Жизнь на земле. Жизнь зародилась в воде

Земля обладает двумя особенностями, которые стали главными предпосылками возникновения жизни. Жидкая вода служит растворителем для биохимических реакций, а тектоническая энергия может эти реакции запустить. О том, как выглядела планета, когда этот процесс только начинался, в своей книге «От атомов к древу. Введение в современную науку о жизни» рассказывает биолог Сергей Ястребов. T&P и премия «Просветитель» публикуют отрывок из главы с актуальными гипотезами ученых об истоках эволюции.

Есть несколько гипотез, более-менее детально расписывающих вероятные первые химические шаги на пути к жизни. Они отличаются в деталях, но едины в главном. Все эти гипотезы предполагают, что местами зарождения жизни были не открытые водоемы, а микрополости в грунте или минеральных осадках, куда подводилась энергия от горячих источников или от вулканов. Надо сказать, что это не такая уж новость. Например, известный швейцарский биолог Карл фон Нэгели еще в XIX веке писал по поводу зарождения жизни: «Вероятно, это случилось не в открытой воде, а во влажном слое тонкого пористого материала (песка, глины), где совместно действовали молекулярные силы твердых, жидких и газообразных тел». Вот это мнение сейчас и стало научным мейнстримом. Где возникновение жизни наименее вероятно - так это в водной толще спокойного океана, освещенного солнцем. Там просто нет таких потоков энергии и вещества, которые зарождающаяся жизнь могла бы «оседлать» и перенаправить себе на пользу.

Итак, где-то в воде, пропитывавшей окрестности древних вулканов или горячих источников, начались автокаталитические (то есть самоускоряющиеся) химические реакции, цепочки которых вскоре стали пересекаться за счет общих промежуточных продуктов и замыкаться в циклы. Главные участники этих реакций, скорее всего, были небольшими органическими молекулами, поначалу даже одноуглеродными. Но реакции-то были не простыми. Особенность любой автокаталитической реакции по определению состоит в том, что ее продукт одновременно является катализатором, то есть веществом, ускоряющим ход самой реакции. При условии достаточной сложности реакционной системы (а оно в данном случае наверняка соблюдалось: и реагентов, и продуктов было множество) автокаталитические реакции приобретают свойство саморазвития, потому что в них появляется обратная связь: небольшое изменение механизма реакции влияет на состав ее продуктов, изменение которого, в свою очередь, влияет на механизм - и так шаг за шагом. Спустя какое-то время в системе автокаталитических реакций начали синтезироваться аминокислоты, простейшие углеводы, а там дело дошло и до полимеров - сперва простых, потом посложнее. Наконец, некоторые из этих полимеров «научились» катализировать сначала синтез друг друга (это совсем легко), а потом и воспроизводство самих себя. Иными словами, они стали репликаторами. А с появлением репликаторов автоматически включается дарвиновский механизм естественного отбора, необходимые и достаточные условия для которого - самовоспроизводство, наследственность, изменчивость и конкуренция за субстрат. Все, с этого момента биологическая запущена.

Можно не сомневаться, что на этих первых этапах жизнь была еще практически незаметной для постороннего наблюдателя (если бы, конечно, он мог тогда существовать). Это легко понять, если вообразить себя инопланетным путешественником, прибывшим пусть даже к самой колыбели земной жизни. Что он увидит? Теплый вулканический грунт, башни пористых осадков на морском дне… И все. Ничего примечательного. Без химического анализа такой путешественник и не понял бы, с чем столкнулся.

Первыми в истории Земли полноценными репликаторами, скорее всего, были молекулы РНК. Дело в том, что из всех биологически активных молекул только РНК может выполнять сразу все жизненно важные функции: и хранение наследственной информации, и ее копирование, и катализ реакций обмена веществ. Белки и их предшественники, более простые пептиды, никогда таких возможностей не имели. Тем не менее первые пептиды наверняка появились примерно в те же времена, что и первые РНК. Это следует из чисто химических соображений. Дело в том, что синтез РНК довольно сложен, а вот аминокислоты - причем именно альфа-аминокислоты, из которых пептиды обычно состоят, - достаточно легко синтезируются из самых простых молекул, например из угарного газа (CO) и циановодорода (HC≡N), в условиях, примерно соответствующих вероятным условиям в окрестностях древних вулканов. Поэтому существование эволюционного этапа, когда автокаталитические системы состояли бы исключительно из РНК, маловероятно. Скорее всего, эволюция пептидов и РНК была сопряженной всегда, еще со времен их гораздо более простых общих предшественников. Возможно, что дополнительной (в придачу к самокопированию) задачей первых репликаторов как раз и был катализ синтеза пептидов, влиявших на химическую среду таким образом, чтобы эти репликаторы с большей вероятностью могли выжить.

Начало эволюции жизни на Земле (до расхождения клеточных организмов на архей и бактерий). Разумеется, это гипотетический сценарий, но достаточно правдоподобный. Момент приобретения клетками (или их предшественниками) собственного механизма репликации ДНК тут намеренно не уточняется, этот вопрос все еще открыт.

Следующим важным эволюционным событием был перенос генетической информации с РНК на ДНК. Дело в том, что молекула РНК всем хороша, но вот химическая устойчивость у нее низкая и разрушается она довольно легко. Поэтому длительно хранить на ней генетическую информацию - дело ненадежное. Для этого предпочтителен какой-нибудь другой полимер. Им-то и стала . Если первые РНК вполне могли синтезироваться спонтанно в неживой природе, то синтез ДНК уже со всей определенностью является «изобретением» живых организмов, и эта молекула с самого начала получила единственную функцию: хранить информацию. Ничего другого она делать не умеет. Одно-единственное преимущество, которое имеет ДНК перед РНК, - ее высокая химическая устойчивость, позволяющая долго и надежно храниться. Для того, кто владеет уникальным «ноу-хау» синтеза каких-нибудь полезных белков, это по-настоящему ценно.

Таким образом, началась эпоха великой перезаписи геномов с РНК на ДНК.

В начале этой эпохи на Земле жили РНК-содержащие организмы, которые наверняка уже освоили к тому моменту технологию точного синтеза белка. Иными словами, ДНК появилась эволюционно позже, чем трансляция. Вполне возможно, что генетическая стратегия первых ДНК-содержащих организмов была похожа на генетическую стратегию ретровирусов. В жизненном цикле вирусов этого типа есть обязательная стадия ретротранскрипции, то есть обратной транскрипции - переноса генетической информации с РНК на ДНК. А вот собственного механизма репликации ДНК у ретровирусов нет. И у клеточных организмов его тоже, скорее всего, вначале не было. Надежные ферменты репликации (они называются ДНК-зависимые ДНК-полимеразы) появились позже. Но уж когда они появились, это дало возможность хранить на ДНК генетическую информацию непрерывно, при необходимости сразу перезаписывая ее с одной молекулы ДНК на другую. И тогда ретротранскрипция стала не нужна.

В результате образовалась самая привычная нам форма жизни: с генетической стратегией «ДНК-РНК-белок».

Признаемся честно: мы не знаем, когда именно живое вещество разбилось на клетки, отделенные от внешней среды и друг от друга замкнутыми липидными мембранами. Вполне возможно, что это произошло раньше, чем появилась репликация ДНК и исчезла обязательная ретротранскрипция.

Парадоксальным образом размножаются все живые клетки именно делением. Материнская клетка делится на две дочерние, которые получают достаточно точные копии ее генома. Цепь последовательно делящихся клеток - это цепь прямых, без всяких метафор, предков и потомков. Иногда потомки одной и той же клетки оказываются в разных условиях (или получают разные мутации) и начинают под действием естественного отбора накапливать различия. Тогда мы можем заметить, что линия предков и потомков ветвится.

Первым таким ветвлением было разделение всех клеточных организмов на архей и бактерий. Оно произошло точно раньше, чем появился полноценный механизм репликации ДНК, и наверняка раньше, чем появились клеточные мембраны современного типа. А это означает, что типичные (с нашей точки зрения) клетки, окруженные липидной мембраной и имеющие генетическую стратегию «ДНК-РНК-белок», с самого начала существовали в виде двух расходящихся эволюционных ветвей. Так возникло древо жизни.

Советский биолог Александр Иванович Опарин в 1924 году создал теорию о возникновении жизни на нашей планете посредством химической эволюции углеродосодержащих молекул. Он ввел термин «первичный » для обозначения воды с высокой концентрацией подобных молекул.

Предположительно «первичный бульон» существовал 4 миллиарда лет назад в мелких водоемах Земли. Он состоял из воды, молекул азотистых оснований, полипептидов, и нуклеотидов. «Первичный бульон» образовался под влиянием космического излучения, высокой температуры и электрических разрядов.

Органические вещества возникали , водорода, и воды. Энергия для их образования могла быть получена от грозовых электрических разрядов (молний) или от ультрафиолетового излучения. А.И. Опарин предположил, что нитеобразные молекулы полученных могли сворачиваться и «склеиваться» друг с другом.

В лабораторных условиях ученым удалось создать подобие «первичного бульона», в котором успешно образовывались скопления белков. Однако не был решен вопрос о воспроизводстве и дальнейшем развитии коацерватных капель.
Теория академика Наточина подтверждается анализом содержания элементов в современных живых клетках. В них так же, как и в гейзерах, преобладают ионы К+.

Видео по теме

Современная география – это целый комплекс естественных и общественных наук. На сегодняшний день учеными накоплен большой объем знаний о Земле, а наука география имеет собственную, длинную и интересную, историю зарождения.

География в древности

Географию можно считать одной из самых древних наук, потому что никакие другие знания не были так важны человеку, как знания об устройстве окружающего мира. Умение ориентироваться на местности, искать источники воды, убежища, предсказывать погоду – все это было необходимо человеку для выживания.

И хотя прообразы карт – рисунки на шкурах, изображающие план местности – были еще у первобытных людей, долгое время не являлась наукой в полном смысле. Если наука формулирует законы явлений и отвечает на вопрос «почему?», то география на протяжении длительного периода своего существования скорее стремилась описать явления, то есть ответить на вопросы «что?» и «где?». Кроме того, в античности география была тесно связана с другими науками, в том числе и гуманитарными: нередко вопрос о форме Земли или ее положении в носил в большей степени философский, чем естественнонаучный характер.

Достижения древних географов

Несмотря на то, что у древних географов было не так уж много возможностей экспериментально исследовать разнообразные явления, определенных успехов им все-таки удалось достигнуть.

Так в Древнем Египте, благодаря регулярным астрономическим наблюдениям, ученые смогли весьма точно определить продолжительность года, также в Египте был создан земельный кадастр.

Множество важных открытий было совершено в Древней Греции. Например, греки предположили, что Земля имеет форму шара. Существенные аргументы в пользу этой точки зрения высказал Аристотель, а Аристарх Самосский впервые обозначил приблизительное расстояние от Земли до Солнца. Именно греки стали использовать параллели и меридианы, а также научились определять географические координаты. Философ-стоик Кратет из Маллы впервые создал модель глобуса.

Древнейшие народы активно исследовали окружающий мир, отправляясь в морские и сухопутные путешествия. Многие ученые (Геродот, Страбон, Птолемей) пытались систематизировать в своих трудах имеющиеся знания о Земле. Например, в труде Клавдия Птолемея «География» были собраны сведения о 8000 географических названиях, а также указывались координаты почти четырехсот точек.
Также именно в Древней Греции наметились основные направления географической науки, которые впоследствии были развиты многими талантливыми учеными.

Видео по теме

Существует множество научных теорий о зарождении жизни на Земле. Однако большинство современных ученых считают, что жизнь зародилась в теплой , поскольку это наиболее благоприятная среда для развития простейших одноклеточных организмов.

Теория «первичного бульона»

Советский биолог Александр Иванович Опарин в 1924 году создал теорию о возникновении жизни на нашей планете посредством химической эволюции углеродосодержащих молекул. Он ввел термин «первичный бульон» для обозначения воды с высокой концентрацией подобных молекул.

Предположительно «первичный бульон» существовал 4 миллиарда лет назад в мелких водоемах Земли. Он состоял из воды, молекул азотистых оснований, полипептидов, аминокислот и нуклеотидов. «Первичный бульон» образовался под влиянием космического излучения, высокой температуры и электрических разрядов.

Органические вещества возникали из аммиака, водорода, метана и воды. Энергия для их образования могла быть получена от грозовых электрических разрядов (молний) или от ультрафиолетового излучения. А.И. Опарин предположил, что нитеобразные молекулы полученных белков могли сворачиваться и «склеиваться» друг с другом.

В лабораторных условиях ученым удалось создать подобие «первичного бульона», в котором успешно образовывались скопления белков. Однако не был решен вопрос о воспроизводстве и дальнейшем развитии коацерватных капель.

Белковые «шарики» притягивали к себе молекулы жиров и воды. Жиры располагались на поверхности белковых образований, покрывая их слоем, который по структуре отдаленно напоминал клеточную мембрану. Опарин назвал этот процесс коацервацией, а образовавшиеся скопления белков – коацерватными каплями. Со временем коацерватные капли поглощали из окружающей среды все новые порции вещества, постепенно усложняя свою структуру, пока не превратились в примитивные живые клетки.

Зарождение жизни в горячих источниках

Минеральная вода и особенно насыщенные солями горячие гейзеры могут успешно поддерживать примитивные формы жизни. Академик Ю.В. Наточин в 2005 году предположил, что средой образования живых протоклеток был не Древний океан, а теплый водоем с преобладанием ионов К+. В морской воде доминируют ионы Na+.

Теория академика Наточина подтверждается анализом содержания элементов в современных живых клетках. В них так же, как и в гейзерах, преобладают ионы К+.

В 2011 году японский ученый Тадаси Сугавара сумел создать живую клетку в горячей минерализованной воде. Примитивные бактериологические образования – строматолиты и сейчас образуются в естественных условиях в гейзерах Гренландии и Исландии.

Вода является составной частью тела живых существ. Кровь, мышцы, жир, мозг и даже кости содержат воду в большом количестве. Обычно вода составляет 65-75% веса тела живого организма. Тело некоторых морских животных, например медуз, содержит в себе даже 97-98% воды. Все процессы, совершающиеся в теле животных и растений, происходят только при участии водных растворов. Без воды жизнь невозможна.

Первой заботой появившегося организма является питание. На суше отыскать пищу гораздо труднее, чем в море. Сухопутные растения должны длинными корнями добывать воду и растворённые в ней питательные вещества. Животные добывают себе пропитание с большой затратой сил. Другое дело в море. В солёной морской воде растворено много питательных веществ. Таким образом, морские растения со всех сторон окружены питательным раствором и легко его усваивают.

Не менее важно для организма поддерживать своё тело в пространстве. На суше это весьма трудная задача. Воздушная среда очень разрежена. Чтобы держаться на земле, необходимо иметь особые приспособления – сильные конечности или крепкие корни. На суше самым большим животным является слон. Но кит в 40 раз тяжелее слона. Если бы такое огромное животное начало двигаться по суше, то оно просто погибло бы, не выдержав собственной тяжести. Ни толстая кожа, ни массивные рёбра не были бы достаточной опорой для этой туши в 100 тонн весом. Совсем другое дело в воде. Всякий знает, что в воде можно легко поднять тяжёлый камень, который на суше едва сдвинешь с места. Происходит это потому, что в воде всякое тело теряет в весе столько, сколько весит вытесненная им вода. Вот почему киту для движения в воде приходится затрачивать в 10 раз меньше усилий, чем потребовалось бы этому гиганту на земле. Его тело, поддерживаемое водой со всех сторон, приобретает большую плавучесть, и киты, несмотря на свой огромный вес, могут с большой скоростью преодолевать огромные расстояния. В море живут и самые крупные растения. Водоросль макроцистис достигает 150-200 метров в длину. На земле такие гиганты редкость даже среди деревьев. Вода поддерживает огромную массу этой водоросли. Для прикрепления к грунту ей не требуется крепких корней, как наземным растениям.

Кроме того, в море температура более постоянна, чем в воздухе. А это очень важно, так как не нужно искать защиты от холода зимой и от жары летом. На суше разница между температурой воздуха зимой и летом достигает в некоторых районах 80-90 градусов. В ряде мест Сибири температура летом доходит до 35-40 градусов жары, а зимой стоят морозы в 50-55 градусов. В воде сезонные различия в температуре не превышают обычно 20 градусов. Для защиты от холода земные животные покрываются к зиме пушистым мехом, слоем подкожного жира, залегают в зимнюю спячку в берлоги и норы. Тяжело бороться с промерзающей почвой растениям. Вот почему в особо холодную зиму массами гибнут птицы, звери и другие наземные животные, а также вымерзают деревья.

Б ыло время - много миллионов лет тому назад, - когда живых существ не было на Земле. Но с определённого периода в истории нашей планеты - Земли - появляются живые организмы. Они зародились в море.

Покопавшись в россыпях на берегу реки или на горном склоне, можно иногда найти отпечатки или окаменелые остатки различных животных, которых нет среди живущих теперь. Среди этих ископаемых существ самые древнейшие были обитателями моря.

Вода является составной частью тела живых существ. Кровь, мышцы, жир, мозг и даже кости содержат воду в большом количестве. Обычно вода составляет 65–75 % веса тела живого организма. Тело некоторых морских животных, например медуз, содержит в себе даже 97–98 % воды. Все процессы, совершающиеся в теле животных и растений, происходят только при участии водных растворов. Без воды жизнь невозможна.

Первой заботой появившегося организма является питание. На суше отыскать пищу гораздо труднее, чем в море. Сухопутные растения должны длинными корнями добывать воду и растворённые в ней питательные вещества. Животные добывают себе пропитание с большой затратой сил. Другое дело в море. В солёной морской воде растворено много питательных веществ. Таким образом, морские растения со всех сторон окружены питательным раствором и легко его усваивают.

Не менее важно для организма поддерживать своё тело в пространстве. На суше это весьма трудная задача. Воздушная среда очень разрежена. Чтобы держаться на земле, необходимо иметь особые приспособления - сильные конечности или крепкие корни. На суше самым большим животным является слон. Но кит в 40 раз тяжелее слона. Если бы такое огромное животное начало двигаться по суше, то оно просто погибло бы, не выдержав собственной тяжести. Ни толстая кожа, ни массивные рёбра не были бы достаточной опорой для этой туши в 100 тонн весом. Совсем другое дело в воде. Всякий знает, что в воде можно легко поднять тяжёлый камень, который на суше едва сдвинешь с места. Происходит это потому, что в воде всякое тело теряет в весе столько, сколько весит вытесненная им вода. Вот почему киту для движения в воде приходится затрачивать в 10 раз меньше усилий, чем потребовалось бы этому гиганту на земле. Его тело, поддерживаемое водой со всех сторон, приобретает большую пловучесть, и киты, несмотря на свой огромный вес, могут с большой скоростью преодолевать огромные расстояния. В море живут и самые крупные растения. Водоросль макроцистис достигает 150–200 метров в длину. На земле такие гиганты редкость даже среди деревьев. Вода поддерживает огромную массу этой водоросли. Для прикрепления к грунту ей не требуется крепких корней, как наземным растениям.

Кроме того, в море температура более постоянна, чем в воздухе. А это очень важно, так как не нужно искать защиты от холода зимой и от жары летом. На суше разница между температурой воздуха зимой и летом достигает в некоторых районах 80–90 градусов. В ряде мест Сибири температура летом доходит до 35–40 градусов жары, а зимой стоят морозы в 50–55 градусов. В воде сезонные различия в температуре не превышают обычно 20 градусов. Для защиты от холода земные животные покрываются к зиме пушистым мехом, слоем подкожного жира, залегают в зимнюю спячку в берлоги и норы. Тяжело бороться с промерзающей почвой растениям. Вот почему в особо холодную зиму массами гибнут птицы и звери и другие наземные животные, а также вымерзают деревья.

В других условиях оказываются жители моря. С наступлением морозов начинается замерзание воды. Лёд легче воды. Толстый слой льда и снега препятствует проникновению холода в воду. Как тёплая шуба закрывает лёд водоём от промерзания до дна. Даже в холодной Арктике, где вечно плавают льды и большую часть года стоит морозная погода, море не замерзает до дна. Не промерзают и большие озёра и реки. А почва в Арктике промерзает на десятки метров и образуется вечная мерзлота. С трудом здесь может укорениться даже неприхотливое растение.

С наступлением морозов все водные обитатели уходят в глубину. Здесь условия их жизни мало чем отличаются в это суровое время года от летнего периода. Эти благоприятные условия жизни в море способствовали развитию величайшего разнообразия населяющих море живых организмов. До сих пор животный мир моря значительно богаче и разнообразнее, чем на суше.

В тёплой, богатой солями морской воде зародилась жизнь. Сменялись века и тысячелетия. Всё разнообразнее и обильнее становилась жизнь в море. Одни виды животных стали вытеснять другие. Борьба за существование заставляла некоторых постепенно выходить на берег, жить на берегу и заселять сушу. При этом у них выработались различные приспособления для жизни в воздушной среде. Постепенно совершенствуясь, наземные животные и растения приобрели современный облик. Процесс заселения водными животными суши идёт и теперь. На берегу моря можно часто видеть различных животных, прикрепляющихся к прибрежным скалам. Когда в отлив вода уходит, они крепко запирают створки своих раковин. Капельки воды, оставшиеся внутри створок, предохраняют жабры от высыхания и позволяют этим морским животным дышать ими во время отлива. По возвращении воды во время прилива они приоткрываются и начинают пропускать через себя свежую воду, несущую пищу и кислород для дыхания. На берег моря вылезают рыбы-прыгуны. Они долго могут ползать по прибрежным скалам и по выходящим на поверхность суши корням деревьев. Эти рыбы охотятся на воздухе даже за насекомыми. Но долго жить на берегу они не могут. Они дышат жабрами, а жабры без воды засыхают, и дыхание приостанавливается.

Из этих примеров можно себе представить, как постепенно совершался переход к наземной жизни различных водных животных.



Статьи по теме: