Обмен веществ и превращение. Обмен веществ и превращение энергии. Особенности энергетического обмена. Аэробное клеточное дыхание

Вопрос 1. Что такое диссимиляция? Перечислите ее этапы.
Диссимиляция , или энергетический обмен , - это совокупность реакций расщепления высокомолекулярных соединений, которые сопровождаются выделением и запасанием энергии. Диссимиляция у аэробных (кислорододышащих) организмов происходит в три этапа:
подготовительный - расщепление высокомолекулярных соединений до низкомолекулярных без запасания энергии;
бескислородный - частичное бескислородное расщепление соединений, энергия запасается в виде АТФ; кислородный - окончательное расщепление органических веществ до углекислого газа и воды, энергия также запасается в виде АТФ.
Диссимиляция у анаэробных (не использующих кислород) организмов происходит в два этапа: подготовительный и бескислородный. В данном случае органические вещества расщепляются не полностью и энергии запасается гораздо меньше.

Вопрос 2. В чем заключается роль АТФ в обмене веществ в клетке?
Аденозинтрифосфорная кислота (АТФ) состоит из азотистого основания - аденина, сахара - рибозы и трех остатков фосфорной кислоты. Молекула АТФ очень неустойчива и способна отщеплять одну или две молекулы фосфата с выделением большого количества энергии, расходуемой на обеспечение всех жизненных функций клетки (биосинтез, трансмембранный перенос, движение, образование электрического импульса и др.). Связи в молекуле АТФ называют макроэргическими.
Отщепление концевого фосфата от молекулы АТФ сопровождается выделением 40 кДж энергии.). При этом АТФ превращается в АДФ. Если произойдет отщепление второго остатка фофорной кислоты, АДФ превратится в АМФ. Все процессы в живых организмах, требующие затрат энергии, сопровождаются превращением молекул АТФ в АДФ (или даже в АМФ).
Синтез АТФ происходит в митохондриях.

Вопрос 3. Какие структуры клетки осуществляют синтез АТФ?
В эукариотических клетках синтез основной массы АТФ из АДФ и фосфорной кислоты происходит в митохондриях и сопровождается поглощением (запасанием) энергии. В пластидах АТФ образуется как промежуточный продукт световой стадии фотосинтеза.

Вопрос 4. Расскажите об энергетическом обмене в клетке на примере расщепления глюкозы.
Энергетический обмен обычно подразделяют на три этапа. Первый этап - Подготовительный, называемый также пищеварением. Осуществляется он главным образом вне клеток под действием ферментов, секретируемых в полость пищеварительного тракта. На этом этапе крупные молекулы полимеров распадаются на мономеры: белки - на аминокислоты, полисахариды - на простые сахара, жиры - на жирные кислоты и глицерин. При этом выделяется небольшое количество энергии, которая рассеивается и виде теплоты.
Бескислородный. В результате гликолиза одна молекула глюкозы расщепляется до двух молекул пировиноградной кислоты:
С 6 Н 12 О 6 <-----> 2С 3 Н 4 0 3 .
Распад одной молекулы глюкозы сопровождается образованием двух молекул АТФ. При этом 60% выделившейся энергии превращается в тепло, а 40% запасается в виде АТФ. При распаде одной молекулы глюкозы образуется 2 молекулы АТФ. Затем у анаэробных организмов происходит брожение - спиртовое (С 2 НС 5 ОН - этиловый спирт) или молочнокислое (С 3 Н 4 0 3 - молочная кислота). У аэробных организмов наступает третий этап энергетического обмена.
Кислородный. Этот этап катаболизма нуждается в присутствии молекулярного кислорода и называется дыханием. Развитие клеточного дыхания у аэробных микроорганизмов и в клетках эукариот стало возможным лишь после того, как в результате фотосинтеза в атмосфере Земли появился молекулярный кислород. Добавление к каталическому процессу стадии, осуществляющейся в присутствии кислорода, обеспечивает клетки мощным и эффективным путем извлечения из молекул питательных веществ и энергии.
Реакции кислородного расщепления, или окислительного катаболизма, протекают в специальных органоидах клетки - митохондриях, куда поступают молекулы пировиноградной кислоты. После целого ряда прекращений образуются конечные продукты - СО 2 и Н 2 О, которые затем диффундируют из клетки. Суммарное уравнение аэробного дыхания выглядит так:
С 6 Н 12 О 6 + 6О 2 + 36Н 3 РО 4 + 36АДФ <-----> 6СО 2 + 6Н 2 О + 36АТФ.
Таким образом, при окислении двух молекул молочной кислоты образуются 36 молекул АТФ. Всего в ходе второго и третьего этапов энергетического обмена при расщеплении одной молекулы глюкозы образуются 38 молекул АТФ. Следовательно, основную роль в обеспечении клетки энергией играет аэробное дыхание.

Обмен веществ и энергии (метаболизм) осуществляется на всех уровнях организма: клеточном, тканевом и организменном. Он обеспечивает постоянство внутренней среды организма - гомеостаз - в непрерывно меняющихся условиях существования. В клетке протекают одновременно два процесса - это пластический обмен (анаболизм или ассимиляция) и энергетический обмен (фатаболизм или диссимиляция).

Пластический обмен - это совокупность реакций биосинтеза, или создание сложных молекул из простых. В клетке постоянно синтезируются белки из аминокислот, жиры из глицерина и жирных кислот, углеводы из моносахаридов, нуклеотиды из азотистых оснований и сахаров. Эти реакции идут с затратами энергии. Используемая энергия освобождается в ходе энергитического обмена. Энергетический обмен - это совокупность реакций расщепления сложных органических соединений до более простых молекул. Часть энергии, высвобождаемой при этом, идет на синтез богатых энергетическими связями молекул АТФ (аденозин-трифосфорной кислоты). Расщепление органических веществ осуществляется в цитоплазме и митохондриях с участием кислорода. Реакции ассимиляции и диссимиляции тесно связаны между собой и внешней средой. Из внешней среды организм получает питательные вещества. Во внешнюю среду выделяются отработанные вещества.

Ферменты (энзимы) - это специфические белки, биологические катализаторы, ускоряющие реакции обмена в клетке. Все процессы в живом организме прямо или косвенно осуществляются с участием ферментов. Фермент катализирует только одну реакцию или действует только на один тип связи. Этим обеспечивается тонкая регуляция всех жизненно важных процессов (дыхание, пищеварение, фотосинтез и т.д.), протекающих в клетке или организме. В молекуле каждого фермента имеется участок, осуществляющий контакт между молекулами фермента и специфического вещества (субстрата). Активным центром фермента выступает функциональная группа (например, ОН - группа серина) или отдельная аминокислота.

Скорость ферментативных реакций зависит от многих факторов: температуры, давления, кислотности среды, наличия ингибиторов и т.д.

Этапы энергетического обмена:

  • Подготовительный - происходит в цитоплазме клеток. Под действием ферментов полисахариды расщепляются на моносахариды (глюкоза, фруктоза и Др.), жиры расщепляются до глицерина и жирных кислот, белки - до аминокислот, нуклеиновые кислоты до нуклеотидов. При этом выделяется небольшое количество энергии, которое рассеивается в виде тепла.
  • Бескислородный (анаэробное дыхание или гликолиз) - многоступенчатое расщепление глюкозы без участия кислорода. Его называют брожением. В мышцах в результате анаэробного дыхания молекула глюкозы распадается на две молекулы лировиноградной кислоты (С 3 Н 4 О 3), которые затем восстанавливаются в молочную кислоту (С 3 Н 6 О 3). В реакциях расщепления глюкозы участвуют фосфорная кислота и АДФ.

    Суммарное уравнение этого этапа: С 6 Н 12 О 6 + 2Н 3 РО 4 + 2АDФ -> 2С 3 Н 6 О 3 + 2АТФ + 2Н 2 О

    У дрожжевых грибков молекула глюкозы без участия кислорода превращается в этиловый спирт и диоксид углерода (спиртовое брожение). У других микроорганизмов гликолиз может завершаться образованием ацетона, уксусной кислоты и др. При распаде одной молекулы глюкозы образуется две молекулы АТФ, в связях которой сохраняется 40% энергии, остальная энергия рассеивается в виде тепла.

  • Кислородное дыхание - этап аэробного дыхания или кислородного, расщепления, который проходит на складках внутренней мембраны митоходрий - кристах. На этом этапе вещества предыдущего этапа расщепляются до конечных продуктов распада - воды и углекислого газа. В результате расщепления двух молекул молочной кислоты образуются 36 молекул АТФ. Основное условие нормального течения кислородного расщепления - целостность митохондриальных мембран. Кислородное дыхание - основной этап в обеспечении клетки кислородом. Он в 20 раз эффективнее бескислородного этапа.

    Суммарное уравнение кислородного расщепления: 2С 3 Н 6 0 3 + 60 2 + 36H 3 PО 4 + 36АДФ -> 6CO 2 + 38Н 2 О + 36АТФ

По способу получения энергии все организмы делятся на две группу - автотрофные и гетеротрофные.

Энергетический обмен в аэробных клетках растений, грибов и животных протекает одинаково. Это свидетельствует об их родстве. Количество митохондрий в клетках тканей различно, оно зависит от функциональной активности кйеток. Например, много митохондрий в клетках мышц.

Расщепление жиров на глицерин и жирные кислоты осуществляется ферментами - липазами. Белки вначале расщепляются до олигопептидов, а затем до аминокислот.

Ферменты (от лат. «fermentum» - брожение, закваска), энзимы, специфические белки, увеличивающие скорость протекания химических реакций в клетках всех живых организмов. По химической природе - белки, обладающие оптимальной активностью при определенном рН, наличии необходимых коферментов и кофакторов и отсутствии ингибиторов. Ферменты называют также биокатализаторами по аналогии с катализаторами в химии. Каждый вид ферментов катализирует превращение определенных веществ (субстратов), иногда лишь единственного вещества в единственном направлении. Поэтому многочисленные биохимические реакции в клетках осуществляет огромное число различных ферментов. Подразделяются на 6 классов: оксидоредуктазы, трансферазы, гидролазы, лиазы, изомеразы и лигазы. Многие ферменты выделены из живых клеток и получены в кристаллическом виде (впервые в 1926).

Роль ферментов в организме

Ферменты участвуют в осуществлении всех процессов обмена веществ, в реализации генетической информации. Переваривание и усвоение пищевых веществ, синтез и распад белков, нуклеиновых кислот, жиров, углеводов и других соединений в клетках и тканях всех организмов - все эти процессы невозможны без участия ферментов. Любое проявление функций живого организма - дыхание, мышечное сокращение, нервно-психическая деятельность, размножение и др. - обеспечивается действием ферментов. Индивидуальные особенности клеток, выполняющих определенные функции, в значителной мере определяются уникальным набором ферментов, производство которых генетически запрограммировано. Отсутствие даже одного фермента или какой-нибудь его дефект могут привести к серьезным отрицательным последствиям для организма.

Каталитические свойства ферментов

Ферменты - самые активные среди всех известных катализаторов. Большинство реакций в клетке протекает в миллионы и миллиарды раз быстрее, чем если бы они протекали в отсутствие ферментов. Так, одна молекула фермента каталазы способна за секунду превратить в воду и кислород до 10 тыс. молекул токсичной для клеток перекиси водорода, образующейся при окислении различных соединений. Каталитические свойства ферментов обусловлены их способностью существенно уменьшать энергию активации вступающих в реакцию соединений, то есть в присутствии ферментов требуется меньше энергии для «запуска» данной реакции.

История открытия ферментов

Процессы, протекающие при участии ферментов, известны человеку с глубокой древности, ведь в основе приготовления хлеба, сыра, вина и уксуса лежат ферментативные процессы. Но только в 1833 году впервые из прорастающих зерен ячменя было выделено активное вещество, осуществляющее превращение крахмала в сахар и получившее название диастазы (ныне этот фермент называется амилазой). В конце 19 в. было доказано, что сок, получаемый при растирании дрожжевых клеток, содержит сложную смесь ферментов, обеспечивающих процесс спиртового брожения. С этого времени началось интенсивное изучение ферментов - их строения и механизма действия. Так как роль биокатализа была выявлена при изучении брожения, то именно с этим процессом были связаны два установившихся еще с 19 в. названия - «энзим» (в переводе с греч. «из дрожжей») и «фермент». Правда, последний синоним применяется только в русскоязычной литературе, хотя научное направление, занятое изучением ферментов и процессов с их участием, традиционно называется энзимологией. В первой половине 20 в. было установлено, что по химической природе ферменты yвляются белками, а во второй половине века для многих сотен ферментов уже была определена последовательность аминокислотных остатков, установлена пространственная структура. В 1969 впервые был осуществлен химический синтез фермента рибонуклеазы. Огромные успехи были достигнуты в понимании механизма действия ферментов.

Местонахождение ферментов в организме

В клетке часть ферментов находится в цитоплазме, но в основном ферменты связаны с определенными клеточными структурами, где и проявляют свое действие. В ядре, например, находятся ферменты, ответственные за репликацию - синтез ДНК(ДНК-полимеразы), за ее транскрипцию - образование РНК (РНК-полимеразы). В митохондриях присутствуютферменты, ответственные за накопление энергии, в лизосомах - большинство гидролитических ферментов, участвующих в распаде нуклеиновых кислот и белков.

Условия действия ферментов

Все реакции с участием ферментов протекают, в основном, в нейтральной, слабощелочной или слабокислой среде. Однако максимальная активность каждого отдельного фермента проявляется при строго определенных значениях pH. Для действия большинства ферментов теплокровных животных наиболее благоприятной температурой является 37-40oС. У растений при температуре ниже 0o С действие ферментов полностью не прекращается, хотя жизнедеятельность растений при этом резко снижается. Ферментативные процессы, как правило, не могут протекать при температуре выше 70o С, так как ферменты, как и всякие белки подвержены тепловой денатурации (разрушению структуры).

Размеры ферментов и их строение

Молекулярная масса ферментов, как и всех остальных белков, лежит в пределах 10 тыс. - 1 млн. (но может быть и больше). Они могут состоять из одной или нескольких полипептидных цепей и могут быть представлены сложными белками. В состав последних наряду с белковым компонентом (апоферментом) входят низкомолекулярные соединения - коферменты (кофакторы, коэнзимы), в том числе ионы металлов, нуклеотиды, витамины и их производные. Некоторые ферменты образуются в форме неактивных предшественников (проферментов) и становятся активными после тех или иных изменений в структуре молекулы, например, после отщепления от нее небольшого фрагмента. К их числу относятся пищеварительные ферменты трипсин и химотрипсин, которые синтезируются клетками поджелудочной железы в форме неактивных предшественников (трипсиногена и химотрипсиногена) и обретают активность в тонком кишечнике в составе поджелудочного сока. Многие ферменты образуют так называемые ферментные комплексы. Такие комплексы, например, встроены в мембраны клеток или клеточных органелл и участвуют в транспорте веществ.

Подвергающееся превращению вещество (субстрат) связывается с определенным участком фермента, aго активным центром, который формируется боковыми цепями аминокислот, находящимися часто в значительно удаленных друг от друга участках полипептидной цепи. Например, активный центр молекулы химотрипсина образуют остатки гистидина, находящегося в полипептидной цепи в положении 57, серина в положении 195 и аспарагиновой кислоты в положении 102 (всего в молекуле химотрипсина 245 аминокислот). Таким образом, сложная укладка полипептидной цепи в молекуле белка - ферменте обеспечивает возможность нескольким боковым цепям аминокислот оказаться в строго определенном месте и на определенном расстоянии друг от друга. Коферменты также входят в состав активного центра (белковая часть и небелковый компонент в отдельности ферментативной активностью не обладают и приобретают свойства фермента, лишь соединившись вместе).

Протекание процессов с участием ферментов

Большинство ферментов отличается высокой специфичностью (избирательностью) действия, когда превращение каждого реагирующего вещества (субстрата) в продукт реакции осуществляется специальным ферментом. При этом действие фермента может быть строго ограничено одним субстратом. Например, фермент уреаза, участвующий в распаде мочевины до аммиака и углекислого газа, не реагирует на сходную по строению метилмочевину. Многие ферменты aействуют на несколько родственных по структуре соединений или на один тип химической связи (например, расщепляющие фосфодиэфирную связь фермент фосфатазы). Фермент осуществляет свое действие через образование фермент-субстративного комплекса, который затем распадается с образованием продуктов ферментативной реакции и освобождением фермента. A результате образования фермент-субстратного комплекса субстрат изменяет свою конфигурацию; при этом преобразуемая фермент-химическая связь ослабляется и реакция протекает с меньшей начальной затратой энергии и, следовательно, с намного большей скоростью. Мерой скорости ферментативной реакции служит количество субстрата, подвергшегося превращению в единицу времени, или количество образовавшегося продукта. Многие ферментативные реакции в зависимости от концентрации в среде субстрата и продукта реакции могут протекать как в прямом, так и в обратном направлении (избыток субстрата сдвигает реакцию в сторону образования продукта, в то время как при чрезмерном накоплении последнего будет происходить синтез субстрата). Это означает, что ферментативные реакции могут быть обратимыми. Например, карбоангидраза крови превращает поступающий из тканей углекислый газ в угольную кислоту (H2CO3), а в легких, напротив, катализирует превращение угольной кислоты в воду и углекислый газ, который удаляется при выдохе. Однако следует помнить, что ферменты, как и другие катализаторы, не могут сдвигать термодинамическое равновесие химической реакции, а лишь значительно ускоряют достижение этого равновесия.

Номенклатура названий ферментов

При наименовании фермента cа основу берут название субстрата и добавляют суффикс «аза». Так появились, в частности, протеиназы - ферменты, расщепляющие белки (протеины), липазы (расщепляют липиды, или жиры) и т. д. Некоторые ферменты получили специальные (тривиальные) названия, например, пищеварительные ферменты- пепсин, химотрипсин и трипсин.

В клетках организма протекает несколько тысяч различных реакций обмена веществ и, следовательно, имеется столько же ферментов. Aля того, чтобы привести такое многообразие в систему, было принято международное соглашение о классификации ферментов. A соответствии с этой системой все ферменты a зависимости от типа катализируемых ими реакций были поделены на шесть основных классов, каждый из которых включает ряд подклассов. Кроме того, каждый фермент получил четырехзначный кодовый номер (шифр) и название, указывающее на реакцию, которую yтот фермент катализирует. Ферменты, катализирующие одну и ту же реакцию у организмов разных видов, могут существенно различаться между собой по своей белковой структуре, но в номенклатуре имеют общее название и один кодовый номер.

Болезни, связанные с нарушением выработки ферментов

Отсутствие или снижение активности какого-либо фермента (нередко и избыточная активность) у человека приводит к развитию заболеваний (энзимопатий) или гибели организма. Так, передаваемое по наследству заболевание детей - галактоземия (приводит к умственной отсталости) - развивается вследствие нарушения синтеза фермента, ответственного за превращение галактозы в легко усваиваемую глюкозу. Причиной другого наследственного заболевания - фенилкетонурии, сопровождающегося расстройством психической деятельности, является потеря клетками печени способности синтезировать фермент, катализирующий превращение аминокислоты фенилаланина в тирозин. Определение активности многих ферментов a крови, моче, спинно-мозговой, семенной и других жидкостях организма используется для диагностики ряда заболеваний. С помощью такого анализа сыворотки крови возможно обнаружение на ранней стадии инфаркта миокарда, вирусного гепатита, панкреатита, нефрита и других заболеваний.

Использование ферментов человеком

Так как ферменты сохраняют свои свойства и вне организма, их успешно используют в различных отраслях промышленности. Например, протеолитический фермент папайи (из сока папайи) - в пивоварении, для мягчения мяса; пепсин - при производстве «готовых» каш и как лекарственный препарат; трипсин - при производстве продуктов для детского питания; реннин (сычужный фермент из желудка теленка) - в сыроварении. Каталаза широко применяется в пищевой и резиновой промышленности, а расщепляющие полисахариды целлюлазы и пектидазы - для осветления фруктовых соков. Ферменты необходимы при установлении структуры белков, нуклеиновых кислот и полисахаридов, в генетической инженерии и т. д. С помощью ферментов получают лекарственные препараты и сложные химические соединения.

Обнаружена способность некоторых форм рибонуклеиновых кислот (рибозимов) катализировать отдельные реакции, то есть выступать в качестве ферментов. Возможно, в ходе эволюции органического мира рибозимы служили биокатализаторами до того, как ферментативная функция перешла к белкам, более приспособленным к выполнению этой задачи.

ОБМЕН ВЕЩЕСТВ И ПРЕВРАЩЕНИЕ ЭНЕРГИИ В КЛЕТКЕ (МЕТАБОЛИЗМ)

Постоянный обмен веществ с окружающей средой – одно из основных свойств живых систем.

Процесс синтеза ассимиляцией или пластическим обменом (анаболизм).

Процесс расщепления органических веществ называется диссимиляцией (катаболизм).

Пластический и энергетический обмен неразрывно связаны: все реакции синтеза нуждаются в энергии, а все реакции расщепления протекают при помощи ферментов, катализирующих эти реакции. Ферменты образуются в результате синтеза (ассимиляции).

Через пластический и энергетический обмен образуется связь с внешней средой: из внешней среды в клетку поступают питательные вещества, служащие материалом для реакций энергетического обмена; во внешнюю среду выделяются вещества, которые не могут быть использованы клеткой (H 2 O, СО 2 и др.).

Совокупность реакций энергетического и пластического обменов, в процессе которых осуществляется связь клетки с внешней средой, называется обменом веществ и энергии.

ЭНЕРГЕТИЧЕСКИЙ ОБМЕН (ДИССИМИЛЯЦИЯ)

В этом процессе органические вещества, богатые энергией, распадаются на низкомолекулярные органические или неорганические соединения, бедные энергией. Реакции сопровождаются освобождением энергии, часть которой запасается в форме АТФ.

Энергетический обмен осуществляется в 3 этапа:

I . Подготовительный этап

Протекает в желудочно-кишечном тракте. На этом этапе сложные органические вещества расщепляются на более простые: белки до аминокислот, нуклеиновые кислоты до нуклеотидов, углеводы на моносахариды, жиры до жирных кислот и глицерина, освобождаемая при этом энергия рассеивается в виде тепла.

II этап – анаэробный (гликолиз) – бескислородное окисление

Протекает в цитоплазме клеток. Образованные на I этапе вещества подвергаются расщеплению с освобождением энергии – неполное окисление.

Процесс называют бескислородным или анаэробным, т.к. идет без поглощения кислорода. Главным источником энергии в клетке является глюкоза (С 6 Н 12 О 6 ).

Бескислородное расщепление глюкозы – гликолиз:

С 6 Н 12 О 6 + 2НАД +2АДФ + 2Ф 2С 3 Н 4 О 3 + 2НАДН 2 + 2АТФ

глюкоза ПВК (Атомы Н накапливаются при
помощи акцептора НАД+, а позже
соединяются с О 2 Н 2 О)

В результате неполного окисления 1 молекулы глюкозы образуется 2 молекулы АТФ.

Виды брожения

В условиях, когда О 2 нет и, значит, водородные атомы, освободившиеся в процессе гликолиза, не могут быть ему переданы, вместо О 2 должен быть использован другой акцептор водорода. Таким акцептором становиться пировиноградная кислота (ПВК). В зависимости от метаболических путей организма, конечные продукты различны:

Молочнокислое : 2С 3 Н 4 О 3 + 2НАД·Н 2 2С 3 Н 6 О 3 (молочная к-та) + 2НАД

Спиртовое : 2С 3 Н 4 О 3 + 2НАД·Н 2 2С 2 Н 5 ОН (этиловый спирт) + СО 2 + НАД

Маслянокислое : 2 С 3 Н 4 О 3 + 2НАД·Н 2 С 4 Н 8 О 2 (масляная к-та) + 2СО 2 + 2Н 2 + НАД

III этап – аэробный – полное окисление (клеточное дыхание)

Протекает в митохондриях. Это аэробный процесс, т.е. протекающий с обязательным присутствием кислорода. Образовавшаяся в процессе гликолиза пировиноградная кислота (ПВК): С 3 Н 4 О 3 подвергается дальнейшему окислению в митохондриях до Н 2 О и СО 2 и освобождается большое количество энергии:

2С 3 Н 4 О 3 + 6О 2 + 36АДФ + 36 Н 3 РО 4 42Н 2 О + 6СО 2 + (36АТФ)

Таким образом, всего на втором и третьем этапе выделяется 38АТФ:

С 6 Н 12 О 6 + 6О 2 + 38АДФ + 38Н 3 РО 4 6СО 2 + 6Н 2 О + 38АТФ.

Клеточное дыхание включает три группы реакций:

Образование ацетилкофермента А;

Цикл трикарбоновых кислот или цикл лимонной кислоты (цикл Кребса);

Перенос электронов по дыхательной цепи и окислительное фосфорилирование.

Первый и второй этапы протекают в матриксе митохондрий, а третья – на внутренней мембране митохондрий.

1. Образование ацетилкофермента А:

Пировиноградная кислота поступает из цитоплазмы в митохондрии, где претерпевает окислительное декарбоксилирование, заключающееся в отщеплении одной молекулы углекислого газа (СO 2) образование ацетильной группы пирувата (СН 3 СО–), которая присоединяется к коферменту А (КоА) образование ацетил-КоА.

2. Цикл Кребса

В цикле Кребса происходит последовательное окисление ацетил-КоА в составе лимонной кислоты, что сопровождается отщеплением углекислого газа и водорода, который собирается в НАДH 2 и передается в цепь транспорта электронов, встроенную во внутреннюю мембрану митохондрий, т.е. в результате полного оборота цикла Кребса одна молекула ацетил-КоА сгорает до СО 2 и Н 2 О.

Конечные продукты цикла Кребса и пути их использования:

    СО 2 выдыхается с воздухом;

    НАДН и ФАДН 2 поставляют водород в дыхательную цепь;

АТФ используется на различные виды работы

3. Перенос электронов по дыхательной цепи и окислительное фосфорилирование

Дыхательная цепь (цепь переноса электронов) – это цепь окислительно-восстановительных реакций, в ходе работы которой компоненты дыхательной цепи катализируют перенос протонов (Н+) и электронов (е-) от НАД∙H 2 и ФАД∙H 2 на их конечный акцептор – кислород, в результате чего образуется Н 2 О
(электроны переносятся по дыхательной цепи на молекулу О 2 и активируют её. Активированный кислород сразу же реагирует с образовавшимися протонами (Н+), в результате чего выделяется вода.

Окислительное фосфорилирование – это синтез АТФ из АДФ и фосфата с помощью встроенного во внутреннюю мембрану митохондрий фермента АТФ-синтетазы. В этом процессе используется энергия движения электронов и протонов в митохондриальной мембране.

ПЛАСТИЧЕСКИЙ ОБМЕН

Процесс ассимиляции – это процесс образования сложных органических веществ из более простых . К пластическому обмену относится биосинтез белков, нуклеиновых кислот, жиров, углеводов и фотосинтез.

Различают два типа ассимиляции: гетеротрофную и автотрофную.

Гетеротрофная ассимиляция имеет место в клетках животных организмов, грибов и большинства бактерий, которые для синтеза собственных веществ используют готовые органические соединения. например, на синтез белков в клетках животных идут аминокислоты, поступающие в организм с пищей, на синтез нуклеиновых кислот – нуклеотиды, содержащиеся в пище и т. д.

Автотрофные организмы синтезируют сложные органические вещества из неорганических (СО 2 и Н 2 О) посредством фотосинтеза и хемосинтеза .

Фотосинтез

Синтез органических соединений из неорганических (СО 2 и Н 2 О), протекающий за счет световой энергии.

Побочным продуктом фотосинтеза является О 2 , выделяющийся в атмосферу.

Фотосинтез протекает в хлоропластах при участии хлорофилла. В фотосинтезе выделяют 2 фазы: световую и темновую.

I . Световая фаза : протекает в тилакоидах хлоропластов только на свету. Под действием света хлорофмлл приходит в «возбужденное» состояние, под влиянием квантов света из атомов магния «выбиваются» е - (электроны) и приобретают скорость «убегания», т.е. покидают свои орбиты, отрываясь от молекулы хлорофилла.

Вода в хлоропластах находится частично в диссоциированном состоянии:

Н 2 О Н + + ОН -

Один из электронов соединен с ионом водорода (Н + ) из воды. Водород при этом восстанавливается до атома до атома: 2Н 0 + НАДФ = НАДФ∙H 2 .

Ион гидроксида (ОН -), оставшийся без противоиона, немедленно отдает свой электрон молекулам хлорофилла, утратившим свои е - , и превращаются в свободной радикал – ОН 0: ОН - - е - = ОН 0 .

Свободные радикалы гидроксида при этом взаимодействуют друг с другом:

4ОН 2Н 2 О + О 2 .

Следовательно, световая фаза характеризуется реакцией: Н 2 О О 2 + 4Н. Помимо образования О 2 и Н, главным моментом световой фазы является синтез АТФ.

У растений АТФ образуется и в митохондриях, и в хлоропластах.

II . Темновая фаза: протекает в строме хлоропластов как на свету, так и в темноте. Из СО 2 атмосферы и атомов водорода, образовавшихся в световую фазу, а также при участии АТФ, образовавшейся в световую фазу, образуется сложное органическое вещество – глюкоза : 6СО 2 + 24Н 2 С 6 Н 12 О 6 + 6Н 2 О,

В результате фотосинтеза имеем: 6СО 2 + 6Н 2 О С 6 Н 12 О 6 + 6О 2

Таким образом, световая энергия солнца преобразовалась в химическую энергию глюкозы.

ХЕМОСИНТЕЗ

Хемосинтез, как и фотосинтез, характеризуется синтезом органических веществ из неорганических, но в этом процессе используется не энергия света, а энергия химических связей, химическая энергия и кислород в окружающую среду не выделяется.

Наибольшее значение имеют нитрифицирующие бактерии, железобактерии, серобактерии.

Серобактерии окисляют сероводород до серы и далее до серной кислоты:

H 2 S О 2 S + энергия; S О 2 H 2 SO 4

Освобожденная в этих процессах энергия накапливается в виде молекул АТФ и используется затем для синтеза органических веществ, протекающего по типу синтеза глюкозы в темновой фазе фотосинтеза.

СО 2 + Н 2 О + АТФ углевод

Автотрофная ассимиляция – характерна для клеток зеленных растений, некоторых бактерий. В этих клетках органические вещества синтезируются из неорганических. Источником энергии служит свет или химическая энергия.

Гетеротрофная ассимиляция – имеет место в клетках животных организмов, грибов и большинства бактерий, которые для синтеза собственных веществ используют готовые органические соединения.

Например, на синтез белков в клетках животных идут аминокислоты, поступающие в организм с пищей.

СТРУКТУРНО-ЛОГИЧЕСКАЯ СХЕМА


Все живые организмы на Земле представляют собой открытые системы, способные активно организовывать поступление энергии и вещества извне. Энергия необходима для осуществления жизненно важных процессов, но прежде всего для химического синтеза веществ, используемых для построения и восстановления структур клетки и организма. Живые существа способны использовать только два вида энергии: световую (энергию солнечного излучения) и химическую (энергию связей химических соединении) – по этому признаку организмы делятся на две группы – фототрофы и хемотрофы.

Главным источником структурных молекул является углерод. В зависимости от источников углерода живые организмы делят на две группы: автотрофы, использующие не органический источник углерода (диоксид углерода), и гетеротрофы, использующие органические источники углерода.

Процесс потребления энергии и вещества называется питанием. Известны два способа питания: голозойный – посредством захвата частиц пищи внутрь тела и голофитный – без захвата, посредством всасывания растворенных пищевых веществ через поверхностные структуры организма. Пищевые вещества, попавшие в организм, вовлекаются в процессы метаболизма.

Метаболизм представляет собой совокупность взаимосвязанных и сбалансированных процессов, включающих разнообразные химические превращения в организме. Реакции синтеза, осуществляющиеся с потреблением энергии, составляют основу анаболизма (пластического обмена или ассимиляции).

Реакции расщепления, сопровождающиеся высвобождением энергии, составляют основукатаболизма (энергического обмена или диссимиляции).

1. Значение АТФ в обмене веществ

Энергия, высвобождающая при распаде органических веществ, не сразу используется клеткой, а запасается в форме высокоэнергетических соединений, как правило, в форме аденозинтрифосфата (АТФ). По своей химической природе АТФ относится к мононуклеотидам и состоит из азотистого основания аденина, углевода рибозы и трех остатков фосфорной кислоты.

Энергия, высвобождающаяся при гидролизе АТФ, используется клеткой для совершения всех видов работы. Значительные количества энергии расходуются на биологические синтезы. АТФ является универсальным источником энергообеспечения клетки. Запас АТФ в клетке ограничен и пополняется благодаря процессу фосфорилирования, происходящему с разной интенсивностью при дыхании, брожении и фотосинтезе. АТФ обновляется чрезвычайно быстро (у человека продолжительность жизни одной молекулы АТФ менее 1 минуты).

2. Энергетический обмен в клетке. Синтез АТФ

Синтез АТФ происходит в клетках всех организмов в процессе фосфорилирования, т.е. присоединения неорганического фосфата к АДФ. Энергия для фосфорилирования АДФ образуется в ходе энергетического обмена. Энергетический обмен, или диссимиляция, представляет собой совокупность реакции расщепления органических веществ, сопровождающихся выделением энергии. В зависимости от среды обитания диссимиляция может протекать в два или три этапа.

У большинства живых организмов – аэробов, живущих в кислородной среде, - в ходе диссимиляции осуществляется три этапа: подготовительный, бескислородный, кислородный. У анаэробов, обитающих в среде лишенной кислорода, или у аэробов при его недостатке, диссимиляция протекает лишь в два первых этапа с образованием промежуточных органических соединений, еще богатых энергией.

Первый этап – подготовительный – заключается в ферментативном расщеплении сложных органических соединении на более простые (белков на аминокислоты; полисахаридов на моносахариды; нуклеиновых кислот на нуклеотиды). Внутриклеточное расщепление органических веществ происходит под действием гидролитических ферментов лизосом. Высвобождающаяся при этом энергия рассеивается в виде теплоты, а образующиеся малые органические молекулы могут подвергнутся дальнейшему расщеплению и использоваться клеткой как «строительный материал» для синтеза собственных органических соединений.

Второй этап – неполное окисление – осуществляется непосредственно в цитоплазме клетки, в присутствии кислорода не нуждается и заключается в дальнейшем расщеплении органических субстратов. Главным источником энергии в клетке является глюкоза . Бескислородное, неполное расщепление глюкозы, называют гликолизом.

Третий этап – полное окисление – протекает при обязательном участие кислорода. В его результате молекула глюкозы расщепляется до неорганического диоксида углерода, а высвободившаяся при этом энергия частично расходуется на синтез АТФ.

3. Пластический обмен

Пластический обмен, или ассимиляция, представляют собой совокупность реакций, обеспечивающих синтез сложных органических соединений в клетке. Гетеротрофные организмы строят собственные органические вещества из органических компонентов пищи. Гетеротрофная ассимиляция сводится, по существу, к перестройке молекул.

Органические вещества пищи (белки, жиры, углеводы) --> пищеварение --> Простые органические молекулы (аминокислоты, жирные кислоты, моносахара) --> биологические синтезы --> Макромолекулы тела (белки, жиры, углеводы)

Автотрофные организмы способны полностью самостоятельно синтезировать органические вещества из неорганических молекул, потребляемых из внешней среды. В процессе автотрофной ассимиляции реакции фото- и хемосинтеза, обеспечивающие образование простых органических соединений, предшествует биологическим синтезам молекул макромолекул:

Неорганические вещества (углекислый газ, вода) --> фотосинтез, хемосинтез --> Простые органические молекулы (аминокислоты, жирные кислоты, моносахара)-----биологические синтезы --> Макромолекулы тела (белки, жиры, углеводы)

4. Фотосинтез

Фотосинтез – синтез органических соединении из неорганических, идущий за счет энергии клетки. Ведущую роль в процессах фотосинтеза играют фотосинтезирующие пигменты, обладающие уникальным свойством – улавливать свет и превращать его энергию в химическую энергию. Фотосинтезирующие пигменты представляют собой довольно многочисленную группу белково-подобных веществ. Главным и наиболее важным в энергетическом плане является пигментхлорофилл а , встречающиеся у всех фототрофов, кроме бактерии-фотосинтетиков. Фотосинтезирующие пигменты встроены во внутреннюю мембрану пластид у эукариот или во впячивания цитоплазматической мембраны у прокариот.

В процессе фотосинтеза кроме моносахаридов (глюкоза и др.), которые превращаются в крахмал и запасаются растением, синтезируются мономеры других органических соединении – аминокислоты, глицерин и жирные кислоты. Таким образом, благодаря фотосинтезу растительные, а точнее – хлорофиллосодержащие, клетки обеспечивают себя и все живое на Земле необходимыми органическими веществами и кислородом.

5. Хемосинтез

Хемосинтез также представляет собой процесс синтеза органических соединении из неорганических, но осуществляется он не за счет энергии света, а за счет химической энергии, получаемой при окислении неорганических веществ (серы, сероводорода, железа, аммиака, нитрита и др.). Наибольшее значение имеют нитрифицирующие, железо- и серобактерии.

Высвобождающаяся в ходе реакций окисления энергия запасается бактериями в виде АТФ и используется для синтеза органических соединений. Хемосинтезирующие бактерии играют очень важную роль в биосфере. Они участвуют в очистке сточных вод, способствуют накоплению в почве минеральных веществ, повышают плодородие почвы.

ДНК -биополимер, микро молекула, полинуклеотид, -маномер-нуклеотид Азотистые основания-дезоксирибоза-остаток фосфорной кислоты Азотистые основания:аденин,тимин,гуанин,цитозин -двуцепочечное строение РНК -биополимер,макромолекула, полинуклеотид, -маномер-нуклеотид Азотистые основания-Рибоза-Остаток фосфорной кислоты Азотистые основания:аденин,урацил,гуанин,цитозин. Молекула РНК- одноцепоченная. Функции: ДНК- хранение генетической информации РНК- передача генетической иформации

Иформационная РНК, несущая сведения о первичной структуре белковых молекул, синтезируется в ядре. Пройдя через поры ядерной оболочки, и-РНК направляется к рибосомам, где осуществляется расшифровка генетической информации - перевод ее с Уязыка нуклеотидов на Уязык аминокислот.

Аминокислоты, из которых синтезируются белки, доставляются к рибосомам с помощью специальных РНК, называемых транспортными (т-РНК). В т-РНК последовательность трех нуклеотидов комплементарна нуклеотидам кодона в и-РНК. Такая последовательность нуклеотидов в структуре т-РНК называется антикодоном. Каждая т-РНК присоединяет определенную, Усвою аминокислоту, при помощи ферментов и с затратой АТФ. В этом состоит первый этап синтеза.

Для того чтобы аминокислота включилась в цепь белка, она должна оторваться от т-РНК. На втором этапе синтеза белка т-РНК выполняет функцию переводчика с Уязыка нуклеотидов на Уязык аминокислот. Такой перевод происходит на рибосоме. В ней имеется два участка: на одном т-РНК получает команду от и-РНК - антикодон узнает кодон, на другом - выполняется приказ - аминокислота отрывается от т-РНК.

Третий этап синтеза белка заключается в том, что фермент синтетаза присоединяет оторвавшуюся от т-РНК аминокислоту к растущей белковой молекуле. Информационная РНК непрерывно скользит по рибосоме, каждый триплет сначала попадает в первый участок, где узнается антикодоном т-РНК, затем на второй участок. Сюда же переходит т-РНК с присоединенной к ней аминокислотой, здесь аминокислоты отрываются от т-РНК и соединяются друг с другом в той последовательности, в которой триплеты следуют один за другим.

Когда на рибосоме в первом участке оказывается один из трех триплетов, являющихся знаками препинания между генами, это означает, что синтез белка завершен. Готовая цепь белка отходит от рибосомы. Процесс синтеза белковой молекулы требует больших затрат энергии. На соединение каждой аминокислоты с т-РНК расходуется энергия одной молекулы АТФ.

Для увеличения производства белков и-РНК часто одновременно проходит не через одну, а через несколько рибосом последовательно. Такую структуру, объединенную одной молекулой и-РНК, называют полисомой. На каждой рибосоме в таком, похожем на нитку бус, конвейере последовательно синтезируются несколько молекул одинаковых белков.

Синтез белка на рибосомах носит название трансляции. Синтез белковых молекул происходит непрерывно и идет с большой скоростью: в одну минуту образуется от 50 до 60 тыс. пептидных связей. Синтез одной молекулы белка длится всего 3-4 секунды. Каждый этап биосинтеза катализируется соответствующими ферментами и снабжается энергией за счет расщепления АТФ. Синтезированные белки поступают в каналы эндоплазматической сети, по которым транспортируются к определенным участкам клетки.

Растительная клетка как осмотическая система

Растительная клетка представляет собой осмотическую систему. Клеточный сок вакуоли является высококонцентрированным раствором. Осмотическое давление клеточного сока обозначается - .

Чтобы попасть в вакуоль, вода должна пройти через клеточную стенку, плазмалемму, цитоплазму и тонопласт. Клеточная стенка хорошо проницаема для воды. Плазмалемма и тонопласт обладают избирательной проницаемостью. Поэтому растительную клетку можно рассматривать как осмотическую систему, в которой плазмалемма и тонопластявляются полупроницаемой мембраной, а вакуоль с клеточным соком – концентрированным раствором. Поэтому, если клетку поместить в воду, то вода по законам осмоса начнет поступать внутрь клетки.

Сила, с которой вода поступает внутрь клетки, называется сосущей силой – S.

Она тождественна водному потенциалу.

По мере поступления воды в вакуоль, ее объем увеличивается, вода разбавляет клеточный сок, и клеточные стенки начинают испытывать давление. Клеточная стенка обладает определенной эластичностью и может растягиваться.

С увеличением объема вакуоли цитоплазма прижимается к клеточной стенке и возникает тургорное давление на клеточную стенку (Р). Одновременно со стороны клеточной стенки возникает равное по величине противодавление клеточной стенки на протопласт. Противодавление клеточной стенки называется потенциалом давления (-Р).

Таким образом, величина сосущей силы S определяется осмотическим давлением клеточного сока и тургорным гидростатическим давлением клетки Р, которое равно противодавлению клеточной стенки, возникающей при ее растяжении –Р.

S = - Р или - - .

Если растение находится в условиях достаточной увлажненности почвы и воздуха, то клетки находятся в состоянии полного тургора. Когда клетка полностью насыщена водой (тургесцентна), то ее сосущая сила равна нулю S = 0, а тургорное давление равно потенциальному осмотическому давлению Р = .

При недостатке влаги в почве вначале возникает водный дефицит в клеточной стенке. Водный потенциал клеточной стенки становится ниже, чем в вакуолях, и вода начинает перемещаться из вакуоли в клеточную стенку. Отток воды из вакуоли снижает тургорное давление в клетках и увеличивает их сосущую силу. При длительном недостатке влаги большинство клеток теряет тургор, и растение начинает завядать, теряя эластичность и упругость. При этом тургорное давление Р = 0, а сосущая сила S =

Если из-за очень большой потери воды тургорное давление упадет до нуля, то лист завянет совсем. Дальнейшая потеря воды приведет к гибели протопласта клеток. Приспособительным признаком к резкой потере воды является быстрое закрытие устьиц при недостатке влаги.

Клетки могут быстро восстановить тургор, если растение получит достаточное количество воды или в ночное время, когда растение получает достаточное количество воды из почвы. А также при поливе.

Водный потенциал; равен 0 для чистой воды; равен 0 или отрицателен для клеток.

Осмотический потенциал, всегда отрицателен

Потенциал давления; обычно положителен для в живых клетках(в клетках, содержимое которых находится под давлением, но отрицателен в клетках ксилемы(в которых создается натяжение воды).

Суммарный результат действия

При полном тургоре

При начальном плазмолизе

Если поместить клетку в гипертонический раствор с более низким водным потенциалом, то вода начинает выходить из клетки путем осмоса через плазматическую мембрану. Сначала вода будет выходить из цитоплазмы, затем через тонопласт из вакуоли. Живое содержимое клетки – протопласт при этом сморщивается и отстает от клеточной стенки. Происходит процесс плазмолиза. Пространство между клеточной стенкой и протопластом заполняет наружный раствор. Такая клетка называетсяплазмолизированной. Вода будет выходить из клетки до тех пор, пока водный потенциал протопласта не станет равен водному потенциалу окружающего раствора, после чего клетка перестает сморщиваться. Этот процесс обратим и клетка не получает повреждений.

Если клетку поместить в чистую воду или гипотонический раствор, то тургорное состояние клетки восстановится и происходит процесс деплазмолиза.

В условиях водного дефицита в молодых тканях резкое усиление потери воды приводит к тому, что тургорное давление клетки становится отрицательным и протопласт, сокращаясь в объеме, не отделяется от клеточной стенки, а тянет ее за собой. Клетки и ткани сжимаются. Это явление называется циторриз.

Катализируют отдельные реакции, протекающие в организме. Совокупность этих реакций представляет собой обмен веществ (метаболизм). В организме и отдельных его клетках постоянно происходит, с одной стороны, процесс распада отдельных компонентов клетки (липидов, углеводов, белков), а с другой стороны, синтез новых молекул этих соединений. Процессы превращения сложных биологических молекул в более простые называются диссимиляцией. Липиды и углеводы в организме распадаются в конечном итоге до углекислого газа и , - до углекислого газа, воды и аммиака или его производных. Процессы диссимиляции происходят с выделением энергии, поэтому их называют еще энергетическим обменом. Биосинтез новых органических соединений называется ассимиляцией, или пластическим обменом. В результате пластического обмена клетка обеспечивается строительным материалом. Процессы ассимиляции протекают с поглощением энергии, которая образуется при энергетическом обмене.

Процессы ассимиляции и диссимиляции происходят постоянно и взаимно дополняют друг друга. Энергия, образующаяся в процессах диссимиляции, используется для биосинтеза новых, специфичных для клетки соединений. Синтезированные в результате процессов ассимиляции вещества используются для построения новых клеток и отдельных органоидов и для замены старых молекул клетки. Процесс обмена веществ возможен только потому, что клетки живых существ потребляют извне материю и энергию.

Обычно процессы ассимиляции и диссимиляции происходят с примерно одинаковой скоростью. Однако в некоторых ситуациях преобладают процессы ассимиляции (например, усиленный рост организма в молодом возрасте, увеличение массы тела при обильном питании при недостаточной физической нагрузке) или процессы диссимиляции (уменьшение массы тела при голодании).

В отличие от неживой природы, где самопроизвольно протекают только процессы, связанные с уменьшением упорядоченности системы, в живом организме упорядоченность возрастает (при развитии) или поддерживается на более или менее постоянном уровне. Это возможно потому, что в организме за счет процессов диссимиляции постоянно образуется энергия. Часть энергии рассеивается в виде тепла, а остальная часть используется для обеспечения процессов жизнедеятельности: биосинтетических процессов, поддержания неравновесного распределения концентрации ионов снаружи и внутри клетки, сокращения мышц, обеспечения движения клеток и т. п.

Освобождаемая в процессах диссимиляции, может запасаться в виде энергии химической (макроэргической) связи в молекуле АТФ.

АТФ (аденозинтрифосфорная кислота) представляет собой мононуклеотид, состоящий из азотистого основания аденина, пятиуглеродного сахара рибозы и трех остатков фосфорной кислоты. При гидролизе молекулы АТФ, который происходит под действием особых ферментов, называемых АТФазами, образуется молекула АДФ (аденозиндифосфорной кислоты), неорганический фосфат и освобождается большое количество энергии (до 40 кДж). Именно поэтому концевая связь между остатками фосфорной кислоты в молекуле АТФ называется макроэргической. Гидролиз АТФ до АМФ (аденозинмонофосфорная кислота) и пирофосфата также сопровождается значительным выделением энергии, то есть связь между концевым и вторым остатком фосфорной кислоты в молекуле АТФ также является макроэргической. В основном в клетке используется энергия концевой фосфатной связи молекулы АТФ.

АТФ является универсальным аккумулятором энергии в живой природе. Процессы, происходящие с выделением энергии, сопровождаются синтезом АТФ из АДФ и неорганического фосфата. В свою очередь, процессы, протекающие с потреблением энергии, сопровождаются гидролизом АТФ до АДФ и неорганического фосфата. Именно поэтому большинство АТФаз способно обеспечивать какую-либо работу: например, гидролиз АТФ актомиозиновым комплексом приводит к сокращению мышечных волокон, (ионные насосы) обеспечивают перенос ионов через мембрану в направлении более высокой концентрации ионов.

Энергетический обмен

Энергетический обмен представляет собой совокупность механизмов, с помощью которых молекулы клеточного «топлива» разрушаются, а заключенная в них энергия превращается в энергию фосфатных связей АТФ. Энергетический обмен протекает в три основных этапа. Первый, или подготовительный, этап происходит в пищеварительном тракте животных и в цитоплазме клеток. В результате него происходит распад крупных молекул биополимеров до составляющих его мономеров: белки превращаются в аминокислоты, нуклеиновые кислоты - в мононуклеотиды, а затем в сахара, азотистые основания и фосфорную кислоту, углеводы - в простые сахара, а липиды - в глицерин и жирные кислоты. На этом этапе выделяется небольшое количество энергии, которое рассеивается в виде тепла.

На втором этапе энергетического обмена происходит бескислородное (анаэробное) многоступенчатое преобразование образующихся в результате первого этапа соединений в еще более простые вещества. Выделяющаяся при этом энергия частично запасается в виде терминальной фосфатной связи АТФ, то есть в процессе анаэробного расщепления из АДФ образуется АТФ. Характерным примером анаэробного превращения субстратов является гликолиз, в результате которого в отсутствие кислорода глюкоза превращается в молочную кислоту. Суммарно реакции гликолиза можно представить следующим уравнением:

С 6 Н 12 O 6 + 2АДФ + 2Н 3 РO 4 → 2С 3 Н 6 O 3 + 2 АТФ + 2Н 2 O

В результате гликолиза одна молекула глюкозы, в состав которой входят 6 углерода, сначала превращается в две молекулы трехуглеродной пировиноградной кислоты (С 3 Н 4 O 3). В некоторых случаях, например, в мышечных клетках пировиноградная кислота восстанавливается до молочной кислоты. При этом выделяется энергия (около 200 кДж), часть из которой (около 80 кДж) запасается в виде двух молекул АТФ. Для протекания гликолиза необходимо присутствие АДФ и фосфорной кислоты, но эти вещества постоянно присутствуют в цитоплазме клеток. Анаэробное расщепление глюкозы характерно для микроорганизмов, которые могут существовать в анаэробных условиях. Процесс гликолиза также интенсивно протекает в скелетных мышцах, которые способны длительно функционировать в отсутствие кислорода. В клетках растений и некоторых дрожжей гликолиз может идти по пути спиртового брожения: в этом случае образующаяся в результате гликолиза пировиноградная кислота превращается в углекислый газ и уксусный альдегид, который затем восстанавливается до этилового спирта.

Поскольку появились на Земле в то время, когда ее еще не содержала кислорода, анаэробное брожение следует рассматривать как более простую форму биологического механизма, обеспечивающего получение энергии из питательных веществ. У большинства бактерий, дрожжей, грибов, а также в клетках всех высших растений и животных анаэробное расщепление глюкозы представляет собой обязательную стадию превращения «топлива», за которым следует аэробная фаза - дыхание.

Или окисление, представляет собой заключительный, третий этап энергетического обмена. В процессе этого этапа происходит окисление пировиноградной кислоты, образующейся в результате гликолиза, до углекислого газа и воды. Этот этап происходит с участием многочисленных ферментов, находящихся у растений и животных в митохондриях, а у бактерий - на цитоплазматической мембране, и молекулярного кислорода.

Количество энергии, освобождаемое при полном окислении глюкозы до СO 2 и Н 2 O, почти в 15 раз больше того, что выделяется при превращении глюкозы в молочную кислоту. Таким образом, в процессе гликолиза освобождается очень небольшое количество энергии, которое потенциально может быть извлечено из глюкозы. Это объясняется тем, что продукт гликолиза - молочная кислота - соединение почти столь же сложное, как и глюкоза, и его углеродные атомы имеют почти ту же степень окисления, что и в глюкозе (соотношение между количеством атомов углерода и в молочной кислоте то же, что и в глюкозе). Продукт заключительной стадии энергетического обмена, С02, значительно более простое соединение, у которого атом углерода полностью окислен. Именно в процессе окисления и выделяется значительное количество энергии, большая часть которой (около 40%) запасается в виде АТФ.

Общая схема процессов дыхания. Образующаяся в процессе гликолиза пировиноградная кислота проникает в митохондрии, где она подвергается окислительному декарбоксилированию, превращаясь в уксусную кислоту (ацетат), вернее, в ее активную форму:

C 3 H 4 O 3 → CO 2 + CH 3 COOH

Активные формы ацетата могут образовываться в организме также при расщеплении аминокислот и жирных кислот. Эти формы ацетата вступают в заключительную стадию окислительного катаболизма, где подвергаются каталитическому расщеплению с освобождением СO 2 и атомов водорода:

СН 3 СООН + 2Н 2 O 2СO 2 + 8Н

Циклическая совокупность реакций, в результате которых происходит превращение активной формы ацетата в углекислый газ и атомы водорода, называется циклом трикарбоновых кислот, или циклом Кребса. Основная часть образовавшихся в результате расщепления ацетата атомов водорода переносится на окислитель НАД + (никотинамидадениндинуклеотид), соединение, которое относится к пиридиновым нуклеотидам и используется в процессах метаболизма как переносчик атомов водорода.

Энергия, освобождающаяся в процессе дыхания, может запасаться в виде АТФ благодаря последовательному протеканию окислительно-восстановительных реакций. Окислительно-восстановительными называются реакции, в процессе которых происходит перенос электронов от доноров электронов (восстановителя) к акцептору электронов (окислителю). В некоторых окислительно-восстановительных реакциях перенос электронов осуществляется путем передачи атомов водорода; таким образом, дегидрирование и окисление являются эквивалентными процессами. Часто для обозначения электронов или атомов водорода, принимающих участие в окислительно-восстановительном процессе, используют термин восстановительные эквиваленты.

Окислители и восстановители функционируют как сопряженные окислительно-восстановительные пары. В реакциях метаболизма такие окислительно-восстановительные пары представлены, в частности, пиримидиновыми нуклеотидами, НАД и НАДФ (последнее соединение является фосфорилированной формой НАД). Эти соединения входят в состав ферментов, участвующих в окислительно-восстановительных реакциях. В окислительно-восстановительных реакциях, протекающих в живых системах, окисленная форма этих соединений (обозначается как НАД + и НАДФ +) переходит в восстановленную форму (обозначается как НАДН и НАДФН). При этом от молекулы субстрата, участвующей в окислительном-восстановительном процессе, уходят два восстановительных эквивалента. Они представлены гидрид ионом (Н — , два электрона и протон), который связывается с молекулой НАД + . Освобождающийся после связывания гидрид иона протон (Н +) переходит в окружающую среду:

НАД + + 2Н → НАДН + Н +

Восстановленная молекула НАД (НАДН) вступает во взаимодействие с начальным компонентом дыхательной цепи. Дыхательная цепь состоит из последовательно расположенных в мембране митохондрий белков, являющихся переносчиками восстановительных эквивалентов (водорода или электронов). Значительная часть переносчиков представлена цитохромами - железосодержащими белками. В ходе переноса электронов по дыхательной цепи валентность железа в цитохромах обратимо изменяется: Ре(II) -> Ре(III). Электроны последовательно передаются от одного переносчика к другому, и в конечном итоге - к молекулярному кислороду. Последний цитохром в цепи реагирует с молекулярным кислородом. Процесс переноса электронов по дыхательной цепи, который представляет собой совокупность окислительно-восстановительных реакций, сопровождается выделением значительного количества энергии. Часть этой энергии запасается в виде АТФ, которая образуется в результате сопряженного с окислением фосфорилирования АДФ.

В клетках эукариот процесс дыхания, сопряженного с трансформацией энергии, происходит во внутренней мембране митохондрий. Внутренняя мембрана митохондрий образует многочисленные глубокие складки, называемые кристами. У бактерий, способных дышать, этот процесс осуществляется на цитоплазматической мембране. Превращение энергии, освобождающейся при перемещении электронов по дыхательной цепи, возможно только в том случае, если внутренняя мембрана митохондрий непроницаема для ионов. Это обусловлено тем, что энергия запасается в виде разницы концентраций (градиента) протонов.

Процесс передачи восстановительных эквивалентов по дыхательной цепи осуществляется таким образом, что на некоторых стадиях происходит перемещение от одного компонента дыхательной цепи к другому не только электрона, но и протона (то есть переносится атом водорода). Компоненты дыхательной цепи расположены в мембране митохондрий так, что этот протон связывается с переносчиком на внутренней стороне мембраны митохондрий. Атомы водорода (суммарно электрон и протон) пересекают мембрану, протон освобождается с наружной стороны мембраны, а электроны продолжают свой путь по дыхательной цепи. На заключительном этапе с электронами, прошедшими свой путь по дыхательной цепи, взаимодействует молекулярный кислород и протоны, которые постоянно присутствуют в воде. В результате этой реакции образуются молекулы воды:

O 2 + 4е — + 4Н + → 2Н 2 O

Перемещение протонов из матрикса в межмембранное пространство митохондрий, которое осуществляется благодаря функционированию дыхательной цепи, приводит к тому, что матрикс митохондрий защелачивается, а межмембранное пространство закисляется. Таким образом, в процессе функционирования дыхательной цепи внутренняя сторона митохондриальной мембраны заряжается отрицательно, а наружная - положительно. Образовавшаяся разница в концентрации протонов по разные стороны митохондриальной мембраны может быть использована для синтеза АТФ из АДФ и неорганического фосфата. Синтез осуществляется специальным ферментом, встроенным в мембрану митохондрий и называемым АТФ-синтазой.

Молекула АТФ-синтазы расположена в митохондриальной мембране таким образом, что формирует канал, пересекающий мембрану, по которому могут перемещаться протоны. Внутрь матрикса выступает значительная часть молекулы АТФ-синтазы, которая непосредственно обеспечивает образование АТФ из АДФ и неорганического фосфата. Когда канал открывается, то протоны свободно перемещаются по нему с внешней стороны мембраны на внутреннюю, то есть из межмембранного пространства, где концентрация протонов высока, в матрикс, где она ниже. Однако канал открывается в том случае, когда разность потенциалов на мембране достигает критического уровня (более 100 мВ). При прохождении протонов через канал освобождается энергия, за счет которой обеспечивается присоединение неорганического фосфата к АДФ с образованием макроэргической связи.

Баланс энергии. При полном окислении одной молекулы глюкозы в результате гликолиза и последующего аэробного окисления синтезируется тридцать восемь молекул АТФ. Суммарно этот процесс можно представить в виде следующего уравнения:

С 6 Н 12 O 6 + 6O 2 + 38АДФ + 38Н 3 РO 4 -> 6СO 2 + 38АТФ + 44Н 2 O

Таким образом, в результате превращения глюкозы в углекислый газ и воду, описываемого уравнением:

C 6 H 12 O 6 + 6O 2 → 6СO 2 + 6Н 2 O

осуществляется синтез АТФ из АДФ и неорганического фосфата в соответствии с уравнением:

38АДФ + 38Н 3 РO 4 -> 38АТФ + 38Н 2 O

Учитывая, что терминальная фосфатная связь в молекуле АТФ сохраняет около 40 кДж энергии, можно заключить, что полное окисление глюкозы в организме позволяет запасти 1520 кДж энергии.

Пластический обмен

Пластический обмен представляет собой совокупность реакций биосинтеза, в результате которого из поступающих в клетку веществ образуются характерные для данной клетки вещества. К пластическому обмену относятся фотосинтез, синтез белков, нуклеиновых кислот, жиров и углеводов.

Фотосинтез. По тому, какой тип питания используют живые организмы, их можно разделить на две большие группы: автотрофы и гетеротрофы.

Гетеротрофы - это организмы, которые не способны к синтезу органических веществ из неорганических. По этой причине они используют в качестве пищи готовые органические соединения. К гетеротрофам относятся животные, а также значительная часть грибов и бактерий.

Автотрофы - это организмы, осуществляющие синтез органических соединений из неорганических. К автотрофам относятся все растения и некоторые бактерии. В свою очередь, автотрофы можно разделить на хемо- и фотосинтезирующие. К хемосинтезирующим относятся бактерии, которые способны использовать энергию, выделяющуюся при окислении некоторых химических веществ, например сероводорода, аммиака, нитритов. Фотосинтезирующие организмы, к которым относятся как эукариоты (высшие зеленые растения, зеленые, бурые и красные водоросли, эвгленовые и диатомовые водоросли), так и прокариоты (сине-зеленые водоросли, зеленые и пурпурные бактерии) используют для синтеза органических соединений энергию солнечного света.

Синтез органических соединений с использованием энергии солнечного света называется фотосинтезом.

Суммарное уравнение фотосинтеза для всех фотосинтезирующих организмов, за исключением бактерий, может быть представлено в следующем виде:

12Н 2 O + 6СO 2 → С 6 Н 12 O 6 + 6Н 2 O + 6O 2

Фотосинтез протекает в специализированных органоидах зеленых растений, называемых хлоропластами. У фотосинтезирующих бактерий этот процесс осуществляется на наружной мембране бактерии или в хроматофорах, мелких сферических мембранных пузырьках, расположенных в цитозоле бактериальной клетки. В структурном отношении хлоропласты близки к митохондриям: они имеют двойную мембрану, причем внутренняя мембрана свернута в множество уплощенных пузырьков, называемых тилакоидами. Внутри тилакоидов находятся пигменты, улавливающие свет. Процесс фотосинтеза можно разделить на две фазы: световую и темновую.

Световая фаза. Фотосинтез начинается с момента освещения хлоропласта видимым светом и включает реакции, непосредственно связанные с использованием света. Все фотосинтезирующие клетки содержат один или несколько классов зеленых пигментов, содержащих магний и называемых хлорофиллами. Молекулы хлорофилла способны улавливать свет в красной области спектра. Поглощение кванта света молекулой хлорофилла приводит к ее «возбуждению», то есть к переходу одного из электронов на более высокий энергетический уровень. Возбужденный электрон переносится на следующий компонент цепи переноса электронов, аналогичной дыхательной цепи. Значительная часть компонентов этой цепи представлена цитохромами (железосодержащие белки) и медьсодержащими белками. Сам процесс переноса электронов представляет собой последовательно происходящие окислительно-восстановительные реакции.

После того как электрон уходит с молекулы хлорофилла на следующий компонент цепи переноса электронов (хлорофилл при этом окисляется), происходит его восстановление за счет электронов, входящих в состав молекулы воды. При этом с участием специальных ферментов молекула воды распадается на электрон, переносимый к молекуле окисленного хлорофилла, протон и атомарный кислород. Этот процесс происходит с внутренней стороны мембраны тилакоида. Два атома кислорода объединяются в молекулу O 2 , которая путем диффузии покидает хлоропласт. Таким образом, кислород, являющийся продуктом фотосинтеза, образуется из воды.

Так же как и в дыхательной цепи, на некоторых этапах цепи переноса в хлоропластах осуществляется перенос электронов через мембрану совместно с протонами (то есть в виде атомов водорода), а затем пути протонов и электронов разделяются: протоны переносятся с одной стороны мембраны на другую, а электроны продолжают дальнейший путь по цепи переноса. Итоговым результатом такого процесса является создание градиента протонов: при этом внутреннее пространство тилакоида закисляется и обращенная внутрь часть мембраны становится положительно заряженной, а часть мембраны, обращенная в межмембранное пространство, становится заряженной отрицательно (межмембранное пространство защелачивается). Энергия, запасенная в виде градиента концентраций протонов, используется АТФ-синтазой для синтеза АТФ из АДФ и неорганического фосфата.

В конечном итоге электроны, переносимые по фотосинтетической цепи переноса электронов, включаются в окисленную форму никотинамидадениндинуклеотидфосфата, НАДФ + , восстанавливая последний до НАДФН. Мы уже упоминали, что пары НАД + /НАДН и НАДФ + /НАДФН представляют собой унифицированные окислительно-восстановительные пары соединений, используемые в различных биохимических реакциях в качестве окислителей или восстановителей.

Таким образом, в результате световой стадии фотосинтеза электроны, переносимые с возбужденной молекулы хлорофилла по цепи переноса электронов, обеспечивают, с одной стороны, создание градиента протонов, энергия которого запасается в виде терминальной фосфатной связи АТФ, а с другой стороны, обеспечивают образование восстановителя НАФН, который затем используется в темновой фазе фотосинтеза для образования углеводов из углекислого газа и воды.

Темновая фаза фотосинтеза. Энергия в виде АТФ и восстановительные эвиваленты в виде НАФН, образующиеся в фотосинтезирующих организмах на свету, используются в дальнейшем для синтеза углеводов, то есть для восстановления СO 2 до глюкозы и других Сахаров. Эти реакции могут протекать как на свету, так и в темноте, поэтому называются темновой фазой фотосинтеза. Суммарное уравнение, описывающее темновой процесс образования глюкозы из СO 2 , имеет следующий вид:

6СO 2 + 12НАДФН + 18АТФ + 12Н 2 O -> С 6 Н 12 O 6 + 12НАДФ + + 18 АДФ + 18Н 3 РO 4

Процесс синтеза глюкозы осуществляется в результате большого числа последовательных ферментативных реакций. В дальнейшем из глюкозы могут образовываться более сложные ди- и полисахариды, а также аминокислоты, жирные кислоты и другие органические соединения.

Значение фотосинтеза. Процесс фотосинтеза является основным процессом, в результате которого из неорганических соединений (двуокиси углерода и воды) осуществляется синтез органических соединений. Таким образом, фотосинтезирующие организмы (автотрофы) способны за счет энергии Солнца синтезировать органические вещества, необходимые для их роста и развития. Более того, сами фотосинтезирующие организмы или продукты их жизнедеятельности служат пищей для всех остальных членов биосферы (гетеротрофов). Таким образом, жизнь на Земле должна была бы прекратиться, не будь постоянного поступления энергии в виде солнечного излучения и фотосинтеза, который эту энергию использует.

Для того, чтобы расходовать запасенную энергию, организмы осуществляют деградацию питательных веществ, главным образом окислительную. Для протекания окислительных процессов используется кислород, при этом органические соединения превращаются в двуокись кислорода. Фотосинтез способствует сохранению равновесия в биосфере, восстанавливая СO 2 до органических соединений и выделяя в атмосферу молекулярный кислород. Только в результате появления организмов, способных производить кислород, могла возникнуть среда, пригодная для развития всех тех форм жизни, которые используют кислород.

Хемосинтез. Все автотрофные организмы делятся на две группы. Одна из них, называемая фототрофами, использует в качестве энергии свет. К ним относятся все фотосинтезирующие организмы. Кроме того, есть организмы, использующие в качестве источника энергии для синтеза органических соединений энергию окислительно-восстановительных реакций. Эти организмы называются хемотрофными, а процесс синтеза органических соединений за счет энергии химических реакций - хемосинтезом. К хемотрофам относятся некоторые бактерии, использующие энергию, образующуюся при окислении аммиака до азотной кислоты, азотистой кислоты до азотной (нитрифицирующие бактерии), а также сероводорода до серной кислоты (серобактерии) и двухвалентного железа до трехвалентного (железобактерии).

Пути повышения продуктивности сельскохозяйственных растений. Одна из важнейших задач, стоящих перед быстро растущим человечеством, - это повышение продуктивности растений, используемых в качестве пищевых продуктов. Эта задача в первую очередь связана с повышением продуктивности фотосинтеза. Для эффективного протекания фотосинтеза необходимо соблюдение определенных условий, а именно:

Обеспечение оптимальной интенсивности и длительности освещения растений, что в значительной степени определяется густотой посевов и расположением рядов растений по отношению к положению Солнца на небосводе. При выращивании растений в теплицах длительность светового дня можно увеличивать за счет освещения растений в темное время суток специальными (фито) лампами, которые дают свет с достаточной интенсивностью в красной области спектра;

Соблюдение оптимального температурного режима (для теплиц оптимальная составляет 20-25°);

Обеспечение оптимального режима полива;

Достаточное содержание минеральных компонентов в почве (внесение в почву удобрений);

Обеспечение нормального содержания в воздухе теплиц двуокиси углерода, поскольку снижение его концентрации тормозит фотосинтез, а увеличение - ингибирует дыхание растений;

Своевременная и эффективная борьба с заболеваниями растений.

Однако наиболее перспективными в настоящее время являются принципиально новые подходы, которые заключаются в создании с использованием методов генной инженерии новых разновидностей растений, характеризующихся высокой продуктивностью и устойчивостью как к заболеваниям, так и к различным неблагоприятным условиям.

Биосинтез белков

Белки являются важнейшими компонентами живого не столько потому, что составляют большую по массе часть клетки, но потому, что обеспечивают ее функциональную активность и уникальность. Практически все химические процессы, протекающие в клетке, осуществляются белками-ферментами. Каждая клетка имеет набор специфических белков, характерных именно для данной клетки. Он отличается как от набора, характерного для клеток другого организма, так и от набора, свойственного клеткам другой данного организма, поскольку в каждой клетке осуществляется синтез специфичных для нее белков. о том, какие белки должны синтезироваться в клетках данного организма, хранится в ядре, она записана в виде последовательности нуклеотидов в ДНК. Часть молекулы ДНК, последовательность нуклеотидов в которой определяет последовательность аминокислот в определенном белке, называется геном. В молекуле ДНК в зависимости от эволюционного пути, который прошел данный организм, может содержаться от сотен до десятков тысяч генов.

Код ДНК . Каким же образом последовательность нуклеотидов может определять последовательность аминокислот? Известно, что ДНК состоит из четырех видов нуклеотидов, то есть информация в ДНК записывается четырьмя буквами (А, Г, Т, Ц). Из математических расчетов вытекает, что для кодирования одной аминокислоты требуется более одного нуклеотида, поскольку в белках обнаруживается 20 различных аминокислот. Поскольку из 4 нуклеотидов можно сделать лишь 16 различных сочетаний по два нуклеотида (4 2 =16), что менее 20, то «слово», кодирующее определенную аминокислоту, должно состоять более чем из двух букв. Если записывать кодирующее «слово» сочетанием трех букв (нуклеотидов), то число различных вариантов будет составлять 4 3 = 64. Таким образом, комбинации из трех нуклеотидов (триплетный код) будет достаточно, чтобы закодировать 20 аминокислот (64 > 20).

Сочетания из трех нуклеотидов, кодирующие определенные аминокислоты, называются кодом ДНК, или генетическим кодом. В настоящее время код ДНК полностью расшифрован, то есть известно, какие конкретно триплетные сочетания нуклеотидов кодируют входящие в состав белка 20 аминокислот. Пользуясь комбинацией, состоящей из трех нуклеотидов, можно сделать значительно большее количество кодирующих «слов», чем необходимо для кодирования 20 аминокислот. Оказалось, что каждая аминокислота может кодироваться более чем одним триплетом, то есть генетический код вырожден. Так, например, аминокислота фенилаланин может кодироваться как последовательностью УУУ, так и последовательностью УУЦ. Только две аминокислоты (триптофан и метионин) кодируются одним триплетом. Нужно отметить, что термин «вырожденный» не означает «неточный», так как один триплет не может кодировать две аминокислоты.

Существенная особенность генетического кода заключается в том, что в нем отсутствуют сигналы, отделяющие одно кодирующее «слово» (его называют кодоном) от другого. Именно поэтому считывание информации должно начинаться с правильного места молекулы ДНК (РНК) и продолжаться последовательно от одного кодона к другому. В противном случае последовательность нуклеотидов окажется измененной во всех кодонах. Это подтверждается обнаружением мутаций, при которых из последовательности либо выпадает (делеция), либо встраивается в нее (вставка) один или два нуклеотида. При этих мутациях в результате сдвига считывания синтезируется дефектный белок. В том случае, если выпадает или встраивается три нуклеотида, синтезируется белок, который отличается от нормального тем, что в нем отсутствует одна аминокислота (в случае делеции трех нуклеотидов) или появляется дополнительная аминокислота (в случае вставки трех нуклеотидов).

Еще одна особенность генетического кода заключается в том, что три триплета (УАА, УАГ и УГА) кодируют не аминокислоты, а своеобразные «знаки препинания». Они являются стоп-сигналами, которые сигнализируют об окончании синтеза полипептидной цепи.

Генетический код универсален, то есть триплеты, кодирующие одну и ту же аминокислоту, одинаковы у всех живых существ: один и тот же кодон кодирует определенную аминокислоту как у человека, так и у вируса или растения. Таким образом, генетический язык одинаков для всех видов. Универсальность генетического кода свидетельствует о том, что он возник в процессе генетической эволюции почти в том виде, в котором существует и сегодня. Вырожденность кода затрагивает только третье основание кодона: так, например, серин кодируется триплетами УЦУ, УЦЦ, УЦА и УЦГ. Таким образом, кодирование определенной аминокислоты определяется главным образом двумя первыми буквами. Можно думать, что генетический код был сначала дуплетным и содержал информацию о 16 (или менее) аминокислотах.

Транскрипция. Синтез белка осуществляется на рибосомах, расположенных в цитоплазме клетки. В то же время информация о последовательности аминокислот в белке хранится в ДНК. Оказалось, что во время или перед началом синтеза определенного белка в ядре образуется так называемая матричная, или информационная РНК, являющаяся посредником, переносящим информацию с ДНК к рибосомам. Молекула информационной РНК (иРНК) синтезируется с использованием в качестве матрицы определенного участка ДНК (гена). Затем молекула иРНК покидает ядро и перемещается в цитоплазму. Связываясь с рибосомами, она, в свою очередь, служит матрицей, на которой происходит синтез белка.

Синтез иРНК осуществляется в ядре с помощью фермента, называемого ДНК-зависимой РНК-полимеразой. Вновь синтезированная иРНК имеет нуклеотидный состав, коплементарный нуклеотидному составу использованной ДНК с той лишь разницей, что остаткам аденина в ДНК-матрице соответствуют остатки урацила в синтезированной мРНК. Таким образом, информация, имеющаяся в гене, в процессе синтеза мРНК переписывается на мРНК. Этот процесс называется транскрипцией (переписыванием).

Процесс транскрипции, вместе с реакцией самоудвоения ДНК, которая называется репликацией, относят к реакциям матричного синтеза. Реакции матричного синтеза представляют собой реакции, которые идут с использованием матрицы. Матрица (от латинского матрикс - матка) представляет собой готовую структуру, в соответствии с которой осуществляется синтез новой структуры. При синтезе ДНК (репликации) и синтезе иРНК в качестве матрицы используется одна из цепей ДНК, на которой происходит образование комплементарной ей цепи. Таким образом, в результате реакций матричного синтеза образуются структуры, построенные по строго определенному плану. Реакции матричного синтеза характерны лишь для живой природы, в результате их осуществления становится возможным передача информации от одного поколения живых существ к другому (репликация), а также синтез молекул белков, в соответствии с информацией, заложенной в генетическом материале. Для синтеза белковых молекул необходимо осуществление двух типов реакций матричного синтеза: транскрипции, которая необходима для переноса генетической информации из ядра в. цитоплазму, и трансляции.

Трансляция. Термином трансляция (перевод) в биологии обозначают реакции, в результате которых в рибосомах с использованием в качестве матрицы информационной РНК осуществляется синтез полипептидной цепи. Полипептидная цепь удлиняется в процессе синтеза путем последовательного присоединения отдельных аминокислотных остатков, начиная с N-концевого остатка. Для того чтобы понять, каким образом осуществляется образование пептидной связи между соответствующими аминокислотами, необходимо рассмотреть структуру рибосом и транспортных РНК (тРНК), участвующих в процессе трансляции.

Рибосомы эукариот имеют диаметр около 220 А и молекулярную массу около 4 млн. дальтон. Рибосомы прокариот более мелкие. Каждая рибосома состоит из двух неравных субъединиц, причем субъединицы могут отделяться друг от друга. В состав каждой субъединицы входит рибосомная РНК и белок. Некоторые рибосомные белки выполняют каталитические функции, то есть являются ферментами.

Транспортная РНК. Молекулы транспортных РНК невелики, их молекулярная масса составляет 23 000 — 30 000 дальтон. Функция тРНК заключается в том, чтобы в ходе процесса синтеза полипептидной цепи переносить на рибосомы определенные аминокислоты, при этом каждая аминокислота переносится соответствующими транспортными тРНК. Все молекулы тРНК способны образовывать характерную конформацию - конформацию клеверного листа. Такая конформация молекулы тРНК возникает потому, что в ее структуре имеется значительное количество нуклеотидов (по 4-7 в одном участке), комплементарных друг другу. Внутримолекулярное спаривание таких нуклеотидов за счет образования водородных связей между комплементарными основаниями и приводит к образованию такой структуры. У верхушки клеверного листа располагается триплет нуклеотидов, который комплементарен соответствующему кодону иРНК. Этот триплет различен для тРНК, переносящих различные аминокислоты, и кодирует именно ту аминокислоту, которая переносится данной тРНК. Он называется антикодоном.

У основания клеверного листа находится участок, в котором связывается аминокислота. Связывание аминокислоты с тРНК осуществляется за счет образования связи между карбоксильной группой аминокислоты и ОН-группой остатка адениловой кислоты, располагающейся в концевой части молекул всех тРНК. Таким образом, молекула тРНК не только переносит определенную аминокислоту, она имеет в своей структуре запись о том, что она переносит именно эту аминокислоту, причем эта запись сделана на языке генетического кода.

Синтез белка. Рибосомы способны связывать иРНК, несущую информацию об аминокислотной последовательности синтезируемого белка, транспортные РНК, несущие аминокислоты, и, наконец, синтезируемую полипептидную цепь. Меньшая субъединица рибосомы связывает иРНК и тРНК, несущую первую (N-концевую) аминокислоту полипептидной цепи, после чего происходит связывание большой субъединицы с образованием функционирующей (работающей) рибосомы.

По мере сборки полипептидной цепи рибосома передвигается вдоль нитевидной молекулы тРНК. Одновременно на одной молекуле иРНК может находиться несколько рибосом, каждая из которых осуществляет синтез полипептидной цепи, закодированной этой тРНК. Чем дальше по цепи иРНК продвинулась рибосома, тем больший по длине фрагмент молекулы белка будет синтезирован. Когда рибосома достигает конца молекулы иРНК, синтез белка заканчивается, и рибосома с вновь синтезированным белком покидает молекулу иРНК. Сигнал об окончании синтеза полипептидной цепи подается тремя специальными кодонами, один из которых присутствует в терминальной части молекулы иРНК. Считывание информации с молекулы тРНК возможно только в одном направлении.

Еще в процессе синтеза вновь образованный конец полипептидной цепи может связываться со специальными белками шаперонами, обеспечивающими ее правильную укладку, а затем направляется к аппарату Гольджи, откуда белок транспортируется в то место, где он будет работать. Рибосома, которая освободилась от иРНК и синтезированной полипептидной цепи, диссоциирует на субъединицы, после чего большая субъединица, связавшись с любой иРНК, может связать меньшую субъединицу и образовать активную рибосому, способную начать синтез нового (или того же самого) белка.

Активный центр рибосомы, в котором осуществляется образование пептидной связи между двумя соседними аминокислотами, устроен таким образом, что в нем одновременно могут находиться два соседних кодона (триплета) иРНК. На первом этапе происходит связывание тРНК с информационной РНК за счет взаимодействия кодон-антикодон. Поскольку антикодон, расположенный на тРНК, и кодон, находящийся на иРНК, комплементарны, между входящими в их состав азотистыми основаниями образуются водородные связи. На втором этапе аналогичным образом осуществляется связывание с соседним кодоном второй молекулы тРНК. При этом молекулы тРНК ориентируются в активном центре рибосомы таким образом, что С=0 группа первого аминокислотного остатка, связанного с первой тРНК, оказывается поблизости от свободной аминогруппы аминокислотного остатка, входящего в состав второй транспортной тРНК. Таким образом, за счет взаимодействия кодон-антикодон между последовательно расположенными кодонами иРНК и соответствующими антикодонами тРНК рядом оказываются именно те аминокислоты, которые последовательно закодированы в иРНК.

На следующем этапе в результате взаимодействия свободной аминогруппы, входящей в состав аминокислотного остатка вновь пришедшей тРНК, с этерифицированной карбоксильной группой С-концевого аминокислотного остатка первой аминокислоты образуется пептидная связь. Реакция осуществляется путем замещения, причем уходящей группой является молекула первой тРНК. В результате такого замещения удлинившаяся тРНК, несущая уже дипептид, оказывается связанной с рибосомой. Для катализа этой реакции требуется фермент, называемый пептидилтрансферазой, который входит в состав большей субъединицы рибосомы.

На последнем этапе связанный с тРНК пептид передвигается с участка, в котором связывается аминокислота, в участок, в котором связывается образующийся пептид. Этот процесс перемещения является результатом изменения конформации рибосомы. Одновременно с перемещением синтезирующейся пептидной цепи происходит перемещение рибосомы вдоль иРНК, при этом в активном центре рибосомы оказывается следующий кодон иРНК, после чего описанные выше события повторяются.

Синтез белка осуществляется с очень большой скоростью: пептид, состоящий из 100 аминокислот, синтезируется примерно за 1 минуту.

Мы уже упоминали, что все процессы синтеза, в результате которых из более простых молекул образуются более сложные, осуществляются с затратой энергии. Биосинтез белка представляет собой цепь реакций, протекающих с затратой энергии. Так, для связывания одной аминокислоты с тРНК требуется энергия двух макроэргических фосфатных связей. Кроме того, при образовании одной пептидной связи используется энергия еще одной макроэргической фосфатной связи. Таким образом, для образования одной пептидной связи в молекуле белка требуется такое количество энергии, которое запасено в трех макроэргических связях молекулы АТФ.



Статьи по теме: