§6. Нуклеиновые кислоты. АТФ. Что такое ДНК и РНК? Структура ДНК. Функции ДНК Что такое днк рнк и атф

Строение нуклеиновых кислот

Нуклеиновые кислоты – фосфосодержащие биополимеры живых организмов, обеспечивающие сохранение и передачу наследственной информации.

Макромолекулы нуклеиновых кислот открыл в 1869 г. Швейцарский химик Ф. Мишер в ядрах лейкоцитов, обнаруженных в навозе. Позже нуклеиновые кислоты выявили во всех клетках растений и животных, грибов, в бактериях и вирусах.

Замечание 1

Существует два вида нуклеиновых кислот – дезоксирибонуклеиновая (ДНК) и рибонуклеиновая (РНК) .

Как видно из названий, молекула ДНК содержит пентозный сахар дезоксирибозу, а молекула РНК – рибозу.

Сейчас известно большое количество разновидностей ДНК и РНК, которые отличаются друг от друга строением и значением в метаболизме.

Пример 1

В бактериальной клетке кишечной палочки содержится около 1000 разновидностей нуклеиновых кислот, а у животных и растений – ещё больше.

Каждому виду организмов характерен свой собственный набор этих кислот. ДНК локализируется преимущественно в хромосомах клеточного ядра (% всей ДНК клетки), а также в хлоропластах и митохондриях. РНК содержится в цитоплазме, ядрышках, рибосомах, митохондриях, пластидах.

Состоит молекула ДНК из двух полинуклеотидных цепей, спирально закрученных относительно друг друга. Цепы расположены антипараллельно, то есть 3́-конец и 5́-конец.

Структурными компонентами (мономерами) каждой такой цепи являются нуклеотиды . В молекулах нуклеиновых кислот количество нуклеотидов различно - от 80 в молекулах транспортных РНК до нескольких десятков тысяч в ДНК.

Любой нуклеотид ДНК содержит одно из четырёх азотистых оснований (аденин, тимин, цитозин и гуанин ), дезоксирибозу и остаток фосфорной кислоты .

Замечание 2

Нуклеотиды отличаются лишь азотистыми основаниями, между которыми существуют родственные связи. Тимин, цитозин и урацил относятся к пиримидиновым, а аденин и гуанин – к пуриновым основаниям.

Соседние нуклеотиды в полинуклеотидной цепи связаны ковалентными связями, образующимися между дезоксирибозой молекулы ДНК (или рибозой РНК) одного нуклеотида и остатком фосфорной кислоты другого.

Замечание 3

Хотя в молекуле ДНК только четыре типа нуклеотидов, но благодаря изменению последовательности их расположения в длинной цепи молекулы ДНК достигают огромного разнообразия.

Две полинуклеотидные цепи объединяются в единую молекулу ДНК с помощью водородных связей , которые образуются между азотистыми основаниями нуклеотидов разных цепей.

При этом аденин (А) способен соединяться только с тимином (Т), а гуанин (Г) – только с цитозином (Ц). В результате у различных организмов количество адениловых нуклеотидов равно количеству тимидиловых, а количество гуаниловых – количеству цитидиловых. Такая закономерность называется «правило Чаргаффа» . Таким образом определяется последовательность нуклеотидов в одной цепи согласно их последовательность в другой.

Такая способность нуклеотидов к выборочному соединению называется комплементарностью , и это свойство обеспечивает образование новых молекул ДНК на основании исходной молекулы (репликация ).

Замечание 4

Двойная спираль стабилизируется многочисленными водородными связями (две образуются между А и Т, три - между Г и Ц) и гидрофобными взаимодействиями.

Диаметр ДНК составляет 2 нм, шаг спирали – 3,4 нм, а в каждом витке содержится 10 пар нуклеотидов.

Длина молекулы нуклеиновых кислот достигает сотни тысяч нанометров. Это значительно превышает наибольшую макромолекулу белка, длина которой в развёрнутом виде не больше 100 – 200 нм.

Самоудвоение молекулы ДНК

Каждому клеточному делению при условии абсолютно чёткого соблюдения нуклеотидной последовательности предшествует репликация молекулы ДНК.

Начинается она с того, что временно раскручивается двойная спираль ДНК. Это происходит под действием ферментов ДНК-топоизомеразы и ДНК-геликазы. ДНК-полимераза и ДНК-праймаза катализируют полимеризацию нуклеозидтрифосфатов и образование новой цепи.

Точность репликации обеспечивается комплементарным (А – Т, Г – Ц) взаимодействием азотистых оснований матричной цепи, которая строится.

Замечание 5

Каждая полинуклеотидная цепь является матрицей для новой комплементарной цепи. В результате образуются две молекулы ДНК, одна половина каждой из которых происходит от материнской молекулы, а другая является заново синтезированной.

Причём синтезируются новые цепи сначала в виде коротких фрагментов, а потом специальным ферментом эти фрагменты «сшиваются» в длинные цепи.

Две образовавшиеся новые молекулы ДНК являются точной копией исходной молекулы благодаря репликации.

Этот процесс является основой для передачи наследственной информации, которая осуществляющейся на клеточном и организменном уровнях.

Замечание 6

Важнейшая особенность репликации ДНК – её высокая точность, которую обеспечивает специальный комплекс белков – «репликационная машина».

Функции «репликационной машины»:

  • продуцирует углеводы, образующие комплементарную пару с нуклеотидами материнской матричной цепи;
  • выступает катализатором при образовании ковалентной связи между концом растущей цепи и каждым новым нуклеотидом;
  • корректирует цепь, удаляя нуклеотиды, которые неправильно включились.

Число ошибок «репликационной машины» составляет очень малую величину, менее одной ошибки на 1 млрд. нуклеотидов.

Однако бывают случаи, когда «репликационная машина» может пропустить или вставить несколько лишних оснований, включить Ц вместо Т или А вместо Г. Каждая такая замена последовательности нуклеотидов в молекуле ДНК является генетической ошибкой и называется мутацией . Во всех последующих поколениях клеток такие ошибки будут снова воспроизводиться, что может привести к заметным негативным последствиям.

Типы РНК и их функции

РНК представляет из себя одну полинуклеотидную цепь (у некоторых вирусов две цепи).

Мономерами являются рибонуклеотиды.

Азотистые основания в нуклеотидах:

  • аденин (А);*
  • гуанин (Г);
  • цитозин (Ц);
  • урацил (У).*

Моносахарид – рибоза.

В клетке локализируется в ядре (ядрышке), митохондриях, хлоропластах, рибосомах, цитоплазме.

Синтезируется путём матричного синтеза по принципу комплементарности на одной из цепей ДНК, не способна к репликации (самоудвоению), лабильна.

Существуют различные типы РНК, которые отличаются по величине молекул, структуре, расположением в клетке и функциям.

Низкомолекулярные транспортные РНК (тРНК) составляют около 10% общего количества клеточной РНК.

В процессе передачи генетической информации каждая тРНК может присоединить и перенести лишь определённую аминокислоту (например, лизин) к рибосомам – месту синтеза белка. Но для каждой аминокислоты есть более одной тРНК. Потому существует намного больше 20 различных тРНК, которые отличаются по своей первичной структуре (имеют различную последовательность нуклеотидов).

Рибосомальные РНК (рРНК) составляют до 85% всех РНК клетки. Входя в состав рибосом они выполняют тем самым структурную функцию. Также рРНК берут участие в формировании активного центра рибосомы, где в процессе биосинтеза белка образуются пептидные связи между молекулами аминокислот.

С участием информационных, или матричных, РНК (иРНК) программируется синтез белков в клетке. Хотя их содержание в клетке относительно низкое – около 5% - от общей массы всех РНК клетки, по своему значению иРНК стоят на первом месте, поскольку они непосредственно осуществляют передачу кода ДНК для синтеза белков. При этом каждый белок клетки кодирует специфическая иРНК. Объясняется это тем, что РНК во время своего синтеза получают информацию от ДНК о структуре белка в виде скопированной последовательности нуклеотидов и для обработки и реализации переносят её к рибосоме.

Замечание 7

Значение всех типов РНК состоит в том, что они являются функционально объединённой системой, направленной на осуществление в клетке синтеза специфических для неё белков.

Химическое строение и роль АТФ в энергетическом обмене

Аденозинтрифосфорная кислота (АТФ ) содержится в каждой клетке – в гиалоплазме (растворимой фракции цитоплазмы), митохондриях, хлоропластах и ядре.

Она обеспечивает энергией большинство реакций, происходящих в клетке. С помощью АТФ клетка способна двигаться, синтезировать новые молекулы белков, жиров и углеводов, избавляться от продуктов распада, осуществлять активный транспорт и т.п.

Молекула АТФ образована азотистым основанием, пятиуглеродным сахаром рибозой и тремя остатками фосфорной кислоты. Фосфатные группы в молекуле АТФ между собой соединены высокоэнергетическими (макроэргическими) связями.

В результате гидролитического отщепления конечной фосфатной группы образуется аденозиндифосфорная кислота (АДФ ) и освобождается энергия.

После отщепления второй фосфатной группы образуется аденозинмонофосфорная кислота (АМФ) и высвобождается ещё одна порция энергии.

АТФ образуется из АДФ и неорганического фосфата за счёт энергии, которая освобождается во время окисления органических веществ и в процессе фотосинтеза. Называется этот процесс называется фосфориллированием. При этом должно быть использовано не менее 40 кДж/моль АТФ, аккумулированной в её макроэргических связях.

Значит, основное значение процессов дыхания и фотосинтеза состоит в том, что они поставляют энергию для синтеза АТФ, при участии которой в клетке происходит значительное количество различных процессов.

АТФ чрезвычайно быстро восстанавливается. Пример У человека каждая молекула АТФ расщепляется и снова возобновляется 2400 раз на сутки, потому средняя длительность её жизни менее 1 мин.

Синтез АТФ осуществляется главным образом в митохондриях и хлоропластах. АТФ, которая образовалась, по каналах эндоплазматического ретикуллюма поступает в те участки клетки, где необходима энергия.

Любые виды клеточной активности происходят за счёт энергии, которая освобождается во время гидролиза АТФ. Оставшаяся энергия (около 50%), которая освобождается во время расщепления молекул белков, жиров, углеводов и других органических соединений, рассеивается в виде тепла рассеивается и практически существенного значения для жизнедеятельности клетки не имеет.

К нуклеиновым кислотам относят высокополимерные соединения, распадающиеся при гидролизе на пуриновые и пиримидиновые основания, пентозу и фосфорную кислоту. Нуклеиновые кислоты содержат углерод, водород, фосфор, кислород и азот. Различают два класса нуклеиновых кислот: рибонуклеиновые кислоты (РНК) и дезоксирибонуклеиновые кислоты (ДНК) .

Строение и функции ДНК

ДНК — полимер, мономерами которой являются дезоксирибонуклеотиды. Модель пространственного строения молекулы ДНК в виде двойной спирали была предложена в 1953 г. Дж. Уотсоном и Ф. Криком (для построения этой модели они использовали работы М. Уилкинса, Р. Франклин, Э. Чаргаффа).

Молекула ДНК образована двумя полинуклеотидными цепями, спирально закрученными друг около друга и вместе вокруг воображаемой оси, т.е. представляет собой двойную спираль (исключение — некоторые ДНК-содержащие вирусы имеют одноцепочечную ДНК). Диаметр двойной спирали ДНК — 2 нм, расстояние между соседними нуклеотидами — 0,34 нм, на один оборот спирали приходится 10 пар нуклеотидов. Длина молекулы может достигать нескольких сантиметров. Молекулярный вес — десятки и сотни миллионов. Суммарная длина ДНК ядра клетки человека — около 2 м. В эукариотических клетках ДНК образует комплексы с белками и имеет специфическую пространственную конформацию.

Мономер ДНК — нуклеотид (дезоксирибонуклеотид) — состоит из остатков трех веществ: 1) азотистого основания, 2) пятиуглеродного моносахарида (пентозы) и 3) фосфорной кислоты. Азотистые основания нуклеиновых кислот относятся к классам пиримидинов и пуринов. Пиримидиновые основания ДНК (имеют в составе своей молекулы одно кольцо) — тимин, цитозин. Пуриновые основания (имеют два кольца) — аденин и гуанин.

Моносахарид нуклеотида ДНК представлен дезоксирибозой.

Название нуклеотида является производным от названия соответствующего основания. Нуклеотиды и азотистые основания обозначаются заглавными буквами.

Полинуклеотидная цепь образуется в результате реакций конденсации нуклеотидов. При этом между 3"-углеродом остатка дезоксирибозы одного нуклеотида и остатком фосфорной кислоты другого возникает фосфоэфирная связь (относится к категории прочных ковалентных связей). Один конец полинуклеотидной цепи заканчивается 5"-углеродом (его называют 5"-концом), другой — 3"-углеродом (3"-концом).

Против одной цепи нуклеотидов располагается вторая цепь. Расположение нуклеотидов в этих двух цепях не случайное, а строго определенное: против аденина одной цепи в другой цепи всегда располагается тимин, а против гуанина — всегда цитозин, между аденином и тимином возникают две водородные связи, между гуанином и цитозином — три водородные связи. Закономерность, согласно которой нуклеотиды разных цепей ДНК строго упорядоченно располагаются (аденин — тимин, гуанин — цитозин) и избирательно соединяются друг с другом, называется принципом комплементарности . Следует отметить, что Дж. Уотсон и Ф. Крик пришли к пониманию принципа комплементарности после ознакомления с работами Э. Чаргаффа. Э. Чаргафф, изучив огромное количество образцов тканей и органов различных организмов, установил, что в любом фрагменте ДНК содержание остатков гуанина всегда точно соответствует содержанию цитозина, а аденина — тимину («правило Чаргаффа» ), но объяснить этот факт он не смог.

Из принципа комплементарности следует, что последовательность нуклеотидов одной цепи определяет последовательность нуклеотидов другой.

Цепи ДНК антипараллельны (разнонаправлены), т.е. нуклеотиды разных цепей располагаются в противоположных направлениях, и, следовательно, напротив 3"-конца одной цепи находится 5"-конец другой. Молекулу ДНК иногда сравнивают с винтовой лестницей. «Перила» этой лестницы — сахарофосфатный остов (чередующиеся остатки дезоксирибозы и фосфорной кислоты); «ступени» — комплементарные азотистые основания.

Функция ДНК — хранение и передача наследственной информации.

Репликация (редупликация) ДНК

— процесс самоудвоения, главное свойство молекулы ДНК. Репликация относится к категории реакций матричного синтеза, идет с участием ферментов. Под действием ферментов молекула ДНК раскручивается, и около каждой цепи, выступающей в роли матрицы, по принципам комплементарности и антипараллельности достраивается новая цепь. Таким образом, в каждой дочерней ДНК одна цепь является материнской, а вторая — вновь синтезированной. Такой способ синтеза называется полуконсервативным .

«Строительным материалом» и источником энергии для репликации являются дезоксирибонуклеозидтрифосфаты (АТФ, ТТФ, ГТФ, ЦТФ), содержащие три остатка фосфорной кислоты. При включении дезоксирибонуклеозидтрифосфатов в полинуклеотидную цепь два концевых остатка фосфорной кислоты отщепляются, и освободившаяся энергия используется на образование фосфодиэфирной связи между нуклеотидами.

В репликации участвуют следующие ферменты:

  1. геликазы («расплетают» ДНК);
  2. дестабилизирующие белки;
  3. ДНК-топоизомеразы (разрезают ДНК);
  4. ДНК-полимеразы (подбирают дезоксирибонуклеозидтрифосфаты и комплементарно присоединяют их к матричной цепи ДНК);
  5. РНК-праймазы (образуют РНК-затравки, праймеры);
  6. ДНК-лигазы (сшивают фрагменты ДНК).

С помощью геликаз в определенных участках ДНК расплетается, одноцепочечные участки ДНК связываются дестабилизирующими белками, образуется репликационная вилка . При расхождении 10 пар нуклеотидов (один виток спирали) молекула ДНК должна совершить полный оборот вокруг своей оси. Чтобы предотвратить это вращение ДНК-топоизомераза разрезает одну цепь ДНК, что дает ей возможность вращаться вокруг второй цепи.

ДНК-полимераза может присоединять нуклеотид только к 3"-углероду дезоксирибозы предыдущего нуклеотида, поэтому данный фермент способен передвигаться по матричной ДНК только в одном направлении: от 3"-конца к 5"-концу этой матричной ДНК. Так как в материнской ДНК цепи антипараллельны, то на ее разных цепях сборка дочерних полинуклеотидных цепей происходит по-разному и в противоположных направлениях. На цепи 3"-5" синтез дочерней полинуклеотидной цепи идет без перерывов; эта дочерняя цепь будет называться лидирующей . На цепи 5"-3" — прерывисто, фрагментами (фрагменты Оказаки ), которые после завершения репликации ДНК-лигазами сшиваются в одну цепь; эта дочерняя цепь будет называться запаздывающей (отстающей ).

Особенностью ДНК-полимеразы является то, что она может начинать свою работу только с «затравки» (праймера ). Роль «затравок» выполняют короткие последовательности РНК, образуемые при участи фермента РНК-праймазы и спаренные с матричной ДНК. РНК-затравки после окончания сборки полинуклеотидных цепочек удаляются.

Репликация протекает сходно у прокариот и эукариот. Скорость синтеза ДНК у прокариот на порядок выше (1000 нуклеотидов в секунду), чем у эукариот (100 нуклеотидов в секунду). Репликация начинается одновременно в нескольких участках молекулы ДНК. Фрагмент ДНК от одной точки начала репликации до другой образует единицу репликации — репликон .

Репликация происходит перед делением клетки. Благодаря этой способности ДНК осуществляется передача наследственной информации от материнской клетки дочерним.

Репарация («ремонт»)

Репарацией называется процесс устранения повреждений нуклеотидной последовательности ДНК. Осуществляется особыми ферментными системами клетки (ферменты репарации ). В процессе восстановления структуры ДНК можно выделить следующие этапы: 1) ДНК-репарирующие нуклеазы распознают и удаляют поврежденный участок, в результате чего в цепи ДНК образуется брешь; 2) ДНК-полимераза заполняет эту брешь, копируя информацию со второй («хорошей») цепи; 3) ДНК-лигаза «сшивает» нуклеотиды, завершая репарацию.

Наиболее изучены три механизма репарации: 1) фоторепарация, 2) эксцизная, или дорепликативная, репарация, 3) пострепликативная репарация.

Изменения структуры ДНК происходят в клетке постоянно под действием реакционно-способных метаболитов, ультрафиолетового излучения, тяжелых металлов и их солей и др. Поэтому дефекты систем репарации повышают скорость мутационных процессов, являются причиной наследственных заболеваний (пигментная ксеродерма, прогерия и др.).

Строение и функции РНК

— полимер, мономерами которой являются рибонуклеотиды . В отличие от ДНК, РНК образована не двумя, а одной полинуклеотидной цепочкой (исключение — некоторые РНК-содержащие вирусы имеют двухцепочечную РНК). Нуклеотиды РНК способны образовывать водородные связи между собой. Цепи РНК значительно короче цепей ДНК.

Мономер РНК — нуклеотид (рибонуклеотид) — состоит из остатков трех веществ: 1) азотистого основания, 2) пятиуглеродного моносахарида (пентозы) и 3) фосфорной кислоты. Азотистые основания РНК также относятся к классам пиримидинов и пуринов.

Пиримидиновые основания РНК — урацил, цитозин, пуриновые основания — аденин и гуанин. Моносахарид нуклеотида РНК представлен рибозой.

Выделяют три вида РНК : 1) информационная (матричная) РНК — иРНК (мРНК), 2) транспортная РНК — тРНК, 3) рибосомная РНК — рРНК.

Все виды РНК представляют собой неразветвленные полинуклеотиды, имеют специфическую пространственную конформацию и принимают участие в процессах синтеза белка. Информация о строении всех видов РНК хранится в ДНК. Процесс синтеза РНК на матрице ДНК называется транскрипцией.

Транспортные РНК содержат обычно 76 (от 75 до 95) нуклеотидов; молекулярная масса — 25 000-30 000. На долю тРНК приходится около 10% от общего содержания РНК в клетке. Функции тРНК: 1) транспорт аминокислот к месту синтеза белка, к рибосомам, 2) трансляционный посредник. В клетке встречается около 40 видов тРНК, каждый из них имеет характерную только для него последовательность нуклеотидов. Однако у всех тРНК имеется несколько внутримолекулярных комплементарных участков, из-за которых тРНК приобретают конформацию, напоминающую по форме лист клевера. У любой тРНК есть петля для контакта с рибосомой (1), антикодоновая петля (2), петля для контакта с ферментом (3), акцепторный стебель (4), антикодон (5). Аминокислота присоединяется к 3"-концу акцепторного стебля. Антикодон — три нуклеотида, «опознающие» кодон иРНК. Следует подчеркнуть, что конкретная тРНК может транспортировать строго определенную аминокислоту, соответствующую ее антикодону. Специфичность соединения аминокислоты и тРНК достигается благодаря свойствам фермента аминоацил-тРНК-синтетаза.

Рибосомные РНК содержат 3000-5000 нуклеотидов; молекулярная масса — 1 000 000-1 500 000. На долю рРНК приходится 80-85% от общего содержания РНК в клетке. В комплексе с рибосомными белками рРНК образует рибосомы — органоиды, осуществляющие синтез белка. В эукариотических клетках синтез рРНК происходит в ядрышках. Функции рРНК : 1) необходимый структурный компонент рибосом и, таким образом, обеспечение функционирования рибосом; 2) обеспечение взаимодействия рибосомы и тРНК; 3) первоначальное связывание рибосомы и кодона-инициатора иРНК и определение рамки считывания, 4) формирование активного центра рибосомы.

Информационные РНК разнообразны по содержанию нуклеотидов и молекулярной массе (от 50 000 до 4 000 000). На долю иРНК приходится до 5% от общего содержания РНК в клетке. Функции иРНК : 1) перенос генетической информации от ДНК к рибосомам, 2) матрица для синтеза молекулы белка, 3) определение аминокислотной последовательности первичной структуры белковой молекулы.

Строение и функции АТФ

Аденозинтрифосфорная кислота (АТФ) — универсальный источник и основной аккумулятор энергии в живых клетках. АТФ содержится во всех клетках растений и животных. Количество АТФ в среднем составляет 0,04% (от сырой массы клетки), наибольшее количество АТФ (0,2-0,5%) содержится в скелетных мышцах.

АТФ состоит из остатков: 1) азотистого основания (аденина), 2) моносахарида (рибозы), 3) трех фосфорных кислот. Поскольку АТФ содержит не один, а три остатка фосфорной кислоты, она относится к рибонуклеозидтрифосфатам.

Для большинства видов работ, происходящих в клетках, используется энергия гидролиза АТФ. При этом при отщеплении концевого остатка фосфорной кислоты АТФ переходит в АДФ (аденозиндифосфорную кислоту), при отщеплении второго остатка фосфорной кислоты — в АМФ (аденозинмонофосфорную кислоту). Выход свободной энергии при отщеплении как концевого, так и второго остатков фосфорной кислоты составляет по 30,6 кДж. Отщепление третьей фосфатной группы сопровождается выделением только 13,8 кДж. Связи между концевым и вторым, вторым и первым остатками фосфорной кислоты называются макроэргическими (высокоэнергетическими).

Запасы АТФ постоянно пополняются. В клетках всех организмов синтез АТФ происходит в процессе фосфорилирования, т.е. присоединения фосфорной кислоты к АДФ. Фосфорилирование происходит с разной интенсивностью при дыхании (митохондрии), гликолизе (цитоплазма), фотосинтезе (хлоропласты).

АТФ является основным связующим звеном между процессами, сопровождающимися выделением и накоплением энергии, и процессами, протекающими с затратами энергии. Кроме этого, АТФ наряду с другими рибонуклеозидтрифосфатами (ГТФ, ЦТФ, УТФ) является субстратом для синтеза РНК.

    Перейти к лекции №3 «Строение и функции белков. Ферменты»

    Перейти к лекции №5 «Клеточная теория. Типы клеточной организации»

Что такое ДНК и РНК? Каковы их функции и значение в нашем мире? Из чего они состоят и как работают? Об этом и не только рассказывается в статье.

Что такое ДНК и РНК

Биологические науки, изучающие принципы хранения, реализации и передачи генетической информации, структуру и функции нерегулярных биополимеров относятся к молекулярной биологии.

Биополимеры, высокомолекулярные органические соединения, которые образовались из остатков нуклеотидов, являются нуклеиновыми кислотами. Они хранят информацию о живом организме, определяют его развитие, рост, наследственность. Эти кислоты участвуют в биосинтезе белка.

Различают два вида нуклеиновых кислот, содержащихся в природе:

  • ДНК — дезоксирибонуклеиновая;
  • РНК — рибонуклеиновая.

О том, что такое ДНК, миру было поведано в 1868 году, когда ее открыли в клеточных ядрах лейкоцитов и сперматозоидов лосося. Позже они были обнаружены во всех животных и растительных клетках, а также в бактериях, вирусах и грибах. В 1953 году Дж. Уотсон и Ф. Крик в результате рентгено-структурного анализа выстроили модель, состоящую из двух полимерных цепей, которые закручены спиралью одна вокруг другой. В 1962 году эти ученые были удостоены Нобелевской премии за свое открытие.

Дезоксирибонуклеиновая кислота

Что такое ДНК? Это нуклеиновая кислота, которая содержит генотип индивида и передает информацию по наследству, самовоспроизводясь. Поскольку эти молекулы являются очень большими, имеется огромное количество возможных последовательностей из нуклеотидов. Поэтому число различных молекул является фактически бесконечным.

Структура ДНК

Это самые крупные биологические молекулы. Их размер составляет от одной четверти у бактерий до сорока миллиметров в ДНК человека, что гораздо больше максимального размера белка. Они состоят из четырех мономеров, структурных компонентов нуклеиновых кислот — нуклеотидов, в которые входит азотистое основание, остаток фосфорной кислоты и дезоксирибоза.

Азотистые основания имеют двойное кольцо из углерода и азота— пурины, и одно кольцо — пиримидины.

Пуринами являются аденин и гуанин, а пиримидинами — тимин и цитозин. Они обозначаются заглавными латинскими буквами: A, G, T, C; а в русской литературе — на кириллице: А, Г, Т, Ц. При помощи химической водородной связи они соединяются друг с другом, в результате чего появляются нуклеиновые кислоты.

Во Вселенной именно спираль является наиболее распространенной формой. Так и структура ДНК молекулы тоже имеет ее. Полинуклеотидная цепочка закручена наподобие винтовой лестницы.

Цепи в молекуле направлены противоположно друг от друга. Получается, если в одной цепи от 3"-конца к 5", то в другой цепи ориентация будет наоборот от 5"-конца к 3".

Принцип комплементарности

Две нити соединяются в молекулу азотистыми основаниями таким образом, что аденин имеет связь с тимином, а гуанин — только с цитозином. Последовательно расположенные нуклеотиды в одной цепи определяют другую. Это соответствие, лежащее в основе появления новых молекул в результате репликации или удвоения, стало называться комплементарностью.

Получается, что число адениловых нуклеотидов равно числу тимидиловых, а гуаниловые равны количеству цитидиловых. Это соответствие стало называться «правилом Чаргаффа».

Репликация

Процесс самовоспроизведения, протекающий под контролем ферментов, является основным свойством ДНК.

Все начинается с раскручивания спирали благодаря ферменту ДНК-полимеразы. После разрыва водородных связей, в одной и в другой нитях синтезируется дочерняя цепь, материалом для которой выступают свободные нуклеотиды, имеющиеся в ядре.

Каждая цепь ДНК является матрицей для новой цепи. В результате из одной получаются две абсолютно идентичные материнской молекулы. При этом одна нить синтезируется сплошной, а другая сначала фрагментарно, лишь затем соединяясь.

Гены ДНК

Молекула несет в себе всю важную информацию о нуклеотидах, определяет расположение аминокислот в белках. ДНК человека и всех других организмов хранит сведения о его свойствах, передавая их потомкам.

Частью ее является ген — группа нуклеотидов, которая кодирует информацию о белке. Совокупность генов клетки образует ее генотип или геном.

Гены расположены на определенном участке ДНК. Они состоят из определенного числа нуклеотидов, которые расположены в последовательной комбинации. Имеется в виду то, что ген не может поменять свое место в молекуле, и он имеет совершенно конкретное число нуклеотидов. Их последовательность уникальна. Например, для получения адреналина используется один порядок, а для инсулина — другой.

Кроме генов, в ДНК располагаются некодирующие последовательности. Они регулируют работу генов, помогают хромосомам и отмечают начало и конец гена. Но сегодня остается неизвестной роль большинства из них.

Рибонуклеиновая кислота

Эта молекула во многом схожа с дезоксирибонуклеиновой кислотой. Однако она не такая большая, как ДНК. И РНК также состоит из полимерных нуклеотидов четырех типов. Три из них сходны с ДНК, но вместо тимина в нее входит урацил (U или У). Кроме этого, РНК состоит из углевода — рибозы. Главным отличием служит то, что спираль этой молекулы является одинарной, в отличие от двойной в ДНК.

Функции РНК

В основе функций рибонуклеиновой кислоты лежат три различных вида РНК.

Информационная передает генетическую информацию от ДНК в цитоплазму ядра. Ее еще называют матричной. Это незамкнутая цепь, синтезирующаяся в ядре при помощи фермента РНК-полимеразы. Несмотря на то что в молекуле ее процентное содержание чрезвычайно низкое (от трех до пяти процентов клетки), на ней лежит важнейшая функция - являться матрицей для синтеза белков, информируя об их структуре с молекул ДНК. Один белок кодируется одной специфичной ДНК, поэтому их числовое значение равное.

Рибосомная в основном состоит из цитоплазматических гранул — рибосом. Р-РНК синтезируются в ядре. На их долю приходится примерно восемьдесят процентов всей клетки. Этот вид обладает сложной структурой, образовывая петли на комплементарных частях, что ведет к молекулярной самоорганизации в сложное тело. Среди них имеются три типа у прокариот, и четыре — у эукариот.

Транспортная действует в роли «адаптера», выстраивая в соответствующем порядке аминокислоты полипептидной цепи. В среднем, она состоит из восьмидесяти нуклеотидов. В клетке их содержится, как правило, почти пятнадцать процентов. Она предназначена переносить аминокислоты туда, где белок синтезируется. В клетке насчитывается от двадцати до шестидесяти типов транспортной РНК. У них всех — сходная организация в пространстве. Они приобретают структуру, которую называют клеверным листом.

Значение РНК и ДНК

Когда было открыто, что такое ДНК, ее роль не была такой очевидной. Даже сегодня, несмотря на то, что раскрыто намного больше информации, остаются без ответов некоторые вопросы. А какие-то, возможно, еще даже не сформулированы.

Общеизвестное биологическое значение ДНК и РНК заключаются в том, что ДНК передает наследственную информацию, а РНК участвует в синтезе белка и кодирует белковую структуру.

Однако существуют версии, что эта молекула связана с нашей духовной жизнью. Что такое ДНК человека в этом смысле? Она содержит всю информацию о нем, его жизнедеятельности и наследственности. Метафизики считают, что опыт прошлых жизней, восстановительные функции ДНК и даже энергия Высшего «Я» - Творца, Бога содержится в ней.

По их мнению, цепочки содержат коды, касающиеся всех аспектов жизни, включая и духовную часть. Но некоторая информация, например, о восстановлении своего тела, расположена в структуре кристалла многомерного пространства, находящегося вокруг ДНК. Она представляет собой двенадцатигранник и является памятью всей жизненной силы.

Ввиду того, что человек не обременяет себя духовными знаниями, обмен информации в ДНК с кристаллической оболочкой происходит очень медленно. У среднестатистического человека он составляет всего пятнадцать процентов.

Предполагается, что это было сделано специально для сокращения жизни человека и падения на уровень дуальности. Таким образом, у человека растет кармический долг, а на планете поддерживается необходимый для некоторых сущностей уровень вибрации.


Углеводы - это органические соединения, в состав которых входят углерод, водород и кислород. Углеводы делятся на моно-, ди- и полисахариды.

Моносахариды - простые сахара, состоящие из 3 и более атомов С. Моносахариды: глюкоза, рибоза и дезоксирибоза. Не гидролизуются, могут кристаллизоваться, растворимы в воде, имеют сладкий вкус

Полисахариды образуются в результате полимеризации моносахаридов. При этом утрачивают способность к кристаллизации, сладкий вкус. Пример - крахмал, гликоген, целлюлоза.

1. Энергетическая - это основной источник энергии в клетке (1 грамм=17,6 кДж)

2. структурная-входят в состав оболочек растительных клеток (целлюлоза) и животных клеток

3. источник для синтеза других соединений

4. запасающая (гликоген - у животных клеток, крахмал - у растительных)

5. соединительная

Липиды - сложные соединения глицерина и жирных кислот. Нерастворимы в воде, только в органических растворителях. Различают простые и сложные липиды.

Функции липидов:

1. структурная - основа, для всех мембран клетки

2. энергетическая (1 г=37,6 кДж)

3. запасающая

4. теплоизоляционная

5. источник внутриклеточной воды

АТФ - единое универсальное энергоемкое вещество в клетках растений, животных и микроорганизмов. С помощью АТФ осуществляется накопление и транспорт энергии в клетке. В состав АТФ входят: азотистое основание–адеин, углевод рибоза и три остатка фосфорной кислоты. Фосфатные группы соединены между собой с помощью макроэргических связей. Функции АТФ - перенос энергии.

Белки являются преобладающим веществом во всех живых организмов. Белок - полимер, мономером которого являютсяаминокислоты (20). Аминокислоты соединяются в белковой молекуле с помощью пептидных связей, образующихся между аминогруппой одной аминокислоты и карбоксильной группой другой. Каждая клетка имеет уникальный набор белков.

Различают несколько уровней организации белковой молекулы. Первичная структура-последовательность аминокислот, соединенных пептидной связью. Эта структура определяет специфичность белка. Во вторичной структуре молекула имеет вид спирали, ее устойчивость обеспечивается водородными связями. Третичная структура формируется в результате преобразования спирали в трехмерную шаровидную форму - глобулу. Четвертичная возникает при объединении несколько молекул белков в единый комплекс. Функциональная активность белков проявляется во 2,3,или 3-ой структуре.

Структура белков изменяется под влиянием различных химических веществ (кислоты, щелочи, спирта и других) и физических факторов (высокой и низкой t,излучения), ферментов. Если при этих изменениях сохраняется первичная структура, процесс обратим и называется денатурация. Разрушение первичной структуры называется коагуляцией (необратимый процесс разрушения белка)

Функции белков

1. структурная

2. каталитическая

3. сократительная (белки актин и миозин в мышечных волокнах)

4. транспортная (гемоглобин)

5. регуляторная (инсулин)

6. сигнальная

7. защитная

8. энергетическая (1 г=17,2 кДж)

Виды нуклеиновых кислот. Нуклеиновые кислоты - фосфорсодержащие биополимеры живых организмов, обеспечивающие хранение и передачу наследственной информации. Они были открыты в 1869 г. швейцарским биохимиком Ф. Мишером в ядрах лейкоцитов, сперматозоидов лосося. Впоследствии нуклеиновые кислоты обнаружили во всех растительных и животных клетках, вирусах, бактериях и грибах.

В природе существует два вида нуклеиновых кислот - дезоксирибонуклеиновые (ДНК) и рибонуклеиновые (РНК). Различие в названиях объясняется тем, что молекула ДНК содержит пятиуглеродный сахар дезоксирибозу, а молекула РНК - рибозу.

ДНК находится преимущественно в хромосомах клеточного ядра (99% всей ДНК клетки), а также в митохондриях и хлоропластах. РНК входит в состав рибосом; молекулы РНК содержатся также в цитоплазме, матриксе пластид и митохондрий.

Нуклеотиды - структурные компоненты нуклеиновых кислот. Нуклеиновые кислоты представляют собой биополимеры, мономерами которых являются нуклеотиды.

Нуклеотиды - сложные вещества. В состав каждого нуклеотида входит азотистое основание, пятиуглеродный сахар (рибоза или дезоксирибоза) и остаток фосфорной кислоты.

Существует пять основных азотистых оснований: аденин, гуанин, урацил, тимин и цитозин.

ДНК. Молекула ДНК состоит из двух полинуклеотидных, спирально закрученных относительно друг друга цепочек.

В состав нуклеотидов молекулы ДНК входят четыре вида азотистых оснований: аденин, гуанин, тимин и цитоцин. В полинуклеотидной цепочке соседние нуклеотиды связаны между собой ковалентными связями.

Полинуклеотидная цепь ДНК закручена в виде спирали наподобие винтовой лестницы и соединена с другой, комплементарной ей цепью с помощью водородных связей, образующихся между аденином и тимином (две связи), а также гуанином и цитозином (три связи). Нуклеотиды А и Т, Г и Ц называются комплементарными.

В результате у всякого организма число адениловых нуклеотидов равно числу тимидиловых, а число гуаниловых - числу цитидиловых. Благодаря этому свойству последовательность нуклеотидов в одной цепи определяет их последовательность в другой. Такая способность к избирательному соединению нуклеотидов называется комплемен-тарностью, и это свойство лежит в основе образования новых молекул ДНК на базе исходной молекулы (репликации, т. е. удвоения).

При изменении условий ДНК, подобно белкам, может подвергаться денатурации, которая называется плавлением. При постепенном возврате к нормальным условиям ДНК ренатурирует.

Функцией ДНК является хранение, передача и воспроизведение в ряду поколений генетической информации. В ДНК любой клетки закодирована информация обо всех белках данного организма, о том, какие белки, в какой последовательности и в каком количестве будут синтезироваться. Последовательность аминокислот в белках записана в ДНК так называемым генетическим (триплетным) кодом.

Основным свойством ДНК является ее способность к репликации.

Репликация - это процесс самоудвоения молекул ДНК, происходящий под контролем ферментов. Репликация осуществляется перед каждым делением ядра. Начинается она с того, что спираль ДНК временно раскручивается под действием фермента ДНК-полимеразы. На каждой из цепей, образовавшихся после разрыва водородных связей, по принципу комплементарности синтезируется дочерняя цепь ДНК. Материалом для синтеза служат свободные нуклеотиды, которые есть в ядре

Таким образом, каждая полинуклеотидная цепь выполняет роль матрицы для новой комплементарной цепи (поэтому процесс удвоения молекул ДНК относится к реакциям матричного синтеза). В результате получается две молекулы ДНК, у каждой из которых " одна цепь остается от родительской молекулы (половина), а другая - вновь синтезированная. Причем одна новая цепь синтезируются сплошной, а вторая - сначала в виде коротких фрагментов, которые затем сшиваются в длинную цепь специальным ферментом - ДНК-лигазой. В результате репликации две новые молекулы ДНК представляют собой точную копию исходной молекулы.

Биологический смысл репликации заключается в точной передаче наследственной информации от материнской клетки к дочерним, что и происходит при делении соматических клеток.

РНК. Строение молекул РНК во многом сходно со строением молекул ДНК. Однако имеется и ряд существенных отличий. В молекуле РНК вместо дезоксирибозы в состав нуклеотидов входит рибоза, вместо тимидилового нуклеотида (Т) - уридиловый (У). Главное отличие от ДНК состоит в том, что молекула РНК представляет собой одну цепь. Однако ее нуклеотиды способны образовывать водородные связи между собой (например, в молекулах тРНК, рРНК), но в этом случае речь идет о внутрицепочечном соединении комплементарных нуклеотидов. Цепочки РНК значительно короче ДНК.

В клетке существует несколько видов РНК, которые различаются по величине молекул, структуре, расположению в клетке и функциям:

1. Информационная (матричная) РНК (иРНК) - переносит генетическую информацию с ДНК на рибосомы

2. Рибосомная РНК (рРНК) - входит в состав рибосом

3. 3. Транспортная РНК (тРНК) - переносит аминокислоты к рибосомам во время синтеза белка



Вспомните, что такое мономер и полимер. Какие вещества являются мономерами белков? Чем белки как полимеры отличаются от крахмала?

Нуклеиновые кислоты занимают особое место среди органических веществ клетки. Они впервые были выделены из ядер клеток, за что и получили свое название (от лат. нуклеус - ядро). Впоследствии нуклеиновые кислоты были обнаружены в цитоплазме и в некоторых других органоидах клетки. Но первоначальное название за ними сохранилось.

Нуклеиновые кислоты, как и белки, являются полимерами, но их мономеры нуклеотиды имеют более сложное строение. Число нуклеотидов в цепи может достигать 30000. Нуклеиновые кислоты - наиболее высокомолекулярные органические вещества клетки.

Рис. 24. Строение и виды нуклеотидов

В клетках встречаются два типа нуклеиновых кислот: дезоксирибонуклеиновая кислота (ДНК) и рибонуклеиновая кислота (РНК). Они различаются нуклеотидным составом, строением полинуклеотидной цепи, молекулярной массой и выполняемыми функциями.

Рис. 25. Полинуклеотидная цепь

Состав и строение ДНК. В состав нуклеотидов молекулы ДНК входят фосфорная кислота, углевод дезоксирибоза (с чем связано название ДНК) и азотистые основания - аденин (А), тимин (Т), гуанин (Г), цитозин (Ц) (рис. 24, 25).

Эти основания попарно соответствуют друг другу по строению (А = Т, Г = Ц) и могут легко соединяться при помощи водородных связей. Такие парные основания называют комплементарными (от лат. комплементум - дополнение).

Английские ученые Джеймс Уотсон и Френсис Крик в 1953 г. установили, что молекула ДНК состоит из двух спирально закрученных цепей. Остов цепи образован остатками фосфорной кислоты и дезоксирибозы, а азотистые основания направлены внутрь спирали (рис. 26, 27). Две цепи соединяются друг с другом благодаря водородным связям между комплементарными основаниями.

Рис. 26. Схема молекулы ДНК

В клетках молекулы ДНК находятся в ядре. Они образуют нити хроматина, а перед делением клетки спирализуются, соединяются с белками и превращаются в хромосомы. Кроме того, специфические ДНК имеются в митохондриях и хлоропластах.

ДНК в клетке отвечают за хранение и передачу наследственной информации. В ней закодирована информация о структуре всех белков организма. Число молекул ДНК служит генетическим признаком отдельного вида организма, а нуклеотидная последовательность специфична для каждого индивида.

Строение и виды РНК. В состав молекулы РНК входят фосфорная кислота, углевод - рибоза (отсюда название рибонуклеиновая кислота), азотистые основания: аденин (А), урацил (У), гуанин (Г), цитозин (Ц). Вместо тимина здесь встречается урацил, который комплементарен аденину (А = У). Молекулы РНК, в отличие от ДНК, состоят из одной полинуклеотидной цепи (рис. 25), которая может иметь прямые и спиральные участки, образовывать с помощью водородных связей петли между комплементарными основаниями. Молекулярная масса РНК значительно ниже, чем ДНК.

В клетках молекулы РНК находятся в ядре, цитоплазме, хлоропластах, митохондриях и рибосомах. Различают три вида РНК, которые имеют разные молекулярную массу, форму молекул и выполняют разные функции.

Информационные РНК (иРНК) переносят информацию о структуре белка от ДНК к месту его синтеза на рибосомах. Каждая молекула иРНК содержит полную информацию, необходимую для синтеза одной молекулы белка. Из всех видов РНК самые крупные иРНК.

Рис. 27. Двойная спираль молекулы ДНК (объемная модель)

Транспортные РНК (тРНК) - самые короткие молекулы. Их структура напоминает по форме клеверный лист (рис. 62). Они транспортируют аминокислоты к месту синтеза белка на рибосомы.

Рибосомальные РНК (рРНК) составляют более 80% всей массы РНК в клетке и вместе с белками входят в состав рибосом.

АТФ. Кроме полинуклеотидных цепей в клетке находятся мононуклеотиды, имеющие тот же состав и строение, что и нуклеотиды, входящие в состав ДНК и РНК. Наиболее важным из них является АТФ - аденозинтрифосфат.

Молекула АТФ состоит из рибозы, аденина и трех остатков фосфорной кислоты, между которыми имеются две высокоэнергетические связи (рис. 28). Энергия каждой из них составляет 30,6 кДж/моль. Поэтому ее и называют макроэргической в отличие от простой связи, энергия которой составляет около 13 кДж/моль. При отщеплении от молекулы АТФ одного или двух остатков фосфорной кислоты образуется соответственно молекула АДФ (адено-зиндифосфат) или АМФ (аденозинмонофосфат). При этом выделяется энергии в два с половиной раза больше, чем при расщеплении других органических веществ.

Рис. 28. Строение молекулы аленозинтрифосфата (АТФ) и ее роль в превращении энергии

АТФ является ключевым веществом обменных процессов в клетке и универсальным источником энергии. Синтез молекул АТФ происходит в митохондриях, хлоропластах. Энергия запасается в результате реакций окисления органических веществ и аккумуляции солнечной энергии. Клетка использует эту запасенную энергию во всех процессах жизнедеятельности.

Упражнения по пройденному материалу

  1. Что является мономером нуклеиновых кислот? Из каких компонентов он состоит?
  2. Чем нуклеиновые кислоты, как полимеры, отличаются от белков?
  3. Что такое комплементирность? Назовите ком племен тарные основания. Какие связи образуются между ними?
  4. Какую роль в живых телах природы играют молекулы РНК?
  5. Функцию АТФ в клетке иногда сравнивают с аккумулятором или батарейкой. Объясните смысл такого сравнения.


Статьи по теме: