Биологические полимеры белки их структура и функции. Белки как биополимеры. Свойства и биологические функции белков. Качественные реакции на белки. Метапредметные результаты обучения биологии

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

МОУ Усть – Бакчарская средняя общеобразовательная школа ЗАНЯТИЕ ПО БИОЛОГИИ ДЛЯ УЧАЩИХСЯ 10 КЛАССА. КОВАЛЁВА. ЮЛИЯ ДМИТРИЕВНА. УЧИТЕЛЬ БИОЛОГИИ.

Биополимеры – белки.

Задачи урока. Обеспечить усвоение учащимися знаний о составе и строении аминокислот, принципе их объединения в полипептидную цепочку. Продолжить развитие у старшеклассников умения сравнивать состав и строение различных органических соединений. Продолжить формирование у школьников убежденности в познаваемости строения и состава органических веществ с помощью научных методов.

План урока. 1 . Проверка домашнего задания. 2. Белки - органические вещества, биополимеры. 3. Аминокислотный состав белков. 4. Химический состав и строение аминокислот. 5.Отличие белковых молекул друг от друга. 6. Принцип объединения аминокислотных звеньев в полипептидную молекулу. 7. Пространственные структуры белка. 8. Денатурация и ренатурация белка. 9 . Лабораторная работа. 10. Оцени степень правильности приводимых суждений. 11. Итог урока.

Проверка домашнего задания. Оцените степень правильности следующих утверждений (обоснуйте при необходимости свой ответ): Азот входит в состав органических веществ; да; нет; 2. Углевод – это химический элемент, имеющийся во внутриклеточной среде; да; нет; 3. Крахмал является полимером; да; нет; Гликоген преимущественно образуется в клетках растительных организмов; да; нет;

Белки – органические вещества, биополимеры. Обязательной составной частью всех клеток являются белки. Белковая молекула является биополимером. Мономеры белка - аминокислоты 20 разных типов. Если каждой конкретной аминокислоте условно присвоить определенный номер, то полипептидная (белковая) молекула может быть представлена, например, следующим образом: А3-А6-А12 –А9 – А17-……..А2

Отличие белковых молекул друг от друга: По числу аминокислотных звеньев в молекуле белка; По порядку следования аминокислотных звеньев в цепи; По составу аминокислот в полипептиде;

АМИНОКИСЛОТА ОБОЗНАЧЕНИЕ РУССКОЕ ЛАТИНСКОЕ ТРЕХБУКВЕННОЕ ОДНОБУКВЕННОЕ АЛАНИН АЛА ALA A АРГИНИН АРГ ARG R АСПАРГИНОВАЯ КИСЛОТА АСП ASP D АСПАРГИН АСН ASN N ВАЛИН ВАЛ VAL V ГИСТИДИН ГИС HIS H ГЛИЦИН ГЛИ GLY G ГЛУТАМИНОВАЯ КИСЛОТА ГЛУ GLU E ГЛУТАМИН ГЛН GLN Q ИЗОЛЕЙЦИН ИЛЕ ILE I ЛЕЙЦИН ЛЕЙ LEU L ЛИЗИН ЛИЗ LYS K МЕТИОНИН МЕТ MET M ПРОЛИН ПРО PRO P СЕРИН СЕР SER S ТИРОЗИН ТИР TYR Y ТРЕОНИН ТРЕ THR T ТРИПТОФАН ТРИ TRP W ФЕНИЛАЛАНИН ФЕН PHR F ЦИСТЕИН ЦИС CYS C

Химический состав и строение аминокислот. Белки = полипептиды. Полимерные молекулы. Из звеньев мономеров (аминокислот) Химический состав аминокислот. (углерод, кислород, водород, азот, сера).

Принцип объединения аминокислот в полипептидную цепочку. Аминокислоты в белковой молекуле соединены следующим образом. Между остатком кислотной группы одной аминокислоты и остатком аминогруппы другой аминокислоты образуется ковалентная связь, которая отличается высокой прочностью. Аналогичная связь существует между другими аминокислотами полипептидной цепочки. Замена даже одного аминокислотного звена другим в белковой молекуле может существенно изменить её свойства.

ПРОСТРАНСТВЕННЫЕ СТРУКТУРЫ БЕЛКА. Пространственная Структура Белка. Первичная Вторичная Третичная Четвертичная

Первичная структура белка представляет собой последовательность аминокислотных звеньев в полипептидной цепочки. Между звеньями ковалентная связь.

Первичная структура белка.

Вторичная структура белка представляет собой белковую макромолекулу свёрнутую в спираль. Ковалентные полярные связи между аминокислотными звеньями + множество слабых водородных связей между витками спирали.

Вторичная структура белка.

Третичная структура белка представляет собой молекулу белка скрученную в ком неправильной формы. Ковалентные полярные связи между аминокислотными звеньями + водородные связи между витками спирали + «слипание»гидрофобных группировок аминокислот + дисульфидные мостики между радикалами аминокислот.

Третичная структура белка.

Четвертичная структура белка. Сложный агрегат из многих полипептидных цепей. Присутствует весь комплекс перечисленных типов химических связей.

Четвертичная структура белка.

Денатурация и ренатурация белка. Высшие структуры белка могут легко разрушаться при воздействии на полипептидную молекулу разных факторов внешней среды (например, температуры). Этот процесс называется ДЕНАТУРАЦИЕЙ. Во многих случаях он обратим, но не всегда. Существуют белки, которые после денатурации не способны восстанавливать утраченные структуры, то есть не могут ренатурировать.

Воздействие факторов среды (температура и др.) Денатурация белка – разрушение его третичной и вторичной структур. Прекращение действие фактора Ренатурация – восстановление утраченных структур (характерна не для всех белков).

Лабораторная работа. « Денатурация белка». Приготовьте раствор белка. Для этого белок куриного яйца растворите в 150 мл воды. В пробирку налейте 4 – 5 мл раствора белка и нагрейте на горелке до кипения. Отметьте помутнение раствора. Почему раствор белка при нагревании мутнеет?

Оцените степень правильности приводимых ниже утверждений: Мономер белка – аминокислота; да; нет; 2. Первичная структура белка представляет собой спираль; да; нет; 3. В состав аминокислоты входит радикал; да; нет; 4. Мономер состоит из полимеров; да; нет; 5. Четвертичная структура белка возникает как результат нескольких белковых молекул; да; нет;

Итог урока. Разнообразие белков и наличие у них четыре пространственных структур объясняет тот факт, что белки выполняют в клетке и организме множество функций. Но об этом поговорим на следующем уроке.


Биополиме́ры - класс полимеров, встречающихся в природе в естественном виде, входящие в состав живых организмов: белки, нуклеиновые кислоты, полисахариды. Биополимеры состоят из одинаковых (или разных) звеньев - мономеров. Мономеры белков - аминокислоты, нуклеиновых кислот - нуклеотиды, в полисахаридах - моносахариды.

Выделяют два типа биополимеров - регулярные (некоторые полисахариды) и нерегулярные (белки, нуклеиновые кислоты, некоторые полисахариды).

Белки

Белки имеют несколько уровней организации - первичная, вторичная, третичная, и иногда четвертичная. Первичная структура определяется последовательностью мономеров, вторичная задаётся внутри- и межмолекулярными взаимодействиями между мономерами, обычно при помощи водородных связей. Третичная структура зависит от взаимодействия вторичных структур, четвертичная, как правило, образуется при объединении нескольких молекул с третичной структурой.

Вторичная структура белков образуется при взаимодействии аминокислот с помощью водородных связей и гидрофобных взаимодействий. Основными типами вторичной структуры являются

α-спираль, когда водородные связи возникают между аминокислотами в одной цепи,

β-листы (складчатые слои), когда водородные связи образуются между разными полипептидными цепями, идущими в разных направлениях (антипараллельно,

неупорядоченные участки

Для предсказания вторичной структуры используются компьютерные программы.

Третичная структура или «фолд» образуется при взаимодействии вторичных структур и стабилируется нековалентными, ионными, водородными связями и гидрофобными взаимодействиями. Белки, выполняющие сходные функции обычно имеют сходную третичную структуру. Примером фолда является β-баррел (бочка), когда β-листы располагаются по окружности. Третичная структура белков определяется с помощью рентгеноструктурного анализа.

Важный класс полимерных белков составляют Фибриллярные белки, самый известный из которых коллаген.

В животном мире в качестве опорного, структурообразующего полимера обычно выступают белки. Эти полимеры построены из 20 α-аминокислот. Остатки аминокислот связаны в макромолекулы белка пептидными связями, возникающими в результате реакции карбоксильных и аминогрупп.

Значение белков в живой природе трудно переоценить. Это строительный материал живых организмов, биокатализаторы – ферменты, обеспечивающие протекание реакций в клетках, и энзимы, стимулирующие определённые биохимические реакции, т.е. обеспечивающие избирательность биокатализа. Наши мышцы, волосы, кожа состоят из волокнистых белков. Белок крови, входящий в состав гемоглобина, способствует усвоению кислорода воздуха, другой белок – инсулин – ответственен за расщепление сахара в организме и, следовательно, за его обеспечение энергией. Молекулярная масса белков колеблется в широких пределах. Так, инсулин – первый из белков, строение которого удалось установить Ф. Сэнгеру в 1953 г., содержит около 60 аминокислотных звеньев, а его молекулярная масса составляет лишь 12 000. К настоящему времени идентифицировано несколько тысяч молекул белков, молекулярная масса некоторых из них достигает 106 и более.

Нуклеиновые кислоты

Первичная структура ДНК - это линейная последовательность нуклеотидов в цепи. Как правило последовательность записывают в виде букв (например AGTCATGCCAG), причём запись ведётся с 5"- на 3"-конец цепи.

Вторичная структура - это структура, образованная за счёт нековалентных взаимодействий нуклеотидов (в большей степени азотистых оснований) между собой, стэкинга и водородных связей. Двойная спираль ДНК является классическим примером вторичной структуры. Это самая распространённая в природе форма ДНК, которая состоит из двух антипаралельных комплементарных полинуклеотидных цепей. Антипараллельность реализуется за счёт полярности каждой из цепей. Под комплементарностью понимают соответствие каждому азотистому основанию одной цепи ДНК строго определённого основания другой цепи (напротив A стоит T, а напротив G располагается C). ДНК удерживается в двойной спирали за счёт комплементарного спаривания оснований - образования водородных связей, двух в паре А-Т и трёх в паре G-C.

В 1868 г. швейцарский учёный Фридрих Мишер выделил из ядер клеток фосфорсодержащее вещество, которое он назвал нуклеином. Позднее это и подобные ему вещества получили название нуклеиновых кислот. Их молекулярная масса может достигать 109, но чаще колеблется в пределах 105-106. Исходными веществами, из которых построены нуклеотиды – звенья макромолекул нуклеиновых кислот, являются: углевод, фосфорная кислота, пуриновые и пиримидиновые основания. В одной группе кислот в качестве углевода выступает рибоза, в другой – дезоксирибоза

В соответствии с природой углевода, входящего в их состав, нуклеиновые кислоты называются рибонуклеиновой и дезоксирибонуклеиновой кислотами. Общеупотребительными сокращениями являются РНК и ДНК. Нуклеиновые кислоты играют наиболее ответственную роль в процессах жизнедеятельности. С их помощью решаются две важнейшие задачи: хранения и передачи наследственной информации и матричный синтез макромолекул ДНК, РНК и белка.

Полисахариды

3-х мерная структура целлюлозы

Полисахариды, синтезируемые живыми организмами, состоят из большого количества моносахаридов, соединённых гликозидными связями. Зачастую полисахариды нерастворимы в воде. Обычно это очень большие, разветвлённые молекулы. Примерами полисахаридов, которые синтезируют живые организмы, являются запасные вещества крахмал и гликоген, а также структурные полисахариды - целлюлоза и хитин. Так как биологические полисахариды состоят из молекул разной длины, понятия вторичной и третичной структуры к полисахаридам не применяются.

Полисахариды образуются из низкомолекулярных соединений, называемых сахарами или углеводами. Циклические молекулы моносахаридов могут связываться между собой с образованием так называемых гликозидных связей путём конденсации гидроксильных групп.

Наиболее распространены полисахариды, повторяющиеся звенья которых являются остатками α-D-глюкопиранозы или её производных. Наиболее известна и широко применяема целлюлоза. В этом полисахариде кислородный мостик связывает 1-й и 4-й атомы углерода в соседних звеньях, такая связь называется α-1,4-гликозидной.

Химический состав, аналогичный целлюлозе, имеют крахмал, состоящий из амилозы и амилопектина, гликоген и декстран. Отличие первых от целлюлозы состоит в разветвленности макромолекул, причем амилопектин и гликоген могут быть отнесены к сверхразветвленным природным полимерам, т.е. дендримерам нерегулярного строения. Точкой ветвления обычно является шестой атом углерода α-D-глюкопиранозного кольца, который связан гликозидной связью с боковой цепью. Отличие декстрана от целлюлозы состоит в природе гликозидных связей – наряду с α-1,4-, декстран содержит также α-1,3- и α-1,6-гликозидные связи, причем последние являются доминирующими.

Химический состав, отличный от целлюлозы, имеют хитин и хитозан, но они близки к ней по структуре. Отличие заключается в том, что при втором атоме углерода α-D-глюкопиранозных звеньев, связанных α-1,4-гликозидными связями, OH-группа заменена группами –NHCH3COO в хитине и группой –NH2 в хитозане.

Целлюлоза содержится в коре и древесине деревьев, стеблях растений: хлопок содержит более 90% целлюлозы, деревья хвойных пород – свыше 60%, лиственных – около 40%. Прочность волокон целлюлозы обусловлена тем, что они образованы монокристаллами, в которых макромолекулы упакованы параллельно одна другой. Целлюлоза составляет структурную основу представителей не только растительного мира, но и некоторых бактерий.

В животном мире в качестве опорных, структурообразующих полимеров полисахариды «используются» лишь насекомыми и членистоногими. Наиболее часто для этих целей применяется хитин, который служит для построения так называемого внешнего скелета у крабов, раков, креветок. Из хитина деацетилированием получается хитозан, который, в отличие от нерастворимого хитина, растворим в водных растворах муравьиной, уксусной и соляной кислот. В связи с этим, а также благодаря комплексу ценных свойств, сочетающихся с биосовместимостью, хитозан имеет большие перспективы широкого практического применения в ближайшем будущем.

Крахмал относится к числу полисахаридов, выполняющих роль резервного пищевого вещества в растениях. Клубни, плоды, семена содержат до 70% крахмала. Запасаемым полисахаридом животных является гликоген, который содержится преимущественно в печени и мышцах.

Прочность стволов и стеблей растений, помимо скелета из целлюлозных волокон, определяется соединительной растительной тканью. Значительную её часть в деревьях составляет лигнин – до 30%. Его строение точно не установлено. Известно, что это относительно низкомолекулярный (M ≈ 104) сверхразветвленный полимер, образованный в основном из остатков фенолов, замещенных в орто-положении группами –OCH3, в пара-положении группами –CH=CH–CH2OH. В настоящее время накоплено громадное количество лигнинов как отходов целлюлозно-гидролизной промышленности, но проблема их утилизации не решена. К опорным элементам растительной ткани относятся пектиновые вещества и, в частности пектин, находящийся в основном в стенках клеток. Его содержание в кожуре яблок и белой части кожуры цитрусовых доходит до 30%. Пектин относится к гетерополисахаридам, т.е. сополимерам. Его макромолекулы в основном построены из остатков D-галактуроновой кислоты и её метилового эфира, связанных α-1,4-гликозидными связями.

Из пентоз значение имеют полимеры арабинозы и ксилозы, которые образуют полисахариды, называемые арабинами и ксиланами. Они, наряду с целлюлозой, определяют типичные свойства древесины.

Белками или протеинами называют сложные высокомолекулярные органические соединения (сложные полипептиды), молекулы которых построены из остатков «-аминокислот.

Белки являются основой всего живого на Земле. Об их огромной роли Ф.Энгельс писал, что жизнь есть способ существования белковых тел... Повсюду, где мы встречаем жизнь, мы находим, что она связана с каким-либо белковым телом, и повсюду, где мы встречаем какое-либо белковое тело, не находящееся в процессе разложения, мы без исключения встречаем и явления жизни.

Голландский химик О.Мульдер был первым, кто положил начало изучению белков, определил в них содержание азота и назвал вещество, лежащее в основе их строения, протеином (от греч. протос - первый, важнейший). Большой вклад в решение проблемы строения белковых веществ, синтеза полипептидных фрагментов белковых молекул внесли отечественные ученые - Н.Д.Зелинский, А.Я.Данилевский, В.С.Садиков, Н.И.Гаврилов, Д.Л.Талмуд и др., а также зарубежные исследователи - Э.Фишер, М.Бергман, А.Коссель, Х.Г.Корана, Ф.Шорм и др.

Белки играют важную биологическую роль. Они служат основным веществом, из которого построены клетки животных и растительных организмов. Белки участвуют в важнейших процессах жизнедеятельности организма - строительных, каталитических, энергетических, обменных, защитных и многих других. Белки входят в состав ферментов, гормонов, нуклеотидов. Кроме того, они являются необходимой составной частью пищевого рациона человека и животных. Суточная потребность взрослого человека в белках - 70-80 г.

Строение. Белки - очень сложные азотсодержащие органические соединения. Их молекулярная масса составляет величину от 5 тыс. до нескольких миллионов. Однако при всем многообразии белков в состав их молекул входит ограниченное число элементов: углерода - 50- 55 %, кислорода - 21-24 %, азота - 15-18 %, водорода - 6-7 %, серы - 0,3-2,5 %. Кроме того, белки могут содержать небольшие количества фосфора, галогенов, металлов. Остатки а-аминокислот связаны между собой пептидными (амидными) связями -СО-NH-.

Соединения, построенные из небольшого числа молекул а-аминокислот, называют пептидами, а системы, состоящие из множества соединенных между собой пептидных звеньев, - полипептидами. Условно принято, что полипептиды содержат не более 100 аминокислотных остатков; если их число превышает 100, то это - белки.

Образование пептидов можно показать на примере конденсации молекул любых аминокислот друг с другом. При этом из двух молекул образуется дипептид, из трех - трипептид и т.д.:

Такой процесс можно сравнить с последовательным нанизыванием бус на нитку. При этом очень важно не перепутать очередность разных "бус" - аминокислот. Аминокислоты, являясь структурными компонентами любой полипептидной цепи, должны располагаться в строго определенной последовательности для данного вида белка. В то же время набор "строительных блоков" - аминокислот - не так уж и велик: их около 20 разновидностей. Но перепутать очередность их соединения друг с другом - это означает резкое изменение свойств белка. Например, молекула гемоглобина содержит 574 остатка аминокислот. Но если бы вдруг произошла случайная замена, например, глутаминовой кислоты на лизин или изменились бы места их взаимного расположения в полипептидной цепи, это привело бы к тяжелому наследственному заболеванию человека - серповидной анемии. Однако природа редко ошибается, несмотря на то что вероятность такой ошибки огромна. Подсчитано, что из 20 аминокислот можно получить свыше 2,4 10 18 различных комбинаций, т.е. изомеров белковой молекулы. Этим и объясняется огромное разнообразие белков.

Итак, разновидность аминокислотных остатков, их число и последовательность соединений в полипептидной цепи определяет основу строения белков - их первичную структуру (рис. 29). Как установить такую структуру? Сведения о составе, т.е. наборе аминокислотных остатков и последовательность их соединений в полипептидной цепи, можно получить, изучая продукты гидролиза белков. Гидролиз проводят, действуя на белки ферментами или при кипячении их с раствора-


Рис.29. Пример первичной структуры молекулы белка Рис.30. Фрагмент вторичной (часть полипептидной цепи) структуры молекулы белка ми кислот или щелочей. При этом процесс протекает ступенчато: вначале белки превращаются в пептоны (соединения, близкие к белкам), а они затем - в полипептиды. Полипептиды, в свою очередь, расщепляются на пептидные цепи и наконец - на а-аминоки слоты. С помощью специальных методов (в основном хроматографических) устанавливают последовательность соединения аминокислот в белке.

Рис. 31.

Рис. 32.

белков - сложный белковый агрегат (комплекс) из отдельных полипеп- тидных цепей с первичной, вторичной и третичной структурами

Однако полипептидные цепи - не вытянутые нити, а имеют в большинстве случаев спиралевидную форму (рис. 30). Устойчивость отдельных витков цилиндрической спирали обеспечивается многочисленными водородными связями, которые возникают между атомом кислорода карбонильной группы (одного витка) и водородом иминогруппы (другого витка):

Такое пространственное расположение полипептидной цепи называют вторичной структурой. Цилиндрические спирали, в свою очередь, сворачиваются в клубки, как это наблюдается с гибкой спиралью электрической плиты (рис. 31). В результате происходит пространственная упаковка спиралеподобной полипептидной цепи с образованием сложной частицы - глобулы. Такое образование относят к третичной структуре. Однако вид такой "упаковки" не является случайным. Ее выбор всегда строго обоснован, и любые изменения в третичной структуре белка вызывают изменения его биологической активности.

Молекулы белка могут состоять не только из одной, но и из нескольких полипептидных цепей. Они соединены между собой водородными, ионными ("солеобразными") и другими нековалентными связями. Пространственное объединение (ассоциация) нескольких полипептидных макромолекул (белковых глобул) между собой с образованием единой, большой и сложной, "субмолекулы" получило название четвертичной структуры (рис. 32).

Классификация белков. По составу белки делят на протеины - простые белки, состоящие только из остатков аминокислот, и протеиды - сложные белковые образования, в состав которых кроме белковых веществ входят и небелковые соединения (фосфорная кислота, углеводы, липиды и т.д.).

Протеины и протеиды, в свою очередь, делят на несколько подгрупп. Например, к протеинам относят альбумины, глобулины, гистоны, проталины, проламины, склеропротеины, а к протеидам - фосфопротеиды, нуклеопро- теиды, хромопротеиды, гликопротеиды и липопротеиды.

Получение. Растения синтезируют белки из оксида углерода (IV) и воды за счет фотосинтеза, усваивая остальные элементы белков (азот, фосфор, серу и др.) из растворимых солей, содержащихся в почве. Человек и животные в основном получают готовые аминокислоты с пищей, из которых строят белки, свойственные только данному организму.

Огромное практическое значение имеет проблема химического синтеза белка. Эта грандиозная задача уже сегодня успешно решается химиками и биологами. Синтез белка включает в себя много сложных задач. Прежде всего необходимо установить строение белковых молекул, расшифровав их структуру. Только успешно решив эту задачу, можно перейти к другой - синтезу более простых соединений, которые построены по тому же принципу, что и белки. Такими веществами являются полипептиды.

В конце 50-х годов была одержана первая большая победа - расшифрована структура белка инсулина - фермента, регулирующего содержание сахара в крови. Оказалось, что молекула инсулина состоит из двух полипептидных цепей, которые содержат 21 и 30 аминокислотных остатков. Эти полипептид- ные цепи соединены между собой дисульфидными (-S-S -) связями. Спустя 10 лет после расшифровки структуры этого фермента обе полипептидные цепи были синтезированы.

В настоящее время известны первичные структуры более 2000 белков. Например, в 1980 г. были расшифрованы сложнейшие ферменты - производные нуклеиновых кислот, полипептидные цепи которых состоят из 1342 и 1407 аминокислотных остатков соответственно. Через год удалось синтезировать полипептид, включающий 41 аминокислотный остаток. Задача завтрашнего дня - синтез еще более сложных белков, содержащих многие сотни остатков аминокислот.

Химические свойства. Как и аминокислоты, белки обладают амфотерными свойствами. В щелочной среде они проявляют кислотные свойства, в кислой - основные. Многие белки растворяются в воде, в кислотах и щелочах. Водные растворы белков - высокомолекулярные коллоиды. Если белки нагреть до 100 °С или подействовать на них кислотами, щелочами или растворами некоторых солей, то в их молекулах происходят необратимые изменения, которые называют денатурацией. В денатурированном белке изменяются физические, химические и биологические свойства. Это связано с тем, что процесс денатурации приводит к разрушению водородных и некоторых ковалентных связей, которые создают вторичную и третичную структуры. С процессом денатурации часто сталкиваются при горячем приготовлении пищи.

Для белков характерны некоторые цветные реакции.

Биуретовая реакция. Она связана с присутствием в молекуле белка пептидных связей (эту реакцию дают все вещества, которые содержат такую связь). При обработке белка концентрированным раствором щелочи и насыщенным раствором сульфата меди появляется фиолетовое окрашивание.

Ксантопротеиновая реакция. При действии на белки концентрированной азотной кислоты появляется желтая окраска. Она связана с образованием продуктов нитрования ароматических ядер, содержащихся в молекуле белка.

Сулъфгидрилъная реакция. При нагревании белков с раствором плюмбита натрия выпадает черный осадок сульфида свинца. Это качественная реакция на серу (присутствие сульфгидрильных групп SH).

Белки – это биополимеры, состоящие из остатков α-аминокислот, соединённых между собой пептидными связями (-CO-NH-). Белки входят в состав клеток и тканей всех живых организмов. В молекулы белков входит 20 остатков различных аминокислот.

Структура белка

Белки обладают неисчерпаемым разнообразием структур.

Первичная структура белка – это последовательность аминокислотных звеньев в линейной полипептидной цепи.

Вторичная структура – это пространственная конфигурация белковой молекулы, напоминающая спираль, которая образуется в результате скручивания полипептидной цепи за счёт водородных связей между группами: CO и NH.

Третичная структура – это пространственная конфигурация, которую принимает закрученная в спираль полипептидная цепь.

Четвертичная структура – это полимерные образования из нескольких макромолекул белка.

Физические свойства

Свойства белков весьма разнообразны, которые они выполняют. Одни белки растворяются в воде, образуя, как правило, коллоидные растворы (например, белок яйца); другие растворяются в разбавленных растворах солей; третьи нерастворимы (например, белки покровных тканей).

Химические свойства

1. Денатурация – разрушение вторичной, третичной структуры белка под действием различных факторов: температура, действие кислот, солей тяжёлых металлов, спиртов и т.д.

2. Качественные реакции на белки :

а) При горении белка – запах палёных перьев.

б) Белок +HNO 3 → жёлтая окраска

в) Раствор белка +NaOH + CuSO 4 → фиолетовая окраска

3. Гидролиз

Белок + Н 2 О → смесь аминокислот

Функции белков в природе:

· каталитические (ферменты);

· регуляторные (гормоны);

· структурные (кератин шерсти, фиброин шелка, коллаген);

· двигательные (актин, миозин);

· транспортные (гемоглобин);

· запасные (казеин, яичный альбумин);

· защитные (иммуноглобулины) и т.д.

25. Общая характеристика высокомолекулярных соединений: состав, строение, реакции, лежащие в основе их получения (на примере полиэтилена или синтетического каучука).

Высокомолекулярными соединениями (ВМС) или полимерами называются вещества, имеющие большую молекулярную массу, состоящую из множества повторяющихся структурных звеньев. Существуют природные полимеры (крахмал, белки, целлюлоза, каучук) и синтетические полимеры (полиэтилен, фенопласты). Низкомолекулярные вещества, из которых синтезируют полимеры, называются мономерами.

CH 2 =CH 2 мономер полиэтилена - этилен

(-CH 2 -CH 2 -) n –молекула полимера

CH 2 -CH 2 - – структурное звено – многократно повторяющаяся группа атомов

n – степень полимеризации (число звеньев в молекуле полимера)

Молекулярная масса полимера непостоянна и зависит от числа n. Макромолекулы полимеров могут иметь различную пространственную структуру:

1. Линейную (полиэтилен, полипропилен);

2. Разветвлённую (крахмал);

3. Пространственную (резина).

Физические свойства

Полимеры имеют высокую механическую прочность. Химически стойкие (с кислотами и щелочами не реагируют). Не имеют определённой температуры плавления, не растворяются в воде и в большинстве органических растворителей.

Синтез полимеров

Полимеры синтезируют двумя способами:

1. Реакцией полимеризации;

2. Реакцией поликонденсации.

Работу выполнил выпускник 11 «А» класса Ежелый Игорь

Слайд 2

Белки, или протеины.

В переводе с греческого «протос» - первый, главный.

Находятся в протоплазме и ядре всех растительных и животных клеток, являются главными носителями жизни.

  • Альбумин (в курином яйце)
  • Гемоглобин (в крови человека)
  • Казеин (в коровьем молоке)
  • Миоглобин и миозин (в мышцах)

«Жизнь есть способ существования белковых тел»

(Ф. Энгельс)

Слайд 3

Белки простые сложные состоят только содержат белковую из аминокислот и небелковую части

альбумин, фибрин (липиды, углеводы, ионы металлов) – протеолипиды, гемоглобин

Понятие о белках и их классификация

Слайд 4

  • Белки – сложные высокомолекулярные природные соединения, построенные изα-аминокислот
  • Аминокислоты в белках связаны пептидными связями
  • Белки, как биополимеры, их состав, строение и функции в клетке
  • боковые радикалы одинаковых или различных аминокислот
  • Около 20 видов аминокислот входят в состав белков.

Состав белков

Слайд 5

Белки, как биополимеры, их состав, строение и функции в клетке

Слайд 6

Первичная структура белка

Степень организации белковых молекул

Последовательность аминокислот в полипептидной цепи, соединенных между собой пептидными связями

Слайд 7

Степень организации белковых молекул

Вторичная структура белка

Полипептидная цепь скрученная в спираль, удерживающуюся посредством образования водородных связей между остатками карбоксильной и аминной групп разных аминокислот

Слайд 8

  • Третичная структура белка
  • Спираль, в свою очередь, свернута в форме глобулы и шара.
  • Эта структура стабилизируется водородными, ионными, ковалентными,дисульфидными связями и гидрофобными взаимодействиями.

Каждому белку свойственна в определенной среде своя особая пространственная структура.

Слайд 9

Четвертичная структура белка представляет собой объединение в единую структуру нескольких молекул с третичной организацией (гемоглобин, инсулин)

Слайд 10

Строение белковой молекулы

Белки, как биополимеры, их состав, строение и функции в клетке

Слайд 11

Белки, как биополимеры, их состав, строение и функции в клетке

  • Типы белков
  • Структурные
  • Ферменты
  • Гормоны
  • Сократительные
  • Токсины
  • Запасные
  • Защитные
  • Транспортные
  • Типы белков
  • Слайд 12

    Классификация белков по выполняемым функциям

    • Типы белков
    • Ферменты
    • Гормоны
    • Транспортные
    • Защитные
    • Запасные
    • Токсины
    • Структурные
    • Структурная
    • Каталитическая
    • Регуляторная
    • Сократительные
    • Сократительная
    • Транспортная
    • Защитная
    • Запасная
    • Защитная
    • Кератин
    • Инсулин
    • Миозин
    • Гемоглобин
    • Антитела
    • Казеин
    • Токсины растений
    • Функции белков примеры
  • Слайд 13

    • Промежуточный контроль знаний
    • Изучите схему разнообразия аминокислот.
    • Чем отличатся аминокислоты друг от друга?
    • Охарактеризуйте обязательные компоненты аминокислот.
    • Укажите те участки аминокислот. Между которыми возникает пептидная связь.
    • Чем обусловлено большое разнообразие белков?
  • Слайд 14

    Промежуточный контроль знаний

    Заполните пропуски в таблице.

    Структурная организация белка

    1. Какие связи существуют в белковой молекуле?

    2. Благодаря каким связям белковая цепочка образует повороты?

    3. Какие связи лежат в основе третичной структуры белка?

    4. Какая структура обеспечивает разнообразие функций белка?

    Слайд 15

    Спасибо за внимание!

    Посмотреть все слайды



  • Статьи по теме: