Выделить полный квадрат онлайн. Интегрирование некоторых дробей. Методы и приёмы решения

1156, , 1296, 1369, 1444, 1521, 1600, 1681, 1764, 1849, 1936, 2025, 2116, 2209, 2304, 2401, 2500, … (последовательность A000290 в OEIS)

Таблица квадратов
_0 _1 _2 _3 _4 _5 _6 _7 _8 _9
0_ 0 1 4 9 16 25 36 49 64 81
1_ 100 121 144 169 196 225 256 289 324 361
2_ 400 441 484 529 576 625 676 729 784 841
3_ 900 961 1024 1089 1156 1225 1296 1369 1444 1521
4_ 1600 1681 1764 1849 1936 2025 2116 2209 2304 2401
5_ 2500 2601 2704 2809 2916 3025 3136 3249 3364 3481
6_ 3600 3721 3844 3969 4096 4225 4356 4489 4624 4761
7_ 4900 5041 5184 5329 5476 5625 5776 5929 6084 6241
8_ 6400 6561 6724 6889 7056 7225 7396 7569 7744 7921
9_ 8100 8281 8464 8649 8836 9025 9216 9409 9604 9801

Представления и свойства

Квадрат натурального числа n можно представить в виде суммы первых n нечётных чисел :

1: 1 = 1
2: 4 = 1 + 3
...
7: 49 = 1 + 3 + 5 + 7 + 9 + 11 + 13
...

Ещё один способ представления квадрата натурального числа:
n^2 = 1 + 1 + 2 + 2 + ... + (n - 1) + (n - 1) + n
Пример:

1: 1 = 1
2: 4 = 1 + 1 + 2
...
4: 16 = 1 + 1 + 2 + 2 + 3 + 3 + 4
...

Каждое натуральное число может быть представлено как сумма четырёх квадратов (теорема Лагранжа о сумме четырёх квадратов).

Единственное число > 1, которое является одновременно квадратным и пирамидальным.

Суммы пар последовательных треугольных чисел являются квадратными числами.

В десятичной записи квадратные числа имеют следующие свойства:

  • Последняя цифра квадрата в десятичной записи может быть равной 0, 1, 4, 5, 6 или 9 (квадратичные вычеты по модулю 10).
  • Квадрат не может оканчиваться нечётным количеством нолей.
  • Квадрат либо делится на 4, либо при делении на 8 даёт остаток 1. Квадрат либо делится на 9, либо при делении на 3 даёт остаток 1.
  • Две последние цифры квадрата в десятичной записи могут принимать значения 00, 01, 04, 09, 16, 21, 24, 25, 29, 36, 41, 44, 49, 56, 61, 64, 69, 76, 81, 84, 89 или 96 (квадратичные вычеты по модулю 100). Зависимость предпоследней цифры квадрата от последней можно представить в виде следующей таблицы:

Геометрическое представление

1
4


9




16






25







по математике . Вы можете помочь проекту, дополнив её.

Отрывок, характеризующий Полный квадрат

Каратаев замолчал, радостно улыбаясь, глядя на огонь, и поправил поленья.
– Старичок и говорит: бог, мол, тебя простит, а мы все, говорит, богу грешны, я за свои грехи страдаю. Сам заплакал горючьми слезьми. Что же думаешь, соколик, – все светлее и светлее сияя восторженной улыбкой, говорил Каратаев, как будто в том, что он имел теперь рассказать, заключалась главная прелесть и все значение рассказа, – что же думаешь, соколик, объявился этот убийца самый по начальству. Я, говорит, шесть душ загубил (большой злодей был), но всего мне жальче старичка этого. Пускай же он на меня не плачется. Объявился: списали, послали бумагу, как следовает. Место дальнее, пока суд да дело, пока все бумаги списали как должно, по начальствам, значит. До царя доходило. Пока что, пришел царский указ: выпустить купца, дать ему награждения, сколько там присудили. Пришла бумага, стали старичка разыскивать. Где такой старичок безвинно напрасно страдал? От царя бумага вышла. Стали искать. – Нижняя челюсть Каратаева дрогнула. – А его уж бог простил – помер. Так то, соколик, – закончил Каратаев и долго, молча улыбаясь, смотрел перед собой.
Не самый рассказ этот, но таинственный смысл его, та восторженная радость, которая сияла в лице Каратаева при этом рассказе, таинственное значение этой радости, это то смутно и радостно наполняло теперь душу Пьера.

– A vos places! [По местам!] – вдруг закричал голос.
Между пленными и конвойными произошло радостное смятение и ожидание чего то счастливого и торжественного. Со всех сторон послышались крики команды, и с левой стороны, рысью объезжая пленных, показались кавалеристы, хорошо одетые, на хороших лошадях. На всех лицах было выражение напряженности, которая бывает у людей при близости высших властей. Пленные сбились в кучу, их столкнули с дороги; конвойные построились.
– L"Empereur! L"Empereur! Le marechal! Le duc! [Император! Император! Маршал! Герцог!] – и только что проехали сытые конвойные, как прогремела карета цугом, на серых лошадях. Пьер мельком увидал спокойное, красивое, толстое и белое лицо человека в треугольной шляпе. Это был один из маршалов. Взгляд маршала обратился на крупную, заметную фигуру Пьера, и в том выражении, с которым маршал этот нахмурился и отвернул лицо, Пьеру показалось сострадание и желание скрыть его.
Генерал, который вел депо, с красным испуганным лицом, погоняя свою худую лошадь, скакал за каретой. Несколько офицеров сошлось вместе, солдаты окружили их. У всех были взволнованно напряженные лица.
– Qu"est ce qu"il a dit? Qu"est ce qu"il a dit?.. [Что он сказал? Что? Что?..] – слышал Пьер.
Во время проезда маршала пленные сбились в кучу, и Пьер увидал Каратаева, которого он не видал еще в нынешнее утро. Каратаев в своей шинельке сидел, прислонившись к березе. В лице его, кроме выражения вчерашнего радостного умиления при рассказе о безвинном страдании купца, светилось еще выражение тихой торжественности.
Каратаев смотрел на Пьера своими добрыми, круглыми глазами, подернутыми теперь слезою, и, видимо, подзывал его к себе, хотел сказать что то. Но Пьеру слишком страшно было за себя. Он сделал так, как будто не видал его взгляда, и поспешно отошел.
Когда пленные опять тронулись, Пьер оглянулся назад. Каратаев сидел на краю дороги, у березы; и два француза что то говорили над ним. Пьер не оглядывался больше. Он шел, прихрамывая, в гору.
Сзади, с того места, где сидел Каратаев, послышался выстрел. Пьер слышал явственно этот выстрел, но в то же мгновение, как он услыхал его, Пьер вспомнил, что он не кончил еще начатое перед проездом маршала вычисление о том, сколько переходов оставалось до Смоленска. И он стал считать. Два французские солдата, из которых один держал в руке снятое, дымящееся ружье, пробежали мимо Пьера. Они оба были бледны, и в выражении их лиц – один из них робко взглянул на Пьера – было что то похожее на то, что он видел в молодом солдате на казни. Пьер посмотрел на солдата и вспомнил о том, как этот солдат третьего дня сжег, высушивая на костре, свою рубаху и как смеялись над ним.
Собака завыла сзади, с того места, где сидел Каратаев. «Экая дура, о чем она воет?» – подумал Пьер.
Солдаты товарищи, шедшие рядом с Пьером, не оглядывались, так же как и он, на то место, с которого послышался выстрел и потом вой собаки; но строгое выражение лежало на всех лицах.

Депо, и пленные, и обоз маршала остановились в деревне Шамшеве. Все сбилось в кучу у костров. Пьер подошел к костру, поел жареного лошадиного мяса, лег спиной к огню и тотчас же заснул. Он спал опять тем же сном, каким он спал в Можайске после Бородина.
Опять события действительности соединялись с сновидениями, и опять кто то, сам ли он или кто другой, говорил ему мысли, и даже те же мысли, которые ему говорились в Можайске.
«Жизнь есть всё. Жизнь есть бог. Все перемещается и движется, и это движение есть бог. И пока есть жизнь, есть наслаждение самосознания божества. Любить жизнь, любить бога. Труднее и блаженнее всего любить эту жизнь в своих страданиях, в безвинности страданий».
«Каратаев» – вспомнилось Пьеру.
И вдруг Пьеру представился, как живой, давно забытый, кроткий старичок учитель, который в Швейцарии преподавал Пьеру географию. «Постой», – сказал старичок. И он показал Пьеру глобус. Глобус этот был живой, колеблющийся шар, не имеющий размеров. Вся поверхность шара состояла из капель, плотно сжатых между собой. И капли эти все двигались, перемещались и то сливались из нескольких в одну, то из одной разделялись на многие. Каждая капля стремилась разлиться, захватить наибольшее пространство, но другие, стремясь к тому же, сжимали ее, иногда уничтожали, иногда сливались с нею.
– Вот жизнь, – сказал старичок учитель.
«Как это просто и ясно, – подумал Пьер. – Как я мог не знать этого прежде».
– В середине бог, и каждая капля стремится расшириться, чтобы в наибольших размерах отражать его. И растет, сливается, и сжимается, и уничтожается на поверхности, уходит в глубину и опять всплывает. Вот он, Каратаев, вот разлился и исчез. – Vous avez compris, mon enfant, [Понимаешь ты.] – сказал учитель.
– Vous avez compris, sacre nom, [Понимаешь ты, черт тебя дери.] – закричал голос, и Пьер проснулся.
Он приподнялся и сел. У костра, присев на корточках, сидел француз, только что оттолкнувший русского солдата, и жарил надетое на шомпол мясо. Жилистые, засученные, обросшие волосами, красные руки с короткими пальцами ловко поворачивали шомпол. Коричневое мрачное лицо с насупленными бровями ясно виднелось в свете угольев.

x называ-

1.2.3. Использование тождеств сокращенного умножения

Пример. Разложить на множители x 4 16.

x 4 16x 2 2 42 x 2 4x 2 4x 2x 2x 2 4 .

1.2.4. Разложение многочлена на множители с помощью его корней

Теорема. Пусть многочлен P x имеет кореньx 1 . Тогда этот многочлен можно разложить на множители следующим образом:P x x x 1 S x , гдеS x – некоторый многочлен, степень которого на единицу меньше

значения поочередно в выражение для P x .Получим, что приx 2 вы-

ражение обратится в 0, то есть P 2 0 , что значитx 2 – корень много-

члена. Разделим многочлен P x наx 2 .

X 3 3x 2 10x 24

x 32 x 2

24 10 x

x2 x12

12x 2412x 24

P x x 2 x2 x12 x2 x2 3 x4 x12 x2 x x3 4 x3

x 2 x3 x4

1.3. Выделение полного квадрата

Метод выделения полного квадрата основан на использовании формул: a 2 2ab b 2 a b 2 ,a 2 2ab b 2 a b 2 .

Выделение полного квадрата – это такое тождественное преобразование, при котором заданный трехчлен представляется в виде a b 2 суммы или разности квадрата двучлена и некоторого числового или буквенного выражения.

Квадратным трехчленом относительно переменной величины ется выражение вида

ax 2 bx c , гдеa ,b иc – заданные числа, причемa 0 .

Преобразуем квадратный трехчлен ax 2 bx c следующим образом.

x 2 :

коэффициент

Затем выражение b x представим в виде 2b x (удвоенное произведение

x ):a x

К выражению, стоящему в скобках прибавим и вычтем из него число

являющееся квадратом числа

В результате получим:

Замечая теперь, что

Получим

4a 2

Пример. Выделить полный квадрат.

2 x 12

2x 2 4x 5 2x 2 2x 5

2 x 2 2x 1 15

2 x 12 7.

4 a 2,

1.4. Многочлены от нескольких переменных

Многочлены от нескольких переменных, как и многочлены от одной переменной можно складывать, умножать и возводить в натуральную степень.

Важным тождественным преобразованием многочлена от нескольких переменных является разложение на множители. Здесь применяются такие приемы разложения на множители, как вынесение общего множителя за скобку, группировка, использование тождеств сокращенного умножения, выделение полного квадрата, введение вспомогательных переменных.

1. Разложить на множители многочлен P x ,y 2x 5 128x 2 y 3 .

2 x 5128 x 2y 32 x 2x 364 y 32 x 2x 4 y x 24 xy 16 y 2.

2. Разложить на множители P x ,y ,z 20x 2 3yz 15xy 4xz . Применим способ группировки

20 x2 3 yz15 xy4 xz20 x2 15 xy4 xz3 yz5 x4 x3 y z4 x3 y

4 x3 y5 x z.

3. Разложить на множители P x ,y x 4 4y 4 . Выделим полный квадрат:

x 4y 4x 44 x 2y 24 y 24 x 2y 2x 22 y 2 2 4 x 2y 2

x2 2 y2 2 xy x2 2 y2 2 xy.

1.5. Свойства степени с любым рациональным показателем

Степень с любым рациональным показателем обладает свойствами:

1. a r 1a r 2a r 1r 2,

a r 1a r 2a r 1r 2,

3. a r 1r 2 a r 1r 2,

4. abr 1 ar 1 br 1 ,

a r 1

ar 1

br 1

где a 0;b 0;r 1 ;r 2 – произвольные рациональные числа.

1. Выполнить умножение 8

x 3 12x 7.

24 x 23.

8 x 3 12 x 7 x 8x 12x 8 12x 24

2. Разложить на множители

a 2x 3

1.6. Упражнения для самостоятельного выполнения

1. Выполнить действия, используя формулы сокращенного умножения. 1) a 52 ;

2) 3 a 72 ;

3) a nb n2 .

4) 1 x 3 ;

3 y 3 ;

7) 8 a 2 8a 2 ;

8) a nb ka kb na nb ka kb n.

9) a 2 b a2 2 ab4 b2 ;

10) a 3a 2 3a 9 ;

11) a 2b 2a 4a 2b 2b 4. 3

2. Вычислить, используя тождества сокращенного умножения:

1) 53 2 432 ;

2) 22,4 2 22,32 ;

4) 30 2 2 ;

5) 51 2 ;

6) 99 2 ;

7) 17 2 2 17 23 232 ;

8) 85 2 2 85 15 152 .

3. Доказать тождества:

1). x 2 13 3x 2 x 12 6x x 1 11x 3 32 2;

2) a 2b 2 2 2 ab 2 a 2b 2 2 ;

3) a 2 b2 x2 y2 ax by2 bx ay2 .

4. Разложить на множители следующие многочлены:

1) 3 x a2 a2;

2) ac 7 bc3 a21 b;

3) 63 m 4n 327 m 3n 445 m 5n 7;

4) 5 b2 c3 2 bc2 k2 k2 ;

5) 2 x3 y2 3 yz2 2 x2 yz3 z3 ;

6) 24 ax38 bx12 a19 b;

7) 25 a 21 b 2q 2;

8) 9 5 a 4b 2 64a 2 ;

9) 121 n 2 3n 2t 2 ;

10) 4 t 2 20tn 25n 2 36;

11) p 4 6 p2 k9 k2 ;

12) 16 p 3 q 8 72p 4 q 7 81p 5 q 6 ;

13) 6 x 3 36x 2 72x 48;

14) 15 ax 3 45ax 2 45ax 15a ;

15) 9 a 3 n 1 4,5a 2 n 1 ;

16) 5 p 2 n q n 15p 5 n q 2 n ;

17) 4 a 7b 232 a 4b 5;

18) 7 x 24 y 2 2 3 x 28 y 2 2 ;

19) 1000 t 3 27t 6 .

5. Вычислить наиболее простым способом:

1) 59 3 413 ;

2) 67 3 523 67 52. 119

6. Найти частное и остаток от деления многочлена P x на многочленQ x : 1)P x 2x 4 x 3 5;Q x x 3 9x ;

2) P x 2 x 2; Q x x3 2 x2 x; 3) P x x6 1; Q x x4 4 x2 .

7. Доказать, что многочлен x 2 2x 2 не имеет действительных корней.

8. Найти корни многочлена:

1) x 3 4 x;

2) x 3 3x 2 5x 15.

9. Разложить на множители:

1) 6 a 2 a 5 5a 3 ;

2) x 2 x 3 2x 32 4x 3 3x 2 ;

3) x 3 6x 2 11x 6.

10. Решить уравнения, выделяя полный квадрат:

1) x 2 2x 3 0;

2) x 2 13x 30 0 .

11. Найти значения выражений:

4 3 85

16 6

2 520 9 519

1254

3) 5 3 25 7 ;

4) 0,01 2 ;

5) 06 .

12. Вычислить:

16 0,25

16 0,25

Калькулятор онлайн.
Выделение квадрата двучлена и разложение на множители квадратного трехчлена.

Эта математическая программа выделяет квадрат двучлена из квадратного трехчлена , т.е. делает преобразование вида:
\(ax^2+bx+c \rightarrow a(x+p)^2+q \) и раскладывает на множители квадратный трехчлен : \(ax^2+bx+c \rightarrow a(x+n)(x+m) \)

Т.е. задачи сводятся к нахождению чисел \(p, q \) и \(n, m \)

Программа не только даёт ответ задачи, но и отображает процесс решения.

Данная программа может быть полезна учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.

Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.

Если вы не знакомы с правилами ввода квадратного трехчлена, рекомендуем с ними ознакомиться.

Правила ввода квадратного многочлена

В качестве переменной может выступать любая латинсая буква.
Например: \(x, y, z, a, b, c, o, p, q \) и т.д.

Числа можно вводить целые или дробные.
Причём, дробные числа можно вводить не только в виде десятичной, но и в виде обыкновенной дроби.

Правила ввода десятичных дробей.
В десятичных дробях дробная часть от целой может отделяться как точкой так и запятой.
Например, можно вводить десятичные дроби так: 2.5x - 3,5x^2

Правила ввода обыкновенных дробей.
В качестве числителя, знаменателя и целой части дроби может выступать только целое число.

Знаменатель не может быть отрицательным.

При вводе числовой дроби числитель отделяется от знаменателя знаком деления: /
Целая часть отделяется от дроби знаком амперсанд: &
Ввод: 3&1/3 - 5&6/5x +1/7x^2
Результат: \(3\frac{1}{3} - 5\frac{6}{5} x + \frac{1}{7}x^2 \)

При вводе выражения можно использовать скобки . В этом случае при решении введённое выражение сначала упрощается.
Например: 1/2(x-1)(x+1)-(5x-10&1/2)

Пример подробного решения

Выделение квадрата двучлена. $$ ax^2+bx+c \rightarrow a(x+p)^2+q $$ $$2x^2+2x-4 = $$ $$2x^2 +2 \cdot 2 \cdot\left(\frac{1}{2} \right)\cdot x+2 \cdot \left(\frac{1}{2} \right)^2-\frac{9}{2} = $$ $$2\left(x^2 + 2 \cdot\left(\frac{1}{2} \right)\cdot x + \left(\frac{1}{2} \right)^2 \right)-\frac{9}{2} = $$ $$2\left(x+\frac{1}{2} \right)^2-\frac{9}{2} $$ Ответ: $$2x^2+2x-4 = 2\left(x+\frac{1}{2} \right)^2-\frac{9}{2} $$ Разложение на множители. $$ ax^2+bx+c \rightarrow a(x+n)(x+m) $$ $$2x^2+2x-4 = $$
$$ 2\left(x^2+x-2 \right) = $$
$$ 2 \left(x^2+2x-1x-1 \cdot 2 \right) = $$ $$ 2 \left(x \left(x +2 \right) -1 \left(x +2 \right) \right) = $$ $$ 2 \left(x -1 \right) \left(x +2 \right) $$ Ответ: $$2x^2+2x-4 = 2 \left(x -1 \right) \left(x +2 \right) $$

Решить

Обнаружено что не загрузились некоторые скрипты, необходимые для решения этой задачи, и программа может не работать.
Возможно у вас включен AdBlock.
В этом случае отключите его и обновите страницу.

У вас в браузере отключено выполнение JavaScript.
Чтобы решение появилось нужно включить JavaScript.
Вот инструкции, как включить JavaScript в вашем браузере .

Т.к. желающих решить задачу очень много, ваш запрос поставлен в очередь.
Через несколько секунд решение появится ниже.
Пожалуйста подождите сек...


Если вы заметили ошибку в решении , то об этом вы можете написать в Форме обратной связи .
Не забудте указать какую задачу вы решаете и что вводите в поля .



Наши игры, головоломки, эмуляторы:

Немного теории.

Выделение квадрата двучлена из квадратного трехчлена

Если квадратный трехчлен aх 2 +bx+c представлен в виде a(х+p) 2 +q, где p и q - действительные числа, то говорят, что из квадратного трехчлена выделен квадрат двучлена .

Выделим из трехчлена 2x 2 +12x+14 квадрат двучлена.


\(2x^2+12x+14 = 2(x^2+6x+7) \)


Для этого представим 6х в виде произведения 2*3*х, а затем прибавим и вычтем 3 2 . Получим:
$$ 2(x^2+2 \cdot 3 \cdot x + 3^2-3^2+7) = 2((x+3)^2-3^2+7) = $$ $$ = 2((x+3)^2-2) = 2(x+3)^2-4 $$

Т.о. мы выделили квадрат двучлена из квадратного трехчлена , и показоли, что:
$$ 2x^2+12x+14 = 2(x+3)^2-4 $$

Разложение на множители квадратного трехчлена

Если квадратный трехчлен aх 2 +bx+c представлен в виде a(х+n)(x+m), где n и m - действительные числа, то говорят, что выполнена операция разложения на множители квадратного трехчлена .

Покажем на примере как это преобразование делается.

Разложим квадратный трехчлен 2x 2 +4x-6 на множители.

Вынесем за скобки коэффициент a, т.е. 2:
\(2x^2+4x-6 = 2(x^2+2x-3) \)

Преобразуем выражение в скобках.
Для этого представим 2х в виде разности 3x-1x, а -3 в виде -1*3. Получим:
$$ = 2(x^2+3 \cdot x -1 \cdot x -1 \cdot 3) = 2(x(x+3)-1 \cdot (x+3)) = $$
$$ = 2(x-1)(x+3) $$

Т.о. мы разложили на множители квадратный трехчлен , и показоли, что:
$$ 2x^2+4x-6 = 2(x-1)(x+3) $$

Заметим, что разложение на множители квадратного трехчлена возможно только тогда, когда, квадратное уравнение, соответсвующее этому трехчлену имеет корни.
Т.е. в нашем случае разложить на множители трехчлен 2x 2 +4x-6 возможно, если квадратное уравнение 2x 2 +4x-6 =0 имеет корни. В процессе разложения на множители мы установили, что уравнение 2x 2 +4x-6 =0 имеет два корня 1 и -3, т.к. при этих значениях уравнение 2(x-1)(x+3)=0 обращается в верное равенство.

Книги (учебники) Рефераты ЕГЭ и ОГЭ тесты онлайн Игры, головоломки Построение графиков функций Орфографический словарь русского языка Словарь молодежного слэнга Каталог школ России Каталог ССУЗов России Каталог ВУЗов России Список задач

Как я уже отмечал, в интегральном исчислении нет удобной формулы для интегрирования дроби . И поэтому наблюдается грустная тенденция: чем «навороченнее» дробь, тем труднее найти от нее интеграл. В этой связи приходится прибегать к различным хитростям, о которых я сейчас и расскажу. Подготовленные читатели могут сразу воспользоваться оглавлением :

  • Метод подведения под знак дифференциала для простейших дробей

Метод искусственного преобразования числителя

Пример 1

Кстати, рассмотренный интеграл можно решить и методом замены переменной, обозначая , но запись решения получится значительно длиннее.

Пример 2

Найти неопределенный интеграл. Выполнить проверку.

Это пример для самостоятельного решения. Следует заметить, что здесь метод замены переменной уже не пройдёт.

Внимание, важно! Примеры №№1,2 являются типовыми и встречаются часто . В том числе, подобные интегралы нередко возникают в ходе решения других интегралов, в частности, при интегрировании иррациональных функций (корней).

Рассмотренный приём работает и в случае, если старшая степень числителя, больше старшей степени знаменателя .

Пример 3

Найти неопределенный интеграл. Выполнить проверку.

Начинаем подбирать числитель.

Алгоритм подбора числителя примерно такой:

1) В числителе мне нужно организовать , но там . Что делать? Заключаю в скобки и умножаю на : .

2) Теперь пробую раскрыть эти скобки, что получится? . Хмм… уже лучше, но никакой двойки при изначально в числителе нет. Что делать? Нужно домножить на :

3) Снова раскрываю скобки: . А вот и первый успех! Нужный получился! Но проблема в том, что появилось лишнее слагаемое . Что делать? Чтобы выражение не изменилось, я обязан прибавить к своей конструкции это же :
. Жить стало легче. А нельзя ли еще раз в числителе организовать ?

4) Можно. Пробуем: . Раскрываем скобки второго слагаемого:
. Простите, но у меня вообще-то было на предыдущем шаге , а не . Что делать? Нужно домножить второе слагаемое на :

5) Снова для проверки раскрываю скобки во втором слагаемом:
. Вот теперь нормально: получено из окончательной конструкции пункта 3! Но опять есть маленькое «но», появилось лишнее слагаемое , значит, я обязан прибавить к своему выражению :

Если всё выполнено правильно, то при раскрытии всех скобок у нас должен получиться исходный числитель подынтегральной функции. Проверяем:
Гуд.

Таким образом:

Готово. В последнем слагаемом я применил метод подведения функции под дифференциал.

Если найти производную от ответа и привести выражение к общему знаменателю, то у нас получится в точности исходная подынтегральная функция . Рассмотренный метод разложения в сумму – есть не что иное, как обратное действие к приведению выражения к общему знаменателю.

Алгоритм подбора числителя в подобных примерах лучше выполнять на черновике. При некоторых навыках будет получаться и мысленно. Припоминаю рекордный случай, когда я выполнял подбор для 11-й степени, и разложение числителя заняло почти две строчки Вёрда.

Пример 4

Найти неопределенный интеграл. Выполнить проверку.

Это пример для самостоятельного решения.

Метод подведения под знак дифференциала для простейших дробей

Переходим к рассмотрению следующего типа дробей.
, , , (коэффициенты и не равны нулю).

На самом деле пара случаев с арксинусом и арктангенсом уже проскальзывала на уроке Метод замены переменной в неопределенном интеграле . Решаются такие примеры способом подведения функции под знак дифференциала и дальнейшим интегрированием с помощью таблицы. Вот еще типовые примеры с длинным и высоким логарифмом:

Пример 5

Пример 6

Тут целесообразно взять в руки таблицу интегралов и проследить, по каким формулам и как осуществляется превращение. Обратите внимание, как и зачем выделяются квадраты в данных примерах. В частности, в примере 6 сначала необходимо представить знаменатель в виде , потом подвести под знак дифференциала. А сделать это всё нужно для того, чтобы воспользоваться стандартной табличной формулой .

Да что смотреть, попробуйте самостоятельно решить примеры №№7,8, тем более, они достаточно короткие:

Пример 7

Пример 8

Найти неопределенный интеграл:

Если Вам удастся выполнить еще и проверку данных примеров, то большой респект – Ваши навыки дифференцирования на высоте.

Метод выделения полного квадрата

Интегралы вида , (коэффициенты и не равны нулю) решаются методом выделения полного квадрата , который уже фигурировал на уроке Геометрические преобразования графиков .

На самом деле такие интегралы сводятся к одному из четырех табличных интегралов, которые мы только что рассмотрели. А достигается это с помощью знакомых формул сокращенного умножения:

Формулы применяются именно в таком направлении, то есть, идея метода состоит в том, чтобы в знаменателе искусственно организовать выражения либо , а затем преобразовать их соответственно в либо .

Пример 9

Найти неопределенный интеграл

Это простейший пример, в котором при слагаемом – единичный коэффициент (а не какое-нибудь число или минус).

Смотрим на знаменатель, здесь всё дело явно сведется к случаю . Начинаем преобразование знаменателя:

Очевидно, что нужно прибавлять 4. И, чтобы выражение не изменилось – эту же четверку и вычитать:

Теперь можно применить формулу :

После того, как преобразование закончено ВСЕГДА желательно выполнить обратный ход: , всё нормально, ошибок нет.

Чистовое оформление рассматриваемого примера должно выглядеть примерно так:

Готово. Подведением «халявной» сложной функции под знак дифференциала: , в принципе, можно было пренебречь

Пример 10

Найти неопределенный интеграл:

Это пример для самостоятельного решения, ответ в конце урока

Пример 11

Найти неопределенный интеграл:

Что делать, когда перед находится минус? В этом случае, нужно вынести минус за скобки и расположить слагаемые в нужном нам порядке: . Константу («двойку» в данном случае) не трогаем!

Теперь в скобках прибавляем единичку. Анализируя выражение, приходим к выводу, что и за скобкой нужно единичку – прибавить:

Тут получилась формула , применяем:

ВСЕГДА выполняем на черновике проверку:
, что и требовалось проверить.

Чистовое оформление примера выглядит примерно так:

Усложняем задачу

Пример 12

Найти неопределенный интеграл:

Здесь при слагаемом уже не единичный коэффициент, а «пятёрка».

(1) Если при находится константа, то её сразу выносим за скобки.

(2) И вообще эту константу всегда лучше вынести за пределы интеграла, чтобы она не мешалась под ногами.

(3) Очевидно, что всё сведется к формуле . Надо разобраться в слагаемом , а именно, получить «двойку»

(4) Ага, . Значит, к выражению прибавляем , и эту же дробь вычитаем.

(5) Теперь выделяем полный квадрат. В общем случае также надо вычислить , но здесь у нас вырисовывается формула длинного логарифма , и действие выполнять не имеет смысла, почему – станет ясно чуть ниже.

(6) Собственно, можно применить формулу , только вместо «икс» у нас , что не отменяет справедливость табличного интеграла. Строго говоря, пропущен один шаг – перед интегрированием функцию следовало подвести под знак дифференциала: , но, как я уже неоднократно отмечал, этим часто пренебрегают.

(7) В ответе под корнем желательно раскрыть все скобки обратно:

Сложно? Это еще не самое сложное в интегральном исчислении. Хотя, рассматриваемые примеры не столько сложны, сколько требуют хорошей техники вычислений.

Пример 13

Найти неопределенный интеграл:

Это пример для самостоятельного решения. Ответ в конце урока.

Существуют интегралы с корнями в знаменателе, которые с помощью замены сводятся к интегралам рассмотренного типа, о них можно прочитать в статье Сложные интегралы , но она рассчитана на весьма подготовленных студентов.

Подведение числителя под знак дифференциала

Это заключительная часть урока, тем не менее, интегралы такого типа встречаются довольно часто! Если накопилась усталость, может, оно, лучше завтра почитать? ;)

Интегралы, которые мы будем рассматривать, похожи на интегралы предыдущего параграфа, они имеют вид: или (коэффициенты , и не равны нулю).

То есть, в числителе у нас появилась линейная функция. Как решать такие интегралы?



Статьи по теме: