упрощая заданные уравнения, получаем 1 3 x - 1 4 y - 1 = 0 и 4 3 x - y - 4 = 0 .

Следует собрать уравнения в систему для последующего решения:

1 3 x - 1 4 y - 1 = 0 1 3 x - y - 4 = 0 ⇔ 1 3 x - 1 4 y = 1 4 3 x - y = 4

Отсюда видно, что уравнения выражаются друг через друга, тогда получим бесконечное множество решений. Тогда уравнения x 3 + y - 4 = 1 и y = 4 3 x - 4 определяют одну и ту же прямую. Поэтому нет точек пересечения.

Ответ: заданные уравнения определяют одну и ту же прямую.

Пример 7

Найти координаты точки пересекающихся прямых 2 x + (2 - 3) y + 7 = 0 и 2 3 + 2 x - 7 y - 1 = 0 .

Решение

По условию возможно такое, прямые не будут пересекаться. Необходимо составить систему уравнений и решать. Для решения необходимо использовать метод Гаусса, так как с его помощью есть возможность проверить уравнение на совместимость. Получаем систему вида:

2 x + (2 - 3) y + 7 = 0 2 (3 + 2) x - 7 y - 1 = 0 ⇔ 2 x + (2 - 3) y = - 7 2 (3 + 2) x - 7 y = 1 ⇔ ⇔ 2 x + 2 - 3 y = - 7 2 (3 + 2) x - 7 y + (2 x + (2 - 3) y) · (- (3 + 2)) = 1 + - 7 · (- (3 + 2)) ⇔ ⇔ 2 x + (2 - 3) y = - 7 0 = 22 - 7 2

Получили неверное равенство, значит система не имеет решений. Делаем вывод, что прямые являются параллельными. Точек пересечения нет.

Второй способ решения.

Для начала нужно определить наличие пересечения прямых.

n 1 → = (2 , 2 - 3) является нормальным вектором прямой 2 x + (2 - 3) y + 7 = 0 , тогда вектор n 2 → = (2 (3 + 2) , - 7 - нормальный вектор для прямой 2 3 + 2 x - 7 y - 1 = 0 .

Необходимо выполнить проверку коллинеарности векторов n 1 → = (2 , 2 - 3) и n 2 → = (2 (3 + 2) , - 7) . Получим равенство вида 2 2 (3 + 2) = 2 - 3 - 7 . Оно верное, потому как 2 2 3 + 2 - 2 - 3 - 7 = 7 + 2 - 3 (3 + 2) 7 (3 + 2) = 7 - 7 7 (3 + 2) = 0 . Отсюда следует, что векторы коллинеарны. Значит, прямые являются параллельными и не имеют точек пересечения.

Ответ: точек пересечения нет, прямые параллельны.

Пример 8

Найти координаты пересечения заданных прямых 2 x - 1 = 0 и y = 5 4 x - 2 .

Решение

Для решения составляем систему уравнений. Получаем

2 x - 1 = 0 5 4 x - y - 2 = 0 ⇔ 2 x = 1 5 4 x - y = 2

Найдем определитель основной матрицы. Для этого 2 0 5 4 - 1 = 2 · (- 1) - 0 · 5 4 = - 2 . Так как он не равен нулю, система имеет 1 решение. Отсюда следует, что прямые пересекаются. Решим систему для нахождения координат точек пересечения:

2 x = 1 5 4 x - y = 2 ⇔ x = 1 2 4 5 x - y = 2 ⇔ x = 1 2 5 4 · 1 2 - y = 2 ⇔ x = 1 2 y = - 11 8

Получили, что точка пересечения заданных прямых имеет координаты M 0 (1 2 , - 11 8) .

Ответ: M 0 (1 2 , - 11 8) .

Нахождения координат точки пересечения двух прямых в пространстве

Таким же образом находятся точки пересечения прямых пространства.

Когда заданы прямые a и b в координатной плоскости О х у z уравнениями пересекающихся плоскостей, то имеется прямая a , которая может быть определена при помощи заданной системы A 1 x + B 1 y + C 1 z + D 1 = 0 A 2 x + B 2 y + C 2 z + D 1 = 0 а прямая b - A 3 x + B 3 y + C 3 z + D 3 = 0 A 4 x + B 4 y + C 4 z + D 4 = 0 .

Когда точка М 0 является точкой пересечения прямых, тогда ее координаты должны быть решениями обоих уравнений. Получим линейные уравнения в системе:

A 1 x + B 1 y + C 1 z + D 1 = 0 A 2 x + B 2 y + C 2 z + D 2 = 0 A 3 x + B 3 y + C 3 z + D 3 = 0 A 4 x + B 4 y + C 4 z + D 4 = 0

Рассмотрим подобные задания на примерах.

Пример 9

Найти координаты точки пересечения заданных прямых x - 1 = 0 y + 2 z + 3 = 0 и 3 x + 2 y + 3 = 0 4 x - 2 z - 4 = 0

Решение

Составляем систему x - 1 = 0 y + 2 z + 3 = 0 3 x + 2 y + 3 = 0 4 x - 2 z - 4 = 0 и решим ее. Чтобы найти координаты, необходимо решать через матрицу. Тогда получим основную матрицу вида   A = 1 0 0 0 1 2 3 2 0 4 0 - 2 и расширенную T = 1 0 0 1 0 1 2 - 3 4 0 - 2 4 . Определяем ранг матрицы по Гауссу.

Получаем, что

1 = 1 ≠ 0 , 1 0 0 1 = 1 ≠ 0 , 1 0 0 0 1 2 3 2 0 = - 4 ≠ 0 , 1 0 0 1 0 1 2 - 3 3 2 0 - 3 4 0 - 2 4 = 0

Отсюда следует, что ранг расширенной матрицы имеет значение 3 . Тогда система уравнений x - 1 = 0 y + 2 z + 3 = 0 3 x + 2 y + 3 = 0 4 x - 27 - 4 = 0 в результате дает только одно решение.

Базисный минор имеет определитель 1 0 0 0 1 2 3 2 0 = - 4 ≠ 0 , тогда последнее уравнение не подходит. Получим, что x - 1 = 0 y + 2 z + 3 = 0 3 x + 2 y + 3 = 0 4 x - 2 z - 4 = 0 ⇔ x = 1 y + 2 z = - 3 3 x + 2 y - 3 . Решение системы x = 1 y + 2 z = - 3 3 x + 2 y = - 3 ⇔ x = 1 y + 2 z = - 3 3 · 1 + 2 y = - 3 ⇔ x = 1 y + 2 z = - 3 y = - 3 ⇔ ⇔ x = 1 - 3 + 2 z = - 3 y = - 3 ⇔ x = 1 z = 0 y = - 3 .

Значит, имеем, что точка пересечения x - 1 = 0 y + 2 z + 3 = 0 и 3 x + 2 y + 3 = 0 4 x - 2 z - 4 = 0 имеет координаты (1 , - 3 , 0) .

Ответ: (1 , - 3 , 0) .

Система вида A 1 x + B 1 y + C 1 z + D 1 = 0 A 2 x + B 2 y + C 2 z + D 2 = 0 A 3 x + B 3 y + C 3 z + D 3 = 0 A 4 x + B 4 y + C 4 z + D 4 = 0 имеет только одно решение. Значит, прямые a и b пересекаются.

В остальных случаях уравнение не имеет решения, то есть и общих точек тоже. То есть невозможно найти точку с координатами, так как ее нет.

Поэтому система вида A 1 x + B 1 y + C 1 z + D 1 = 0 A 2 x + B 2 y + C 2 z + D 2 = 0 A 3 x + B 3 y + C 3 z + D 3 = 0 A 4 x + B 4 y + C 4 z + D 4 = 0 решается методом Гаусса. При ее несовместимости прямые не являются пересекающимися. Если решений бесконечное множество, то они совпадают.

Можно произвести решение при помощи вычисления основного и расширенного ранга матрицы, после чего применить теорему Кронекера-Капелли. Получим одно, множество или полное отсутствие решений.

Пример 10

Заданы уравнения прямых x + 2 y - 3 z - 4 = 0 2 x - y + 5 = 0 и x - 3 z = 0 3 x - 2 y + 2 z - 1 = 0 . Найти точку пересечения.

Решение

Для начала составим систему уравнений. Получим, что x + 2 y - 3 z - 4 = 0 2 x - y + 5 = 0 x - 3 z = 0 3 x - 2 y + 2 z - 1 = 0 . решаем ее методом Гаусса:

1 2 - 3 4 2 - 1 0 - 5 1 0 - 3 0 3 - 2 2 1 ~ 1 2 - 3 4 0 - 5 6 - 13 0 - 2 0 - 4 0 - 8 11 - 11 ~ ~ 1 2 - 3 4 0 - 5 6 - 13 0 0 - 12 5 6 5 0 0 7 5 - 159 5 ~ 1 2 - 3 4 0 - 5 6 - 13 0 0 - 12 5 6 5 0 0 0 311 10

Очевидно, что система не имеет решений, значит прямые не пересекаются. Точки пересечения нет.

Ответ: нет точки пересечения.

Если прямые заданы при помощи кононических или параметрических уравнений, нужно привести к виду уравнений пересекающихся плоскостей, после чего найти координаты.

Пример 11

Заданы две прямые x = - 3 - λ y = - 3 · λ z = - 2 + 3 · λ , λ ∈ R и x 2 = y - 3 0 = z 5 в О х у z . Найти точку пересечения.

Решение

Задаем прямые уравнениями двух пересекающихся плоскостей. Получаем, что

x = - 3 - λ y = - 3 · λ z = - 2 + 3 · λ ⇔ λ = x + 3 - 1 λ = y - 3 λ = z + 2 3 ⇔ x + 3 - 1 = y - 3 = z + 2 3 ⇔ ⇔ x + 3 - 1 = y - 3 x + 3 - 1 = z + 2 3 ⇔ 3 x - y + 9 = 0 3 x + z + 11 = 0 x 2 = y - 3 0 = z 5 ⇔ y - 3 = 0 x 2 = z 5 ⇔ y - 3 = 0 5 x - 2 z = 0

Находим координаты 3 x - y + 9 = 0 3 x + z + 11 = 0 y - 3 = 0 5 x - 2 z = 0 , для этого посчитаем ранги матрицы. Ранг матрицы равен 3 , а базисный минор 3 - 1 0 3 0 1 0 1 0 = - 3 ≠ 0 , значит, что из системы необходимо исключить последнее уравнение. Получаем, что

3 x - y + 9 = 0 3 x + z + 11 = 0 y - 3 = 0 5 x - 2 z = 0 ⇔ 3 x - y + 9 = 0 3 x + z + 11 = 0 y - 3 = 0

Решим систему методом Крамер. Получаем, что x = - 2 y = 3 z = - 5 . Отсюда получаем, что пересечение заданных прямых дает точку с координатами (- 2 , 3 , - 5) .

Ответ: (- 2 , 3 , - 5) .

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter



Статьи по теме: