Их в новое химическое соединение. Химические соединения. Основные понятия теории сплавов

Все вещества делятся на простые и сложные.

Простые вещества - это вещества, которые состоят из атомов одного элемента.

В некоторых простых веществах атомы одного элемента соединяются друг с другом и образуют молекулы. Такие простые вещества имеют молекулярное строение . К ним относятся: , . Все эти вещества состоят из двухатомных молекул. (Обратите внимание, что названия простых веществ совпадают с названиями элементов!)

Другие простые вещества имеют атомное строение , т. е. состоят из атомов, между которыми существуют определенные связи. Примерами таких простых веществ являются все ( , и т. д.) и некоторые ( , и др.). Не только названия, но и формулы этих простых веществ совпадают с символами элементов.

Существует также группа простых веществ, которые называются . К ним относятся: гелий Не, неон Ne, аргон Аr, криптон Kr, ксенон Хе, радон Rn. Эти простые вещества состоят из не связанных друг с другом атомов.

Каждый элемент образует как минимум одно простое вещество. Некоторые элементы могут образовывать не одно, а два или несколько простых веществ. Это явление называется аллотропией.

Аллотропия - это явление образования нескольких простых веществ одним элементом.

Разные простые вещества, которые образуются одним и тем же химическим элементом, называются аллотропными видоизменениями (модификациями).

Аллотропные модификации могут отличаться друг от друга составом молекул. Например, элемент кислород образует два простых вещества. Одно из них состоит из двухатомных молекул О 2 и имеет такое же название, как и элемент- . Другое простое вещество состоит из трехатомных молекул О 3 и имеет собственное название - озон.

Кислород О 2 и озон О 3 имеют различные физические и химические свойства.

Аллотропные модификации могут представлять собой твердые вещества, которые имеют различное строение кристаллов. Примером являются аллотропные модификации углерода С - алмаз и графит.

Число известных простых веществ (примерно 400) значительно больше, чем число химических элементов, так как многие элементы могут образовывать две или несколько аллотропных модификаций.

Сложные вещества - это вещества, которые состоят из атомов разных элементов.

Примеры сложных веществ: НCl, Н 2 O, NaCl, СО 2 , H 2 SO 4 и т. д.

Сложные вещества часто называют химическими соединениями. В химических соединениях свойства простых веществ, из которых образуются эти соединения, не сохраняются. Свойства сложного вещества отличаются от свойств простых веществ, из которых оно образуется.

Например, хлорид натрия NaCl может образоваться из простых веществ - металлического натрия Na и газообразного хлора Сl Физические и химические свойства NaCl отличаются от свойств Na и Cl 2 .

В природе, как правило, встречаются не чистые вещества, а смеси веществ. В практической деятельности мы также обычно используем смеси веществ. Любая смесь состоит из двух или большего числа веществ, которые называются компонентами смеси .

Например, воздух представляет собой смесь нескольких газообразных веществ: кислорода О 2 (21 % по объему), (78%), и др. Смесями являются растворы многих веществ, сплавы некоторых металлов и т. д.

Смеси веществ бывают гомогенными (однородными) и гетерогенными (неоднородными).

Гомогенные смеси - это смеси, в которых между компонентами нет поверхности раздела.

Гомогенными являются смеси газов (в частности, воздух), жидкие растворы (например, раствор сахара в воде).

Гетерогенные смеси - это смеси, в которых компоненты разделяются поверхностью раздела.

К гетерогенным относятся смеси твердых веществ (песок + порошок мела), смеси нерастворимых друг в друге жидкостей (вода + масло), смеси жидкостей и нерастворимых в нем твердых веществ (вода + мел).

Важнейшие отличия смесей от химических соединений:

  1. В смесях свойства отдельных веществ (компонентов) сохраняются.
  2. Состав смесей не является постоянным.

Все вещества можно разделить на простые (состоящие из атомов одного химического элемента) и сложные (состоящие из атомов разных химических элементов). Простые вещества делятся на металлы и неметаллы .

Металлы обладают характерным “металлическим” блеском, ковкостью, тягучестью, могут прокатываться в листы или вытягиваться в проволоку, обладают хорошей теплопроводностью и электрической проводимостью. При комнатной температуре все металлы, кроме ртути, находятся в твердом состоянии.

Неметаллы не обладают блеском, хрупки, плохо проводят теплоту и электричество. При комнатной температуре некоторые неметаллы находятся в газообразном состоянии.

Сложные вещества делят на органические и неорганические.

Органическими соединениями принято называть соединения углерода. Органические соединения входят в состав биологических тканей и являются основой жизни на Земле.

Все остальные соединения называются неорганическими (реже минеральными). Простые соединения углерода (СО, СО 2 и ряд других) принято относить к неорганическим соединениям, их обычно рассматривают в курсе неорганической химии.

Классификация неорганических соединений

Неорганические вещества делят на классы либо по составу (бинарные и многоэлементные; кислородосодержащие, азотсодержащие и т.п.), либо по функциональным признакам.

К важнейшим классам неорганических соединений, выделяемых по функциональным признакам, относятся соли, кислоты, основания и оксиды.

Соли – это соединения, которые в растворе диссоциируют на катионы металла и кислотные остатки. Примерами солей могут служить, например, сульфат бария BaSO 4 и хлорид цинка ZnCl 2 .

Кислоты – вещества, диссоциирующие в растворах с образованием ионов водорода. Примерами неорганических кислот могут служить соляная (НCl), серная (H 2 SO 4), азотная (HNO 3), фосфорная (H 3 PO 4) кислоты. Наиболее характерное химическое свойство кислот – их способность реагировать с основаниями с образованием солей. По степени диссоциации в разбавленных растворах кислоты подразделяются на сильные кислоты, кислоты средней силы и слабые кислоты. По окислительно–восстановительной способности различают кислоты–окислители (HNO 3) и кислоты–восстановители (HI, H 2 S). Кислоты реагируют с основаниями, амфотерными оксидами и гидроксидами с образованием солей.



Основания – вещества, диссоциирующие в растворах с образованием только гидроксид-анионов (OH 1-). Растворимые в воде основания называют щелочами (КОН, NaOH). Характерное свойство оснований – взаимодействие с кислотами с образованием соли и воды.

Оксиды – это соединения двух элементов, один из которых кислород. Различают оксиды основные, кислотные и амфотерные. Основные оксиды образованы только металлами (CaO, K 2 O), им соответствуют основания (Ca(OH) 2 , KOH). Кислотные оксиды образуются неметаллами (SO 3 , P 2 O 5) и металлами, проявляющими высокую степень окисления (Mn 2 O 7), им соответствуют кислоты (H 2 SO 4 , H 3 PO 4 , HMnO 4). Амфотерные оксиды в зависимости от условий проявляют кислотные и основные свойства, взаимодействуют с кислотами и основаниями. К ним относятся Al 2 O 3 , ZnO, Cr 2 O 3 и ряд других. Существуют оксиды, не проявляющие ни основных, ни кислотных свойств. Такие оксиды называются безразличными (N 2 O, CO и др.)

Классификация органических соединений

Углерод в органических соединениях, как правило, образует устойчивые структуры, в основе которых лежат углерод-углеродные связи. В способности образовывать такие структуры углерод не имеет себе равных среди других элементов. Большинство органических молекул состоит из двух частей: фрагмента, который в ходе реакции остаётся без изменения, и группы, подвергающейся при этом превращениям. В связи с этим определяется принадлежность органических веществ к тому или иному классу и ряду соединений.

Неизменный фрагмент молекулы органического соединения принято рассматривать в качестве остова молекулы. Он может иметь углеводородную или гетероциклическую природу. В связи с этим можно условно выделить четыре больших ряда соединений: ароматический, гетероциклический, алициклический и ациклический.

В органической химии также выделяют дополнительные ряды: углеводороды, азотсодержащие соединения, кислородосодержащие соединения, серосодержащие соединения, галогеносодержащие соединения, металлоорганические соединения, кремнийорганические соединения.

В результате комбинации этих основополагающих рядов образуются составные ряды, например: "Ациклические углеводороды", "Ароматические азотсодержащие соединения".

Наличие тех или иных функциональных групп либо атомов элементов определяет принадлежность соединения к соответствующему классу. Среди основных классов органических соединений выделяют алканы, бензолы, нитро- и нитрозосоединения, спирты, фенолы, фураны, эфиры и большое количество других.

Типы химических связей

Химическая связь – это взаимодействие, удерживающее два или несколько атомов, молекул или любую комбинацию из них. По своей природе химическая связь представляет собой электрическую силу притяжения между отрицательно заряженными электронами и положительно заряженными атомными ядрами. Величина этой силы притяжения зависит главным образом от электронной конфигурации внешней оболочки атомов.

Способность атома образовывать химические связи характеризуется его валентностью. Электроны, участвующие в образовании химической связи, называются валентными.

Различают несколько типов химических связей: ковалентную, ионную, водородную, металлическую.

При образовании ковалентной связи происходит частичное перекрывание электронных облаков взаимодействующих атомов, образуются электронные пары. Ковалентная связь оказывается тем прочнее, чем в большей степени перекрываются взаимодействующие электронные облака.

Различают полярную и неполярную ковалентные связи.

Если двухатомная молекула состоит из одинаковых атомов (H 2 , N 2), то электронное облако распределяется в пространстве симметрично относительно обоих атомов. Такая ковалентная связь называется неполярной (гомеополярной). Если же двухатомная молекула состоит из разных атомов, то электронное облако смещено к атому с большей относительной электроотрицательностью. Такая ковалентная связь называется полярной (гетерополярной). Примерами соединений с такой связью могут служить HCl, HBr, HJ.

В рассмотренных примерах каждый из атомов обладает одним неспаренным электроном; при взаимодействии двух таких атомов создается общая электронная пара – возникает ковалентная связь. В невозбужденном атоме азота имеется три неспаренных электрона, за счет этих электронов азот может участвовать в образовании трех ковалентных связей (NH 3). Атом углерода может образовать 4 ковалентных связи.

Перекрывание электронных облаков возможно только при их определенной взаимной ориентации, при этом область перекрывания располагается в определенном направлении по отношению к взаимодействующим атомам. Другими словами, ковалентная связь обладает направленностью.

Энергия ковалентных связей находится в пределах 150–400 кДж/моль.

Химическая связь между ионами, осуществляемая электростатическим притяжением, называется ионной связью . Ионную связь можно рассматривать как предел полярной ковалентной связи. В отличие от ковалентной связи ионная связь не обладает направленностью и насыщаемостью.

Важным типом химической связи является связь электронов в металле. Металлы состоят из положительных ионов, которые удерживаются в узлах кристаллической решетки, и свободных электронов. При образовании кристаллической решетки валентные орбитали соседних атомов перекрываются и электроны свободно перемещаются из одной орбитали в другую. Эти электроны уже не принадлежат определенному атому металла, они находятся на гигантских орбиталях, которые простираются по всей кристаллической решетке. Химическая связь, осуществляемая в результате связывания положительных ионов решетки металла свободными электронами, называется металлической.

Между молекулами (атомами) веществ могут осуществляться слабые связи. Одна из самых важных – водородная связь , которая может быть межмолекулярной и внутримолекулярной . Водородная связь возникает между атомом водорода молекулы (он заряжен частично положительно) и сильно электроотрицательным элементом молекулы (фтор, кислород и т.п.).

Энергия водородной связи значительно меньше энергии ковалентной связи и не превышает 10 кДж/моль. Однако этой энергии оказывается достаточно для создания ассоциаций молекул, затрудняющих отрыв молекул друг от друга. Водородные связи играют важную роль в биологических молекулах (белках и нуклеиновых кислотах), во многом определяют свойства воды.

Силы Ван-дер-Ваальса также относятся к слабым связям. Они обусловлены тем, что любые две нейтральных молекулы (атома) на очень близких расстояниях слабо притягиваются из-за электромагнитных взаимодействий электронов и ядер одной молекулы с электронами и ядрами другой.

Химия - удивительная и, признаться, запутанная наука. Почему-то ассоциируется она с яркими экспериментами, разноцветными пробирками, густыми облаками пара. Но мало кто задумывается о том, откуда же берётся это «волшебство». На самом деле ни одна реакция не проходит без образования соединений между атомами реагентов. Более того, эти «перемычки» иногда встречаются и в простых элементах. Они влияют на способность веществ вступать в реакции и объясняют некоторые их физические свойства.

Какие же бывают виды химических связей и как они влияют на соединения?

Теория

Начинать надо с самого простого. Химическая связь - это взаимодействие, при котором атомы веществ соединяются и образуют более сложные вещества. Ошибочно полагать, что это свойственно только соединениям вроде солей, кислот и оснований - даже простые вещества, молекулы которых состоят из двух атомов, имеют эти «перемычки», если так можно условно назвать связь. Кстати, важно запомнить, что объединиться могут только атомы, имеющие разные заряды (это основы физики: одинаково заряженные частицы отталкиваются, а противоположные -- притягиваются), так что в сложных веществах всегда найдётся катион (ион с положительным зарядом) и анион (отрицательная частица), а само соединение всегда будет нейтральным.

Теперь попробуем разобраться в том, как происходит образование химической связи.

Механизм образования

У любого вещества есть определённое количество электронов, распределённых по энергетическим слоям. Самым уязвимым считается внешний слой, на котором обычно находится самое малое количество этих частиц. Узнать их число можно, посмотрев на номер группы (строка с цифрами от одного до восьми в верхней части таблицы Менделеева), в которой находится химический элемент, а количество энергетических слоёв равно номеру периода (от одного до семи, вертикальная строка слева от элементов).

В идеале на внешнем энергетическом слое находятся восемь электронов. Если же их не хватает, атом старается перетянуть их у другой частицы. Именно в процессе отбора необходимых для завершения внешнего энергетического слоя электронов образуются химические связи веществ. Их число может варьироваться и зависит от количества валентных, или неспаренных, частиц (чтобы узнать, сколько их в атоме, нужно составить его электронную формулу). Число электронов, не имеющих пару, будет равно количеству образовавшихся связей.

Чуть подробнее о типах

Виды химических связей, образующихся при реакциях или же просто в молекуле какого-то вещества, целиком и полностью зависят от самого элемента. Различают три типа «перемычек» между атомами: ионный, металлический и ковалентный. Последний, в свою очередь, делится на полярный и неполярный.

Для того чтобы понять, какой связью связаны атомы, используют своеобразное правило: если элементы находятся в правой и левой частях таблицы (то есть являются металлом и неметаллом, например NaCl), то их соединение - отличный пример ионной связи. Два неметалла образуют ковалентную полярную связь (HCl), а два атома одного вещества, соединяясь в одну молекулу, - ковалентную неполярную (Cl 2 , O 2). Вышеназванные типы химических связей не подходят для веществ, состоящих из металлов, - там встречается исключительно металлическая связь.

Ковалентное взаимодействие

Как уже упоминалось ранее, виды химических связей имеют определённое влияние на вещества. Так, например, ковалентная «перемычка» очень нестойкая, из-за чего соединения с ней легко разрушаются при малейшем внешнем воздействии, нагревании например. Правда, касается это только молекулярных веществ. Те же, что имеют немолекулярное строение, практически неразрушимы (идеальный пример - кристалл алмаза - соединение атомов углерода).

Вернёмся к полярной и неполярной ковалентной связи. С неполярной всё просто - электроны, между которыми образуется «перемычка», находятся на равном расстоянии от атомов. Но во втором случае они смещаются к одному из элементов. Победителем в «перетягивании» окажется то вещество, электроотрицательность (способность привлекать электроны) которого выше. Определяется она по специальным таблицам, и чем больше разница этой величины у двух элементов, тем более полярной будет связь между ними. Правда единственное, для чего может пригодиться знание электроотрицательности элементов, - определение катиона (положительный заряд - вещество, у которого эта величина будет меньше) и аниона (отрицательная частица с лучшей способностью к привлечению электронов).

Ионная связь

Для соединения металла и неметалла подходят далеко не все типы химических связей. Как уже говорилось выше, если разница в электроотрицательности элементов огромна (а именно так бывает, когда они расположены в противоположных частях таблицы), между ними образуется ионная связь. В этом случае валентные электроны переходят от атома с меньшей электроотрицательностью к атому с большей, образуя анион и катион. Самым ярким примером подобной связи является соединение галогена и металла, например AlCl 2 или HF.

Металлическая связь

С металлами всё ещё проще. Им чужды вышеперечисленные виды химических связей, потому что у них есть собственная. Соединять она может как атомы одного вещества (Li 2), так и разных (AlCr 2), в последнем случае образуются сплавы. Если говорить о физических свойствах, то металлы совмещают в себе пластичность и прочность, то есть они не разрушаются при малейшем воздействии, а просто изменяют форму.

Межмолекулярная связь

Кстати, химические связи в молекулах тоже существуют. Они так и называются - межмолекулярными. Самый распространённый тип - водородная связь, при которой атом водорода заимствует электроны у элемента с высокой электроотрицательностью (у молекулы воды, например).

Химические соединения.

Наименование параметра Значение
Тема статьи: Химические соединения.
Рубрика (тематическая категория) Металлы и Сварка

Компонент, фаза, чистые химические элементы.

Основные понятия теории сплавов.

Глава 4. ТЕОРИЯ МЕТАЛЛИЧЕСКИХ СПЛАВОВ

Чистые металлы находят ограниченное применение, так как обладают невысокой прочностью; обычно применяют сплавы. Их получают сплавлением металлов, либо металла с неметаллом, а также методами порошковой технологии.

Компоненты элементы, образующие сплав.

Компоненты сплава при взаимодействии образуют фазы. Фаза - ϶ᴛᴏ однородная часть сплава, по составу, структуре и свойствам, отделœенная от других частей границей раздела. При переходе через границу резко меняются строение и свойства. Сочетание и взаимное расположение фаз, формируемых при охлаждении сплава, образуют его структуру.

Основные фазы в сплавах:

· жидкая фаза . Большинство компонентов металлических сплавов в жидком состоянии полностью растворяются друг в друге, образуя жидкий раствор или расплав.

· твёрдые растворы,

· химические соединœения.

Вместе с тем, фазами бывают чистые химические элементы, к примеру углерод (графит) в серых чугунах.

4.1.2.Твёрдые растворы, виды твёрдых растворов. Условия образования твёрдых растворов.

Твёрдый раствор – фаза, в которой сохраняется кристаллическая решетка основного компонента (растворителя). По характеру расположения растворенных атомов в кристаллической решетке растворителя различают:

· твердые растворы замещения;

· твердые растворы внедрения.

В твёрдых растворах замещения атомы растворенного компонента (В) располагаются в узлах кристаллической решетки, замещая атомы основного компонента (А). Такие растворы образуются между металлами. Οʜᴎ бывают неограниченной и ограниченной растворимости.

Условия образования неограниченных твердых растворов :

· одинаковый тип кристаллической решётки компонентов;

· различие в атомных размерах компонентов не более 8…15%;

· расположение элементов в одной и той же или сосœедних группах таблицы Менделœеева.

Твердые растворы внедрения образуют металлы с неметаллами малого атомного радиуса – C,N,B,H. Твёрдые растворы внедрения всœегда имеют ограниченную растворимость.

Твёрдые растворы обозначают α, β, γ , к примеру, α=А(В) - твердый раствор компонента В в А.

Химические соединœения – фазы, которые имеют свою кристаллическую решетку, отличающуюся от решеток компонентов. Это определяет резкое отличие свойств соединœений от свойств образующих его компонентов. Для химических соединœений характерны высокая твёрдость, хрупкость, высокая температура плавления и др.

Валентные соединœения имеют постоянный состав, соответствующий законам нормальной валентности. Это бывают соединœения между металлами (интерметаллиды), а также соединœения металлов с неметаллами: MgS, Al 2 O 3 , Ni 3 Ti, и др.

Фазы внедрения образуют переходные металлы с неметаллами малого атомного радиуса (Rнм/Rм<0,59), к примеру, карбиды и нитриды: Mo 2 C, TiC, Fe 4 N, VN и др.Фазы внедрения отличаются от твёрдых растворов внедрения более высокой концентрацией неметалла и простой кристаллической решёткой типа К8, К12, Г12. Фазы внедрения тугоплавки и обладают высокой твёрдостью. Их используют в легированных сталях и сплавах для упрочнения.

Электронные соединœения - ϶ᴛᴏ химические соединœения с определённой электронной концентрацией, ᴛ.ᴇ. отношением числа валентных электронов к числу атомов. Наиболее распространены соединœения с электронной концентрацией 3/2: СuZn, CuBe; 7/4: CuSn 3 и 21/13: Cu 5 Zn 8 и др.
Размещено на реф.рф
Их используют как упрочняющие фазы в сплавах меди.

Химические соединения. - понятие и виды. Классификация и особенности категории "Химические соединения." 2017, 2018.

  • - ХИМИЧЕСКИЕ СОЕДИНЕНИЯ, ВХОДЯЩИЕ В СОСТАВ НЕФТЕЙ И ПРИРОДНЫХ ГАЗОВ

    СОСТАВ И ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА НЕФТЕЙ И ПРИРОДНЫХ УГЛЕВОДОРОДНЫХ ГАЗОВ Природные углеводородные газы встречаются в виде свободных скоплений или растворены в нефти и состоят в основном из угле­водородов. В их составе присутствуют углекислота, азот, сероводород и... .


  • - Химические соединения

    Химические соединения и родственные им по природе фазы в металлических сплавах многообразны. Характерными особенностями химических соединений, образованных по закону нормальной валентности, отличающими их от твердых растворов, являются следующие: 1.... .


  • - Химические соединения

    Диаграммы состояния систем, образующих Компоненты системы могут вступать между собой в химическое взаимодействие с образованием новой кристаллической решетки. Такие компоненты имеют различные типы диаграмм для систем с конгруэнтно (рисунок 3.7) или инконгруэнтно... .


  • - Химические соединения

    При образовании сплавов встречаются следующие группы химических соединений и промежуточных фаз: 1. Химическое соединение с нормальной валентностью, 2. Электронные соединения, 3. Фазы внедрения. Характерные особенности химических соединений: 1. Кристаллическая... .


  • -

    Диаграмма состояния сплавов представлена на рис. 5.6. Рис. 5.6. Диаграмма состояния сплавов, компоненты которых образуют химические соединения Диаграмма состояния сложная, состоит из нескольких простых диаграмм. Число компонентов и количество диаграмм зависит от того,... .


  • - Строение сплавов. Твердые растворы, химические соединения, механические смеси

    Чистые металлы, содержащие 99,99…99,999 % основного металла, как правило, обладают низкой прочностью, и по этой причине их применение в качестве конструкционных материалов крайне ограничено. Гораздо чаще применяют сплавы металлов с металлами и неметаллами. Химические... [читать подробнее] .


  • - Диаграмма состояния сплавов, компоненты которых образуют химические соединения.

    Диаграмма состояния сплавов представлена на рис. 5.6. Рис. 5.6. Диаграмма состояния сплавов, компоненты которых образуют химические соединения Диаграмма состояния сложная, состоит из нескольких простых диаграмм. Число компонентов и количество диаграмм зависит от... .


  • Все простые вещества в неорганической химии делятся на две большие группы: Металлы - Неметаллы.

    Металл (название происходит от лат. metallum - шахта) - один из классов элементов, которые в отличие от неметаллов (и металлоидов), обладают характерными металлическими свойствами. Металлами являются большинство химических элементов (примерно 70 %). Самым распространённым металлом в земной коре является алюминий.

    Характерные свойства металлов: - металлический блеск (кроме йода. Несмотря на свой металлический блеск, кристаллический йод относится к неметаллам); - хорошая электропроводность; - возможность лёгкой механической обработки (например, пластичность); - высокая плотность; - высокая температура плавления (искл. ртуть и др.); - большая теплопроводность; - в реакциях являются восстановителями.

    Все металлы (кроме ртути) тверды при нормальных условиях. Температуры плавления лежат в диапазоне от −39 °C (ртуть) до 3410 °C (вольфрам). В зависимости от их плотности, металлы делят на лёгкие (плотность 0,53 ÷ 5 г/см³) и тяжёлые (5 ÷ 22,5 г/см³).

    На внешнем электронном слое у большинства металлов небольшое количество электронов (1-3), поэтому они в большинстве реакций выступают как восстановители (то есть «отдают» свои электроны).

    С кислородом реагируют все металлы, кроме золота, платины. Реакция с серебром происходит при высоких температурах, но оксид серебра(II) практически не образуется, т.к. он термически неустойчив. В зависимости от металла на выходе могут оказаться оксиды, пероксиды, надпероксиды: 2Li + O2 = 2Li2O оксид лития; 2Na + O2 = Na2O2 пероксид натрия; K + O2 = KO2 надпероксид калия. Чтобы получить из пероксида оксид, пероксид восстанавливают металлом: Na2O2 + 2Na = 2Na2O. Со среднмими и малоактивными металлами реакция происходит при нагревании: 3Fe + 2O2 = Fe3O4; 2Hg + O2 = 2HgO; 2Cu + O2 = 2CuO.

    С азотом реагируют только самые активные металлы, при комнатной температуре взаимодействует только литий: 6Li + N2 = 2Li3N. При нагревании: 2AL + N2 = 2AlN; 3Ca + N2 = 2Ca3N2.

    С серой реагируют все металлы, кроме золота и платины.

    Неметаллы. Элементы с типично неметаллическими свойствами занимают правый верхний угол Периодической системы. Расположение их в главных подгруппах соответствующих периодов следующее:

    2-й период

    3-й период

    4-й период

    5-й период

    6-й период

    Характерной особенностью неметаллов является большее (по сравнению с металлами) число электронов на внешнем энергетическом уровне их атомов. Это определяет их большую способность к присоединению дополнительных электронов и проявлению более высокой окислительной активности, чем у металлов.

    Неметаллы имеют высокие значения сродства к электрону, большую электроотрицательность и высокий окислительно-восстановительный потенциал.

    Благодаря высоким значениям энергии ионизации неметаллов их атомы могут образовывать ковалентные химические связи с атомами других неметаллов и амфотерных элементов. В отличие от преимущественно ионной природы строения соединений типичных металлов, простые неметаллические вещества, а также соединения неметаллов имеют ковалентную природу строения.

    В свободном виде могут быть газообразные неметаллические простые вещества - фтор, хлор, кислород, азот, водород, твёрдые - иод, астат, сера, селен, теллур, фосфор, мышьяк, углерод, кремний, бор, при комнатной температуре в жидком состоянии существует бром.

    Все сложные вещества (то есть, состоящие из двух и более химических элементов) делятся на следующие группы:

    Оксиды - Соли - Основания - Кислоты

    Оксид (окисел, окись) - соединение химического элемента с кислородом, в котором сам кислород связан только с менее электроотрицательным элементом. Не считая фтора, кислород - самый электроотрицательный химический элемент, поэтому к оксидам относятся почти все соединения химических элементов с кислородом. К исключениям относятся, например, дифторид кислорода OF2.

    Оксиды - весьма распространенный тип соединений, содержащихся в земной коре и во вселенной вообще. Примерами таких соединений являются ржавчина, вода, песок, углекислый газ, ряд красителей. Окислами называется класс минералов, представляющих собой соединения металла с кислородом.

    Соединения, содержащие атомы кислорода, соединённые между собой, называются пероксидами (перекисями) и супероксидами. Они не относятся к категории оксидов.

    В зависимости от химических свойств различают: солеобразующие оксиды; основные оксиды (например, оксид натрия Na2O, оксид меди(II) CuO); кислотные оксиды (например, оксид серы(VI) SO3, оксид азота(IV) NO2); амфотерные оксиды (например, оксид цинка ZnO, оксид алюминия Al2О3); несолеобразующие оксиды (например, оксид углерода(II) СО, оксид азота(I) N2O, оксид азота(II) NO).

    Соли - класс химических соединений, кристаллические вещества, по внешнему виду похожие на обычную поваренную соль.

    Соли имеют ионную структуру. При растворении (диссоциации) в водных растворах соли дают положительно заряженные ионы металлов и отрицательно заряженные ионы кислотных остатков (иногда также ионы водорода или гидроксогруппы). В зависимости от соотношения количеств кислоты и основания в реакциях нейтрализации могут образоваться различные по составу соли.

    Типы солей:

    Средние (нормальные) соли - все атомы водорода в молекулах кислот замещены на атомы металла. Пример: Na2CO3, K3PO4;

    Кислые соли - атомы водорода в молекулах кислоты замещены атомами металла частично. Получаются они при нейтрализации основания избытком кислоты. Пример: NaHCO3, K2HPO4;

    Основные соли - гидроксогруппы основания (OH-) частично заменены кислотными остатками. Получаются при избытке основания. Пример: Mg(OH)Cl;

    Двойные соли - образуются при замещении атомов водорода в кислоте атомами двух разных металлов. Пример: CaCO3·MgCO3, Na2KPO4;

    Смешанные соли - в их составе один катион и два аниона. Пример: Ca(OCl)Cl;

    Гидратные соли (кристаллогидраты) - в их состав входят молекулы кристаллизационной воды. Пример: CuSO4·5H2O;

    Комплексные соли - особый класс солей. Это сложные вещества, в структуре которых выделяют координационную сферу, состоящую их комплексообразователя (центральной частицы) и окружающих его лигандов. Пример: K2, Cl3, (NO3)2;

    Особую группу составляют соли органических кислот, свойства которых значительно отличаются от свойств минеральных солей.

    Основания - (основные гидроксиды) - класс химических соединений, вещества, молекулы которых состоят из ионов металлов или иона аммония и одной (или нескольких) гидроксогруппы (гидроксида) -OH. В водном растворе диссоциируют с образованием катионов и анионов ОН-. Название основания обычно состоит из двух слов: «гидроксид металла/аммония». Хорошо растворимые в воде основания называются щелочами.

    Согласно другому определению, основания - один из основных классов химических соединений, вещества, молекулы которых являются акцепторами протонов. В органической химии по традиции основаниями называют также вещества, способные давать аддукты («соли») с сильными кислотами, например, многие алкалоиды описывают как в форме «алкалоид-основание», так и в виде «солей алкалоидов».

    Классификация оснований: растворимые в воде основания (щёлочи): LiOH, NaOH, KOH, Ca(OH)2; практически нерастворимые в воде гидрооксиды: Mg(OH)2, Zn(OH)2, Cu(OH)2, Al(OH)3, Fe(OH)3; другие основания: NH3 × H2O.

    Химические свойства:

    1. Действие на индикаторы: лакмус - синий, метилоранж - жёлтый, фенолфталеин - малиновый,

    2. Основание + кислота = Соли + вода NaOH + HCl = NaCl + H2O

    3. Щёлочь + кислотный оксид = соли + вода 2NaOH + SiO2 = Na2SiO3 + H2O

    4. Щёлочь + соли = (новое)основание + (новая) соль Ba(OH)2 + Na2SO4 = BaSO4&darr + 2NaOH

    Кислоты - один из основных классов химических соединений. Они получили своё название из-за кислого вкуса большинства кислот, таких, как азотная или серная. По определению кислота - это протолит (вещество, участвующее в реакциях с переходом протона), отдающий протон в реакции с основанием, то есть веществом, принимающим протон. В свете теории электролитической диссоциации кислота - это электролит, при электролитической диссоциации из катионов образуются лишь катионы водорода.

    Классификация кислот:

    По основности - количество атомов водорода: одноосновные (HPO3), двухосновные (H2SeO4, Азелаиновая кислота), трёхосновные (H3PO4);

    По силе: сильные (диссоциируют практически полностью, константы диссоциации больше 1·10-3 (HNO3)) и слабые (константа диссоциации меньше 1·10-3 (уксусная кислота Kд= 1,7·10-5));

    По устойчивости: устойчивые (H2SO4) и неустойчивые (H2CO3);

    По принадлежности к классам химических соединений: неорганические (HBr), органические (HCOOH);

    По летучести: летучие (H2S) и нелетучие;

    По растворимости: растворимые (H2SiO3) и нерастворимые.



    Статьи по теме: