Происхождение Солнечной Системы. Реферат: Происхождение Солнечной системы

План:

Введение . 3

1. Гипотезы о происхождении солнечной системы .. 3

2. Современная теория происхождения солнечной системы .. 5

3. Солнце – центральное тело нашей планетной системы .. 7

4. Планеты земной группы .. 8

5. Планеты-гиганты .. 9

Заключение . 11

Список использованной литературы .. 12

Введение

Солнечная система состоит из центрального небесного тела - звезды Солнца, 9 больших планет, обращающихся вокруг него, их спутников, множества малых планет - астероидов, многочисленных комет и межпланетной среды. Большие планеты располагаются в порядке удаления от Солнца следующим образом: Меркурий, Венера, Земля, Марс, Юпитер, Сатурн, Уран, Нептун, Плутон. Три последние планеты можно наблюдать с Земли только в телескопы. Остальные видны как более или менее яркие кружки и известны людям со времен глубокой древности.

Один из важных вопросов, связанных с изучением нашей планетной системы - проблема ее происхождения. Решение данной проблемы имеет естественно-научное, мировоззренческое и философское значение. На протяжении веков и даже тысячелетий ученые пытались выяснить прошлое, настоящее и будущее Вселенной, в том числе и Солнечной системы. Однако возможности планетной космологии и по сей день остаются весьма ограниченными - для эксперимента в лабораторных условиях доступны пока лишь метеориты и образцы лунных пород. Ограничены и возможности сравнительного метода исследований: строение и закономерности других планетных систем пока еще недостаточно изучены.

1. Гипотезы о происхождении солнечной системы

К настоящему времени известны многие гипотезы о происхождении Солнечной системы, в том числе предложенные независимо немецким философом И.Кантом (1724-1804) и французским математиком и физиком П.Лапласом (1749-1827). Точка зрения И. Канта заключалась в эволюционном развитии холодной пылевой туманности, в ходе которого сначала возникло центральное массивное тело - Солнце, а потом родились и планеты. П. Лаплас считал первоначальную туманность газовой и очень горячей, находящейся в состоянии быстрого вращения. Сжимаясь под действием силы всемирного тяготения, туманность вследствие закона сохранения момента импульса вращалась все быстрее и быстрее. Под действием больших центробежных сил, возникающих при быстром вращении в экваториальном поясе, от него последовательно отделялись кольца, превращаясь в результате охлаждения и конденсации в планеты. Таким образом, согласно теории П. Лапласа, планеты образовались раньше Солнца. Несмотря на такое различие между двумя рассматриваемыми гипотезами, обе они исходят от одной идеи - Солнечная система возникла в результате закономерного развития туманности. И поэтому такую идею иногда называют гипотезой Канта-Лапласа. Однако от этой идеи пришлось отказаться из-за множества математических противоречий, и на смену ей пришло несколько «приливных теорий».

Наиболее знаменитая теория была выдвинута сэром Джеймсом Джинсом, известным популяризатором астрономии в годы между Первой и Второй мировыми войнами. (Он также был ведущим астрофизиком, и лишь в конце своей карьеры обратился к созданию книг для начинающих.)

Рис. 1. Приливная теория Джинса. Звезда проходит рядом с Солнцем,

вытягивая из него вещество (рис. А и В); планеты формируются

из этого материала (рис. С)

Согласно Джинсу, планетное вещество было «вырвано» из Солнца под воздействием близко проходившей звезды, а затем распалось на отдельные части, образуя планеты. При этом наиболее крупные планеты (Сатурн и Юпитер) находятся в центре планетной системы, где некогда находилась утолщенная часть сигарообразной туманности.

Если бы дела действительно обстояли таким образом, то планетные системы были бы чрезвычайно редким явлением, так как звезды отделены друг от друга колоссальными расстояниями, и вполне возможно, что наша планетная система могла бы претендовать на роль единственной в Галактике. Но математики снова бросились в атаку, и в конце концов приливная теория присоединилась к газообразным кольцам Лапласа в мусорной корзине науки.

2. Современная теория происхождения солнечной системы

Согласно современным представлениям, планеты солнечной системы образовались из холодного газопылевого облака, окружавшего Солнце миллиарды лет назад. Такая точка зрения наиболее последовательно отражена в гипотезе российского ученого, академика О.Ю. Шмидта (1891-1956), который показал, что проблемы космологии можно решить согласованными усилиями астрономии и наук о Земле, прежде всего географии, геологии, геохимии. В основе гипотезы О.Ю. Шмидта лежит мысль об образовании планет путем объединения твердых тел и пылевых частиц. Возникшее около Солнца газопылевое облако сначала состояло на 98% из водорода и гелия. Остальные элементы конденсировались в пылевые частицы. Беспорядочное движение газа в облаке быстро прекратилось: оно сменилось спокойным движением облака вокруг Солнца.

Пылевые частицы сконцентрировались в центральной плоскости, образовав слой повышенной плотности. Когда плотность слоя достигла некоторого критического значения, его собственное тяготение стало «соперничать» с тяготением Солнца. Слой пыли оказался неустойчивым и распался на отдельные пылевые сгустки. Сталкиваясь друг с другом, они образовали множество сплошных плотных тел. Наиболее крупные из них приобретали почти круговые орбиты и в своем росте начали обгонять другие тела, став потенциальными зародышами будущих планет. Как более массивные тела, новообразования присоединяли к себе оставшееся вещество газопылевого облака. В конце концов сформировалось девять больших планет, движение которых по орбитам остается устойчивым на протяжение миллиардов лет.

С учетом физических характеристик все планеты делятся на две группы. Одна из них состоит из сравнительно небольших планет земной группы - Меркурия, Венеры, Земли и Марса. Их вещество отличается относительно высокой плотностью: в среднем около 5,5 г/см 3 , что в 5,5 раза превосходит плотность воды. Другую группу составляют планеты -гиганты: Юпитер, Сатурн, Уран и Нептун. Эти планеты обладают огромными массами. Так, масса Урана равна 15 земным массам, а Юпитера- 318. Состоят планеты-гиганты главным образом из водорода и гелия, а средняя плотность их вещества близка к плотности воды. Судя по всему, у этих планет нет твердой поверхности, подобной поверхности планет земной группы. Особое место занимает девятая планета - Плутон, открытая в марте 1930 г. По своим размерам она ближе к планетам земной группы. Не так давно обнаружено, что Плутон - двойная планета: она состоит из центрального тела и очень большого спутника. Оба небесных тела обращаются вокруг общего центра масс.

В процессе образования планет их деление на две группы обусловливается тем, что в далеких от Солнца частях облака температура была низкой и все вещества, кроме водорода и гелия, образовали твердые частицы. Среди них преобладал метан, аммиак и вода, определившие состав Урана и Нептуна. В составе самых массивных планет - Юпитера и Сатурна, кроме того, оказалось значительное количество газов. В области планет земной группы температура была значительно выше, и все летучие вещества (в том числе метан и аммиак) остались в газообразном состоянии, и, следовательно, в состав планет не вошли. Планеты этой группы сформировались в основном из силикатов и металлов.

3. Солнце – центральное тело нашей планетной системы

Солнце - ближайшая к Земле звезда, представляющая собой раскаленный плазменный шар. Это гигантский источник энергии: мощность излучения его очень велика - около 3,86×10 23 кВт. Ежесекундно Солнце излучает такое количество тепла, которого вполне хватило бы, чтобы растопить слой льда, окружающий земной шар, толщиной в тысячу км. Солнце играет исключительную роль в возникновении и развитии жизни на Земле. На Землю попадает ничтожная часть солнечной энергии, благодаря которой поддерживается газообразное состояние земной атмосферы, постоянно нагреваются поверхности суши и водоемов, обеспечивается жизнедеятельность животных и растений. Часть солнечной энергии запасена в недрах Земли в виде каменного угля, нефти, природного газа.

В настоящее время принято считать, что в недрах Солнца при огромнейших температурах -около 15 млн. градусов - и чудовищных давлениях протекают термоядерные реакции, которые сопровождаются выделением огромного количества энергии. Одной из таких реакций может быть синтез ядер водорода, при котором образуются ядра атома гелия. Подсчитано, что в каждую секунду в недрах Солнца 564 млн т водорода преобразуются в 560 млн т гелия, а остальные 4 млн т водорода превращаются в излучение. Термоядерная реакция будет происходить до тех пор, пока не иссякнут запасы водорода. В настоящее время они составляют около 60 % массы Солнца. Такого резерва должно хватить по меньшей мере на несколько миллиардов лет.

Почти вся энергия Солнца генерируется в его центральной области, откуда переносится излучением, а затем во внешнем слое - передается конвекцией. Эффективная температура поверхности Солнца - фотосферы - около 6000 К.

Наше Солнце - источник не только света и тепла: его поверхность излучает потоки невидимых ультрафиолетовых и рентгеновских лучей, а также элементарных частиц. Хотя количество тепла и света, посылаемого на Землю Солнцем, на протяжение многих сотен миллиардов лет остается постоянным, интенсивность его невидимых излучений значительно меняется: она зависит от уровня солнечной активности.

Наблюдаются циклы, в течение которых солнечная активность достигает максимального значения. Их периодичность составляет 11 лет. В годы наибольшей активности увеличивается число пятен и вспышек на солнечной поверхности, на Земле возникают магнитные бури, усиливается ионизация верхних слоев атмосферы и т. д.

Солнце оказывает заметное влияние не только на такие природные процессы, как погода, земной магнетизм, но и на биосферу - животный и растительный мир Земли, в том числе и на человека.

Предполагается, что возраст Солнца не менее 5 млрд лет. Такое предположение основано на том, что в соответствии с геологическими данными наша планета существует не менее 5 млрд лет, а Солнце образовалось еще раньше.

4. Планеты земной группы

Объединенные в одну группу планеты: Меркурий, Венера, Земля, Марс, - хотя и близки по некоторым характеристикам, но все же каждая из них имеет свои неповторимые особенности. Некоторые характерные параметры планет земной группы представлены в табл. 1.

Таблица 1

Среднее расстояние в табл. 1 дано в астрономических единицах (а.е.); 1 а.е. равна среднему расстоянию Земли от Солнца (1 а.е = 1,5 10 8 км.). Самая массивная из данных планет - Земля: ее масса 5,89 10 24 кг.

Существенно отличается планеты и составом атмосферы, что видно из табл. 2, где приведен химический состав атмосферы Земли, Венеры и Марса.

Таблица 2

Меркурий - самая малая планета в земной группе. Эта планета не смогла сохранить атмосферу в том составе, который характерен для Земли, Венеры, Марса. Ее атмосфера крайне разрежена и содержит Ar, Ne, Не. Из табл. 5.2 видно, что атмосфера Земли отличается относительно большим содержанием кислорода и паров воды, благодаря которым обеспечивается существование биосферы. На Венере и Марсе в атмосфере содержится большое количество углекислого газа при очень малом содержании кислорода и паров воды - все это характерные признаки отсутствия жизни на данных планетах. Нет жизни и на Меркурии: отсутствие кислорода, воды и высокая дневная температура (620 К) препятствуют развитию живых систем. Остается открытым вопрос о существовании каких-то форм жизни на Марсе в отдаленном прошлом.

Планеты Меркурий и Венера спутников не имеют. Природные спутники Марса - Фобос и Деймос.

5. Планеты-гиганты

Юпитер, Сатурн, Уран и Нептун относятся к планетам-гигантам. Юпитер - пятая по расстоянию от Солнца и самая большая планета Солнечной системы - находится на среднем расстоянии от Солнца 5,2 а.е. Юпитер - мощный источник теплового радиоизлучения, обладает радиационным поясом и обширной магнитосферой. Эта планета имеет 16 спутников и окружена кольцом шириной около 6 тыс. км.

Сатурн - вторая по величине планета в Солнечной системе. Сатурн окружен кольцами, которые хорошо видны в телескоп. Их впервые наблюдал в 1610 г. Галилей с помощью созданного им телескопа. Кольца представляют собой плоскую систему множества мелких спутников планеты. Сатурн имеет 17 спутников и обладает радиационным поясом.

Уран - седьмая по порядку удаления от Солнца планета Солнечной системы. Вокруг Урана вращается 15 спутников: 5 из них открыты с Земли, а 10 - наблюдались с помощью космического аппарата «Вояджер-2». Уран имеет и систему колец.

Нептун - одна из самых удаленных от Солнца планет - находится на расстоянии от него около 30 а.е. Период обращения ее на орбите - 164,8 года. Нептун имеет шесть спутников. Удаленность от Земли ограничивает возможности его исследования.

Планета Плутон не относится ни к земной группе, ни к планетам-гигантам. Это сравнительно небольшая планета: ее диаметр около 3000 км. Плутон принято считать двойной планетой. Его спутник, примерно в 3 раза меньший по диаметру движется на расстоянии всего около 20000 км от центра планеты, совершая один оборот за 4,6 суток.

Особое место в Солнечной системе занимает Земля - единственная живая планета.

Заключение

Таким образом, современная теория гораздо более правдоподобна, которая, как ни странно, ближе к идеям Лапласа, чем к теории Джинса. Считается, что планеты сконденсировались из облака космического материала, связанного с молодым Солнцем, поэтому все они близки по возрасту. Это объясняет, почему Солнечная система четко разделена на две части. Ближе к Солнцу температура была очень высокой, поэтому такие легкие газы, как водород и гелий, вытеснялись на периферию, а на внутренних планетах происходило накопление более тяжелых элементов. В дальнейшем температура понизилась и появилась возможность удерживать легкие элементы: поэтому планеты-гиганты, в отличие от внутренних членов системы, не являются плотными и каменистыми. Действительно, у планеты-гиганта может быть твердое ядро, но большей частью они состоят из жидкости, с очень мощной атмосферой, богатой водородом и гелием.

Процесс образования Солнечной системы нельзя считать досконально изученным, а предложенные гипотезы - совершенными. Например, в современной гипотезе не учитывалось влияние электромагнитного взаимодействия при формировании планет. Выяснение этого и других вопросов - дело будущего.

Список использованной литературы

1. Карпенков С.Х. Концепция современного естествознания: Учебник для вузов/М.: Академический проспект, 2001.

2. Мур П. Астрономия с Патриком Муром. Пер. с англ. К. Савельева/М.: ФАИР-ПРЕСС, 2001.

3. Самыгина С.И. «Концепции современного естествознания»/Ростов н/Д: «Феникс», 1997.

4. Эйнштейн А. Эволюция физики/М.: Устойчивый мир, 2001.

(теперь, когда обнаружено около 100 планетных систем, при-нято говорить не о Солнечной, а о планетной системе) начала решаться около 200 лет назад, когда два выда-ющихся учёных — философ И. Кант, математик и астроном П. Лаплас почти одновременно сформулировали первые научные гипотезы её проис-хождения. Нужно сказать, что сами гипотезы и дискуссия вокруг них и других гипотез (например, Дж. Джин-са) носили вполне умозрительный характер. Только в 50-х гг. XX в. было собрано достаточно данных, позволивших сформулировать сов-ременную гипотезу.

Всеобъемлющей гипотезы о происхож-дении планетной системы, которая бы детально объясняла такие вопро-сы, как различие химического и изо-топного составов планет и их атмо-сфер, до настоящего времени не существует. В то же время современ-ные представления о происхождении планетной системы достаточно уверенно трактуют такие вопросы, как разделение планет на две группы, основные различия в химическом составе, динамиче-скую историю планетной системы.

Образование планет происходит очень быстро; так, для фор-мирования Земли потребовалось около 100 000 000 лет. Расчёты, проведённые в последние годы , показали, что современная гипотеза формирования планет достаточно хорошо обоснована.

Сли-пание частиц

В сформировавшемся протопланетном диске начиналось сли-пание частиц. Слипание обеспечивается строением частиц. Они представляют собой углеродную, силикатную или железную пылинки, на которых нарастает снежная (вода, метан и др.) «шуба». Скорость обращения пылинок вокруг Солнца была достаточно велика (это кеплерова скорость, составляющая де-сятки километров в секунду), но относительные скорости очень малы, и при столкновениях частицы слипались в небольшие комочки. Материал с сайта

Появление планет

Очень быстро решающую роль в увеличении комочков на-чинали играть силы притяжения. Это привело к тому, что ско-рость роста образующихся агрегатов пропорциональна их мас-се примерно в пятой степени. В результате на каждой орбите осталось одно крупное тело — будущая планета и, возможно, ещё несколько тел значительно меньшей массы, которые ста-ли её спутниками.

Бомбардировка планет

На са-мом последнем этапе на Землю и другие планеты падали уже не частицы, а тела астероидных размеров. Они способствова-ли уплотнению вещества, разогреву недр и появлению на их поверхностях следов в виде морей и кратеров. Этот период —

Теория Канта

На протяжении многих веков вопрос о происхождении Земли оставался монопо- лией философов, так как фактический материал в этой области почти полностью отсутствовал. Первые научные гипотезы относительно происхождения Земли и солнечной системы, основанные на астрономических наблюдениях, были выдви- нуты только лишь в xviii веке. С тех пор не переставали появляться все новые и новые теории, соответственно росту наших космогонических представлений. Первой в этом ряду была знаменитая теория, сформулированная в 1755 году немецким философом Иммануилом Кантом. Кант считал, что солнечная система возникла из некой первичной материи, до того свободно рассеянной в космосе. Частицы этой материи перемещались в различных направлениях и, сталкиваясь друг с другом, теряли скорость. Наиболее тяжелые и плотные из них под дей- ствием силы притяжения соединялись друг с другом, образуя центральный сгусток - Солнце, которое, в свою очередь, притягивало более удаленные, мелкие и легкие частицы.

Таким образом возникло некоторое количество вращающихся тел, траектории которых взаимно пересекались. Часть этих тел, первоначально двигавшихся в противоположных направлениях, в конечном счете были втянуты в единый поток и образовали кольца газообразной материи, расположенные приблизитель- но в одной плоскости и вращающиеся вокруг Солнца в одном направлении, не мешая друг другу. В отдельных кольцах образовывались более плотные ядра, к которым постепенно притягивались более легкие частицы, формируя шаро- видные скопления материи; так складывались планеты, которые продолжали кружить вокруг Солнца в той же плоскости, что и первоначальные кольца газо образного вещества.

Небулярная теория Лапласа

В 1796 году французский математик и астроном Пьер-Симон Лаплас выдвинул теорию, несколько отличную от предыдущей. Лаплас полагал, что Солнце существовало первоначально в виде огромной раскаленной газообразной туманности (небулы) с незначительной плотностью, но зато колоссальных размеров. Эта туманность, согласно Лапласу, первоначально медленно вращалась в пространстве. Под влиянием сил гравитации туманность постепенно сжималась, причем скорость ее вращения увеличивалась. Возрастающая в результате центробежная сила придавала туманности уплощенную, а затем и линзовидную форму. В экваториальной плоскости туманности соотношение между притяжением и центробеж- ной силой изменялось в пользу этой последней, так что в конечном счете масса вещества, скопившегося в экваториальной зоне туманности, отделилась от остального тела и образовала кольцо. От продолжавшей вращаться туманности последовательно отделялись все новые кольца, которые, конденсируясь в определенных точках, постепенно превращались в планеты и другие тела солнечной системы. В общей сложности от первоначальной туманности отделилось десять колец, распавшихся на девять планет и пояс астероидов - мелких небесных тел. Спутники отдельных планет сложились из вещества вторичных колец, оторвавшихся от раскаленной газообразной массы планет.

Вследствие продолжавшегося уплотнения материи температура новообразованных тел была исключительно высокой. В то время и наша Земля, по П. Лапласу, представляла собой раскаленный газообразный шар, светившийся подобно звезде. Постепенно, однако, этот шар остывал, его материя переходила в жидкое состояние, а затем, по мере дальнейшего охлаждения, на его поверхности стала образовываться твердая кора. Эта кора была окутана тяжелыми атмосферными парами, из которых при остывании конденсировалась вода.

Эти две теории взаимно дополняли друг друга, поэтому в литературе они часто упоминаются под общим названием как гипотеза Канта-Лалласа. Поскольку наука не располагала в то время более приемлемыми объяснениями, у этой теории было в XIX веке множество последователей.


Теория Джинса.

Предложенная в 1916 году Джеймсом Джинсом новая теория, согласно которой вблизи Солнца прошла звезда и ее притяжение вызвало выброс солнечного вещества, из которого в последующем образовались планеты, должна была объяснить парадокс распределения момента импульса. Однако в настоящее время специалисты не поддерживают эту теорию. В 1935 году Рассел предположил, что Солнце было двойной звездой. Вторая звезда была разорвана силами гравитации при тесном сближении с другой, третьей звездой. Девятью годами позже Хойл высказал теорию, что Солнце было двойной звездой, причем вторая звезда прошла весь путь эволюции и взорвалась как сверхновая, сбросив всю оболочку. Из остатков этой оболочки и образовалась планетная система. В сороковых годах ХХ века советский астроном Отто Шмидт предположил, что Солнце захватило при обращении вокруг Галактики облако пыли. Из вещества этого огромного холодного пылевого облака сформировались холодные плотные допланетные тела - планетезимали. Элементы многих из перечисленных выше теорий использует современная космогония.

Теория Шмидта.

В 1944 г. советский ученый О. Ю. Шмидт предложил свою теорию происхождения Солнечной системы. Согласно О. Ю. Шмидту наша планетная система образовалась из вещества, захваченного из газово-пылевой туманности, через которую некогда проходило Солнце, уже тогда имевшее почти "современный" вид. При этом никаких трудностей с вращательным моментом планет не возникает, так как первоначальный момент вещества облака может быть сколь угодно большим. Начиная с 1961 г. эту гипотезу развивал английский космогонист Литтлтон, который внес в нее существенные улучшения. Нетрудно видеть, что блок-схема "аккреционной" гипотезы Шмидта - Литтлтона совпадает с блок-схемой "гипотезы захвата" Джинса-Вулфсона. В обоих случаях "почти современное" Солнце сталкивается с более или менее "рыхлым" космическим объектом, захватывая части его вещества. Следует, впрочем, заметить, что для того, чтобы Солнце захватило достаточно много вещества, его скорость по отношению к туманности должна быть очень маленькой, порядка ста метров в секунду. Если учесть, что скорость внутренних движений элементов облака должна быть не меньше, то, по существу, речь идет о "застрявшем" в облаке Солнце, которое, скорее всего, должно иметь общее с облаком происхождение. Тем самым образование планет связывается с процессом звездообразования.

Теория Фесенкова.

Вероятно, возраст Луны и Земли близок возрасту Солнца, полагал в 50-60 гг академик В.Фесенков. И вещество, из которого они состоят, возникало из околосолнечной газово-пылевой туманности, а не из межзвездных скоплений. По Фесенкову, Луна и Земля - «дети молодого Солнца», которое вращаясь и постепенно сгущаясь, рождало вокруг себя вихревые сгущения -- будущие планеты и их спутники. В отношении Луны ученый оказался прав, ее происхождение, действительно, связано с взрывом молодого Солнца.

Гипотеза об образовании Солнечной системы из газопылевого облака - небулярная гипотеза - первоначально была предложена в XVIII веке Эммануилом Сведенборгом, Иммануилом Кантом и Пьером-Симоном Лапласом. В дальнейшем её развитие происходило с участием множества научных дисциплин, в том числе астрономии, физики, геологии и планетологии. С началом космической эры в 1950-х годах, а также с открытием в 1990-х годах планет за пределами Солнечной системы (), эта модель подверглась многократным проверкам и улучшениям для объяснения новых данных и наблюдений.

Согласно общепринятой в настоящее время гипотезе, формирование Солнечной системы началось около 4,6 млрд лет назад с гравитационного коллапса небольшой части гигантского межзвёздного газопылевого облака. В общих чертах, этот процесс можно описать следующим образом:

  • Спусковым механизмом гравитационного коллапса стало небольшое (спонтанное) уплотнение вещества газопылевого облака (возможными причинами чего могли стать как естественная динамика облака, так и прохождение сквозь вещество облака ударной волны от взрыва , и др.), которое стало центром гравитационного притяжения для окружающего вещества - центром гравитационного коллапса. Облако уже содержало не только первичные водород и гелий, но и многочисленные тяжёлые элементы (Металличность), оставшиеся после звёзд предыдущих поколений. Кроме того, коллапсирующее облако обладало некоторым начальным угловым моментом.
  • В процессе гравитационного сжатия размеры газопылевого облака уменьшались и, в силу закона сохранения углового момента, росла скорость вращения облака. Из-за вращения скорости сжатия облака параллельно и перпендикулярно оси вращения различались, что привело к уплощению облака и формированию характерного диска.
  • Как следствие сжатия росла плотность и интенсивность столкновений друг с другом частиц вещества, в результате чего температура вещества непрерывно возрастала по мере сжатия. Наиболее сильно нагревались центральные области диска.
  • При достижении температуры в несколько тысяч кельвинов, центральная область диска начала светиться - сформировалась протозвезда. Вещество облака продолжало падать на протозвезду, увеличивая давление и температуру в центре. Внешние же области диска оставались относительно холодными. За счёт гидродинамических неустойчивостей, в них стали развиваться отдельные уплотнения, ставшие локальными гравитационными центрами формирования планет из вещества протопланетного диска.
  • Когда температура в центре протозвезды достигла миллионов кельвинов, в центральной области началась реакция термоядерного синтеза гелия из водорода. Протозвезда превратилась в обычную звезду главной последовательности. Во внешней области диска крупные сгущения образовали планеты, вращающиеся вокруг центрального светила примерно в одной плоскости и в одном направлении.

Последующая эволюция

Раньше считалось, что все планеты сформировались приблизительно на тех орбитах, где находятся сейчас, однако в конце XX - начале XXI века эта точка зрения радикально изменилась. Сейчас считается, что на заре своего существования Солнечная система выглядела совсем не так, как она выглядит сейчас. По современным представлениям, внешняя Солнечная Система была гораздо компактнее по размеру чем сейчас, был гораздо ближе к Солнцу, а во внутренней Солнечной системе помимо доживших до настоящего времени небесных тел существовали и другие объекты, по размеру не меньшие чем .

Планеты земного типа

Гигантское столкновение двух небесных тел, возможно, породившее спутник Земли Луну

В конце эпохи формирования планет внутренняя Солнечная система была населена 50-100 протопланетами с размерами, варьирующимися от лунного до марсианского. Дальнейший рост размеров небесных тел был обусловлен столкновениями и слияниями этих протопланет между собой. Так, например, в результате одного из столкновений Меркурий лишился большей части своей мантии, в то время как в результате другого т.н. гигантского столкновения (возможно, с гипотетической планетой Тейя) был рождён спутник . Эта фаза столкновений продолжалась около 100 миллионов лет до тех пор, пока на орбитах не осталось 4 массивных небесных тела, известных сейчас.

Одной из нерешённых проблем данной модели является тот факт, что она не может объяснить, как начальные орбиты протопланетных объектов, которые должны были обладать высоким эксцентриситетом, чтобы сталкиваться между собой, смогли в результате породить стабильные и близкие к круговым орбиты оставшихся четырёх планет. По одной из гипотез, эти планеты были сформированы в то время, когда межпланетное пространство ещё содержало значительное количество газо-пылевого материала, который за счёт трения снизил энергию планет и сделал их орбиты более гладкими. Однако этот же самый газ должен был предотвратить возникновение большой вытянутости в первоначальных орбитах протопланет. Другая гипотеза предполагает, что коррекция орбит внутренних планет произошла не за счёт взаимодействия с газом, а за счёт взаимодействия с оставшимися более мелкими телами системы. По мере прохождения крупных тел сквозь облако мелких объектов последние из-за гравитационного влияния стягивались в регионы с более высокой плотностью, и создавали таким образом «гравитационные гребни» на пути прохождения крупных планет. Увеличивающееся гравитационное влияние этих «гребней», согласно этой гипотезе, заставляло планеты замедляться и выходить на более округлую орбиту.

Пояс астероидов

Внешняя граница внутренней Солнечной системы располагается между 2 и 4 а.е. от Солнца и представляет собой . Выдвигались, но в итоге не были подтверждены гипотезы о существовании планеты между и (например, гипотетической планеты Фаэтон), которая на ранних этапах формирования Солнечной системы разрушилась так, что её осколками стали астероиды, сформировавшие пояс астероидов. Согласно современным воззрениям, единой протопланеты-источника астероидов не было. Изначально астероидный пояс содержал достаточное количество материи, чтобы сформировать 2-3 планеты размером с Землю. Эта область содержала большое количество планетозималей, которые слипались между собой, образуя всё более крупные объекты. В результате этих слияний в поясе астероидов сформировалось около 20-30 протопланет с размерами от лунного до марсианского. Однако начиная с того времени, когда в относительной близости от пояса сформировалась планета Юпитер, эволюция этой области пошла по другому пути. Мощные орбитальные резонансы с Юпитером и , а также гравитационные взаимодействия с более массивными протопланетами этой области разрушали уже сформированные планетозимали. Попадая в область действия резонанса при прохождении поблизости планеты-гиганта планетозимали получали дополнительное ускорение, врезались в соседние небесные тела и дробились вместо того чтобы плавно сливаться.

По мере миграции Юпитера к центру системы возникающие возмущения имели всё более выраженный характер. В результате этих резонансов планетозимали меняли эксцентриситет и наклонение своих орбит и даже выбрасывались за пределы астероидного пояса. Некоторые из массивных протопланет также были выброшены Юпитером за пределы пояса астероидов, в то время как другие протопланеты, вероятно, мигрировали во внутреннюю Солнечную систему, где сыграли финальную роль в увеличении массы нескольких оставшихся планет земного типа. В течение этого периода истощения влияние планет-гигантов и массивных протопланет заставило астероидный пояс «похудеть» до всего лишь 1 % от Земной массы, которую составляли в основном маленькие планетозимали. Эта величина, однако, в 10-20 раз больше современного значения массы астероидного пояса, которая теперь составляет 1/2000 массы Земли. Считается, что второй период истощения, который и привёл массу астероидного пояса к текущим значениям, наступил, когда Юпитер и Сатурн вошли в орбитальный резонанс 2:1.

Вполне вероятно, что период гигантских столкновений в истории внутренней Солнечной системы сыграл важную роль в получении Землёй её запасов воды (~6·10 21 кг). Дело в том, что вода - слишком летучее вещество, чтобы возникнуть естественным образом во время формирования Земли. Скорее всего она была занесена на Землю из внешних, более холодных областей Солнечной системы. Возможно, именно протопланеты и планетозимали, выброшенные Юпитером за пределы астероидного пояса, занесли воду на Землю. Другими кандидатами на роль главных доставщиков воды являются также главного пояса астероидов, обнаруженные в 2006 году, в то время как кометы из пояса Койпера и из других отдалённых областей предположительно занесли на Землю не более 6 % воды.

Планетная миграция

В соответствии с небулярной гипотезой, две внешние планеты Солнечной системы находятся в «неправильном» месте. и , «ледяные гиганты» Солнечной системы, располагаются в области, где пониженная плотность вещества туманности и длительные орбитальные периоды делали формирование таких планет весьма маловероятным событием. Считается, что эти две планеты изначально сформировались на орбитах вблизи Юпитера и Сатурна, где имелось гораздо больше строительного материала, и только спустя сотни миллионов лет мигрировали на свои современные позиции.

Симуляция, показывающая расположение внешних планет и пояса Койпера: a) Перед орбитальным резонансом 2:1 Юпитера и Сатурна b) Разбрасывание объектов древнего пояса Койпера по Солнечной системе после сдвига орбиты Нептуна c) После выбрасывания Юпитером объектов пояса Койпера за пределы системы

Планетная миграция в состоянии объяснить существование и свойства внешних регионов Солнечной системы. За Нептуном Солнечная система содержит пояс Койпера, и , представляющие собой рассеянные скопления маленьких ледяных тел и дающие начало большинству наблюдаемых в Солнечной системе комет. Сейчас пояс Койпера располагается на расстоянии 30-55 а.е. от Солнца, рассеянный диск начинается в 100 а.е. от Солнца, а облако Оорта - в 50 000 а.е. от центрального светила. Однако в прошлом пояс Койпера был гораздо плотнее и ближе к Солнцу. Его внешний край находился примерно в 30 а.е. от Солнца, в то время как его внутренний край располагался непосредственно за орбитами Урана и Нептуна, которые в свою очередь были также ближе к Солнцу (приблизительно 15-20 а.е.) и, кроме того, располагались в противоположном порядке: Уран был дальше от Солнца чем Нептун.

После формирования Солнечной системы орбиты всех планет-гигантов продолжали медленно изменяться под влиянием взаимодействий с большим количеством оставшихся планетозималей. Спустя 500-600 миллионов лет (4 миллиарда лет назад) Юпитер и Сатурн вошли в орбитальный резонанс 2:1; Сатурн совершал один оборот вокруг Солнца в точности за то время, за которое Юпитер совершал 2 оборота. Этот резонанс создал гравитационное давление на внешние планеты, вследствие чего Нептун вырвался за пределы орбиты Урана и врезался в древний пояс Койпера. По этой же причине планеты стали отбрасывать окружающие их ледяные планетозимали вовнутрь Солнечной системы, в то время как сами стали отдаляться вовне. Этот процесс продолжался аналогичным образом: под действием резонанса планетозимали выбрасывались вовнутрь системы каждой последующей планетой, которую они встречали на своём пути, а орбиты самих планет отдалялись все дальше. Этот процесс продолжался до тех пор, пока планетозимали не вошли в зону непосредственного влияния Юпитера, после чего огромная гравитация этой планеты отправила их на высокоэллиптические орбиты или даже выбросила их за пределы Солнечной системы. Эта работа в свою очередь слегка сдвинула орбиту Юпитера вовнутрь. Объекты, выброшенные Юпитером на высокоэллиптические орбиты, сформировали облако Оорта, а тела, выброшенные мигрирующим Нептуном, сформировали современный пояс Койпера и рассеянный диск. Данный сценарий объясняет, почему рассеянный диск и пояс Койпера имеют малую массу. Некоторые из катапультированных объектов, включая , со временем вошли в гравитационный резонанс с орбитой Нептуна. Постепенно трение с рассеянным диском сделало орбиты Нептуна и Урана вновь гладкими.

Существует также гипотеза о пятом газовом гиганте, претерпевшем радикальную миграцию и вытолкнутом при формировании современного облика Солнечной системы на её далёкие окраины (ставшим гипотетической планетой Тюхе или другой «Планетой X») или даже за её пределы (ставшим планетой-сиротой).

Подтверждение теории о массивной планете за орбитой Нептуна нашли Констанин Батыгин и Майкл Браун 20 января 2016 года на основе орбит шести транснептуновых объектов. Её масса, использующаяся в расчётах составляла примерно 10 земных масс, а оборот вокруг Солнца предположительно занимал от 10.000 до 20.000 земных лет.

Считается, что в отличие от внешних планет внутренние тела системы не претерпевали значительных миграций, поскольку после периода гигантских столкновений их орбиты оставались стабильными.

Поздняя тяжёлая бомбардировка

Гравитационное разрушение древнего астероидного пояса, вероятно, положило начало периоду тяжёлой бомбардировки, происходившему около 4 миллиардов лет назад, через 500-600 миллионов лет после формирования Солнечной системы. Этот период длился несколько сотен миллионов лет и его последствия видны до сих пор на поверхности геологически неактивных тел Солнечной системы, таких как Луна или Меркурий, в виде многочисленных кратеров ударного происхождения. А самое древнее свидетельство жизни на Земле датируется 3,8 миллиардами лет назад - почти сразу после окончания периода поздней тяжёлой бомбардировки.

Гигантские столкновения являются нормальной (хоть и редкой в последнее время) частью эволюции Солнечной системы. Доказательствами этого служат столкновение кометы Шумейкера-Леви с Юпитером в 1994, падение на Юпитер небесного тела в 2009 и метеоритный кратер в Аризоне. Это говорит о том, что процесс аккреции в Солнечной системе ещё не закончен, и, следовательно, представляет опасность для жизни на Земле.

Формирование спутников

Естественные спутники образовались у большинства планет Солнечной системы, а также у многих других тел. Различают три основных механизма их формирования:

  • формирование из около-планетного диска (в случае газовых гигантов)
  • формирование из осколков столкновения (в случае достаточно крупного столкновения под малым углом)
  • захват пролетающего объекта

Юпитер и Сатурн имеют много спутников, таких как , и , которые, вероятно, сформировались из дисков вокруг этих планет-гигантов по тому же принципу, как и сами эти планеты сформировались из диска вокруг молодого Солнца. На это указывают их большие размеры и близость к планете. Эти свойства невозможны для спутников, приобретённых путём захвата, а газообразная структура планет делает невозможной и гипотезу формирования лун путём столкновения планеты с другим телом.

Будущее

По оценкам астрономов Солнечная система не будет претерпевать экстремальных изменений до тех пор, пока Солнце не израсходует запасы водородного топлива. Этот рубеж положит начало переходу Солнца с главной последовательности диаграммы Герцшпрунга - Рассела в фазу . Однако и в фазе главной последовательности звезды Солнечная система продолжает эволюционировать.

Долговременная устойчивость

Солнечная система является хаотичной системой, в которой орбиты планет непредсказуемы на очень длинном отрезке времени. Одним из примеров такой непредсказуемости является система Нептун-Плутон, находящаяся в орбитальном резонансе 3:2. Несмотря на то, что сам по себе резонанс будет оставаться стабильным, невозможно предсказать хоть с каким-нибудь приближением положение Плутона на орбите более чем на 10-20 миллионов лет (время Ляпунова). Другим примером может служить наклон оси вращения Земли, который по причине трения внутри Земной мантии, вызванного приливными взаимодействиями с Луной, невозможно высчитать начиная с некоторого момента между 1.5 и 4.5 миллиардами лет в будущем.

Орбиты внешних планет хаотичны на больших временных масштабах: их время Ляпунова составляет 2-230 миллионов лет. Это не только означает, что позицию планеты на орбите начиная с этого момента в будущем невозможно определить хоть с каким-нибудь приближением, но и орбиты сами по себе могут экстремально измениться. Наиболее сильно хаос системы может проявиться в изменении эксцентриситета орбиты, при котором орбиты планет становятся более или менее эллиптическими.

Солнечная система является устойчивой в том смысле, что никакая из планет не может столкнуться с другой или быть выброшенной за пределы системы в ближайшие несколько миллиардов лет. Однако за этими временными рамками, например, в течение 5 миллиардов лет, эксцентриситет орбиты Марса может вырасти до значения 0,2, что приведёт к пересечению орбит Марса и Земли, а значит, и к реальной угрозе столкновения. В этот же период времени эксцентриситет орбиты Меркурия может увеличиться ещё больше, и впоследствии близкое прохождение около может выбросить Меркурий за пределы Солнечной системы, или вывести на курс столкновения с самой Венерой или с Землёй.

Спутники и кольца планет

Эволюция лунных систем планет определяется приливными взаимодействиями между телами системы. Из-за разности силы гравитации, воздействующей на планету со стороны спутника, в разных её областях (более удалённые области притягиваются слабее, в то время как более близкие - сильнее), форма планеты изменяется - она как бы слегка вытягивается в направлении спутника. Если направление обращения спутника вокруг планеты совпадает с направлением вращения планеты, и при этом планета вращается быстрее чем спутник, то этот «приливный бугор» планеты будет постоянно «убегать» вперёд по отношению к спутнику. В этой ситуации угловой момент вращения планеты будет передаваться спутнику. Это приведёт к тому, что спутник будет получать энергию и постепенно удаляться от планеты, в то время как планета будет терять энергию и вращаться все медленнее и медленнее.

Земля и Луна являются примером такой конфигурации. Вращение Луны приливно-закреплено по отношению к Земле: период обращения Луны вокруг Земли (в настоящее время примерно 29 дней) совпадает с периодом вращения Луны вокруг своей оси, и поэтому Луна всегда повёрнута к Земле одной и той же стороной. Луна постепенно отдаляется от Земли, в то время как вращение Земли постепенно замедляется. Через 50 миллиардов лет, если они переживут расширение Солнца, Земля и Луна станут приливно-закреплены по отношению друг к другу. Они войдут в так называемый спин-орбитальный резонанс, при котором Луна будет обращаться вокруг Земли за 47 дней, период вращения обоих тел вокруг своей оси будет одинаков, и каждое из небесных тел будет всегда видимо только с одной стороны для своего партнёра.

Другими примерами такой конфигурации являются системы Галилеевых спутников Юпитера, а также большинство крупных лун Сатурна.

Нептун и его спутник Тритон, заснятый при пролёте миссии Вояджер-2. В будущем, вероятно, этот спутник будет разорван на части приливными силами, породив новое кольцо вокруг планеты.

Иной сценарий ожидает системы, в которых спутник движется вокруг планеты быстрее, чем она вращается вокруг себя, или в которых спутник движется в направлении противоположном направлению вращения планеты. В таких случаях приливная деформация планеты постоянно отстаёт от позиции спутника. Это меняет направление переноса углового момента между телами на противоположное. что в свою очередь приведёт к ускорению вращения планеты и сокращению орбиты спутника. С течением времени спутник будет приближаться по спирали к планете, пока в какой-то момент либо не упадёт на поверхность или в атмосферу планеты, либо не будет разорван приливными силами на части, породив таким образом планетарное кольцо. Такая судьба ожидает спутник Марса (через 30-50 миллионов лет), спутник Нептуна (через 3,6 миллиарда лет), и Юпитера, и, как минимум, 16 мелких лун Урана и Нептуна. Спутник Урана при этом может быть даже столкнётся с луной-соседкой.

Ну и, наконец, в третьем типе конфигурации планета и спутник приливно-закреплены по отношению друг к другу. В этом случае «приливный бугор» расположен всегда точно под спутником, передача углового момента отсутствует, и, как следствие, орбитальный период не меняется. Примером такой конфигурации является Плутон и .



Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

Введение

Солнечная система образовалась около 4,6 млрд. лет назад. Она состоит из небесных тел - это звезды, в том числе и Солнце, 8 планет и их спутников, а так же астероиды и кометы. Планеты располагаются в порядке удаления от Солнца следующим образом: Меркурий, Венера, Земля, Марс, Юпитер, Сатурн, Уран, Нептун, Плутон. Все небесные тела обращаются вокруг массивной звезды (Солнце) по эллиптическим(рис.15) орбитам.

Центральным объектом Солнечной системы является Солнце, к которой сосредоточена подавляющая часть всей массы системы, оно удерживает своим тяготением планеты и прочие тела, принадлежащие к Солнечной системе. Иногда Солнечную систему разделяют на регионы. Внутренняя часть Солнечной системы включает четыре планеты земной группы и пояс астероидов. Внешняя часть начинается за пределами пояса астероидов и включает четыре газовых гиганта. Планеты внутри области астероидов иногда называют внутренними, а вне пояса — внешними.

Один из важных вопросов, связанных с изучением нашей планетной системы — проблема ее происхождения. В настоящее время при проверке той или иной гипотезы о происхождении Солнечной системы в значительной мере основывается на данных о химическом составе и возрасте пород Земли и других тел Солнечной системы. Решение данной проблемы имеет естественно-научное, мировоззренческое и философское значение. Наша цель - установить хронологию развития представлений о происхождении Солнечной системы.

Анализ развития гипотез о происхождении Солнечной системы

Время

Личность

История личности

Суть гипотезы

384 г. до н. э.

Аристотель (рис.1)

Древнегреческий философ, ученик Платона.

Утверждал, что Земля - это центр Вселенной.

Клавдий Птолемей (рис.2)

Птолемей жил и работал в Александрии, где проводил астрономические наблюдения. Он был астрономом, астрологом, математиком, механиком, оптиком, теоретиком музыки и географом. В источниках нет никаких упоминаний о его жизни и деятельности.

Птолемей первый предложил модель Вселенной. Согласно этой модели, центральное положение во Вселенной занимает неподвижная Земля, а вокруг нее в разных сферах вращаются Солнце, Луна, планеты и звёзды. Его модель была принята христианскими богословами и, по сути, канонизирована - возведена в ранг абсолютных истин.

Николай Коперник (рис.3)

Польский астроном, математик, механик, экономист, каноник эпохи Возрождения. Он наиболее известен, как автор гелиоцентрической системы мира, положившей начало первой научной революции.Гелиоцентрическая система мира (гелиоцентризм) — это представление о том, что Солнце является центральным небесным телом, вокруг которого обращается Земля и другие планеты.

Николай Коперник опровергнул гипотезу Клавдия Птолемея и научно доказал, что Земля не является центром Вселенной. В центр Коперник поместил Солнце и создал гелиоцентрическую модель Вселенной. Коперник боялся гонений церкви и поэтому отдал в печать свой труд незадолго до смерти. Но церковь официально запретила его книгу.

Галилео Галилей (рис.4)

Итальянский физик, механик, астроном, философ, математик, оказавший значительное влияние на науку своего времени. Он первым использовал телескоп для наблюдения небесных тел и сделал ряд выдающихся астрономических открытий.

Галилео Галилей был сторонником учения Коперника. Он впервые использовал для изучения звездного неба телескоп и увидел, что Вселенная значительно больше, чем предполагалось раньше, и что вокруг планет есть спутники, которые, подобно планетам вокруг Солнца, вращаются вокруг своих планет. Галилей экспериментально изучал законы движения. Но церковь устроила гонения на ученого и учинила над ним суд инквизиции.

Джордано Бруно (рис.5)

Итальянский монах-доминиканец, философ-пантеист и поэт, а так же признан выдающимся мыслителем эпохи Возрождения.

Джордано Бруно создал учение о том, что звёзды подобны Солнцу, что вокруг звезд по орбитам движутся тоже планеты. Так же он утверждал, что во Вселенной существует множество обитаемых миров, что кроме человека во Вселенной есть и другие мыслящие существа. Но за это Джордано был осужден христианской церковью и сожжен на костре.

Рене Декарт (рис.6)

Французский философ, математик, механик, физик и физиолог, создатель аналитической геометрии и современной алгебраической символики.

Декарт считал, что Вселенная целиком заполнена движущейся материей. По его представлениям, Солнечная система образовалась из первичной туманности, имевшей форму диска и состоявшей из газа и пыли. Эта теория имеет заметное сходство с теорией, признанной в настоящее время.

Бюффон Жорж Луи Леклерк (рис.7)

Французский натуралист, биолог, математик, естествоиспытатель и писатель. В 1970 г. в честь Бюффона назван кратер на Луне.

В 1745 г. Бюффон предположил, что вещество, из которого образованы планеты, было отторгнуто от Солнца какой-то слишком близко проходившей большой кометой или звездой. Но если бы Бюффон оказался прав, то появление такой планеты, к примеру, как наша, было бы событием чрезвычайно редким, а вероятность найти жизнь где-нибудь во Вселенной стала бы ничтожно мала.

Иммануил Кант (рис.8)

Немецкий философ и родоначальник немецкой классической философии. Кантом были написаны фундаментальные философские работы, принёсшие учёному репутацию одного из выдающихся мыслителей XVIII века и оказавшие огромное влияние на дальнейшее развитие мировой философской мысли.

Известными теориями стали теории математика Лапласа и философа Канта, суть которых в том, что звезды и планеты образовались из космической пыли путем постепенного сжатия первоначальной газопылевой туманности. Но гипотезы Канта и Лапласа отличались.

Кант исходил из эволюционного развития холодной пылевой туманности, в ходе которого сначала возникло центральное тело - Солнце, а потом планеты. А вот гипотеза Лапласа…

Пьер-Симон Лаплас (рис.9)

Французский математик, механик, физик и астроном. Он известен работами в области небесной механики, один из создателей теории вероятностей и “Парадокса демона Лапласа”. Его имя внесено в список величайших учёных Франции, помещённый на первом этаже Эйфелевой башни.

Согласно Лапласу, планеты образовались раньше, чем Солнце. То есть первоначальная туманность была газовой и горячей и быстро вращалась. Из-за центробежных сил в экваториальном поясе от нее последовательно отделялись кольца. В дальнейшем эти кольца конденсировались, и получились планеты.(рис.17)

Джеймс Хопвуд Джинс (рис.10)

Британский физик-теоретик, астроном и математик. Сделал важный вклад в нескольких областях физики, включая квантовую теорию, теорию теплового излучения и эволюции звёзд.

Гипотеза Джинса полностью противоположна гипотезе Канта и Лапласа. Она объясняет образование Солнечной системы случайностью, считая ее редчайшим явлением. Вещество, из которого в дальнейшем образовались планеты, было выброшено из довольно "старого" Солнца. Благодаря приливным силам, действовавшим со стороны налетевшей звезды, которая случайно проходила вблизи Солнца, из поверхностных слоев Солнца была выброшена струя газа. Эта струя осталась в сфере притяжения Солнца. В дальнейшем струя сконденсировалась, и получились планеты. Но если бы гипотеза Джинса была правильной, то планетных систем в Галактике было бы значительно меньше. Поэтому гипотезу Джинса следует отвергнуть.(рис.16,19)

Вулфсоном предполагал, что газовая струя, из которой образовались планеты, была выброшена из пролетевшей мимо рыхлой звезды огромных размеров. Расчеты показывают, что если бы планетные системы образовывались таким образом, то их в Галактике было бы очень мало.(рис.19)

Ханнес Улоф Йёста Альвен (рис.12)

Шведский физик, специалист по физике плазмы, а так же лауреат Нобелевской премии по физике в 1970 году за работы в области теории магнитогидродинамики. В 1934 году преподавал физику в университете Уппсалы и в 1940 году стал профессором по теории электромагнетизма и электрических измерений в Королевском технологическом институте в Стокгольме.

Спасая гипотезу Канта и Лапласа, Альвен предположил, что Солнце обладало очень сильным электромагнитным полем. Туманность, окружающая Солнце, состояла из нейтральных атомов. Под действием излучений и столкновений - атомы ионизировались. А ионы попадали в ловушки из магнитных силовых линий и увлекались вслед за вращающимся Солнцем. Постепенно Солнце теряло свой вращательный момент, передавая его газовому облаку.

Отто Юльевич Шмидт (рис.13)

Советский математик, географ, геофизик, астроном. Один из основателей и главный редактор Большой советской энциклопедии. С 28 февраля 1939 года по 24 марта 1942 года был вице-президентом АН СССР.

В 1944 г. Шмидт предложил гипотезу, согласно которой планетная система образовалась из вещества, захваченного из газово-пылевой туманности, через которую некогда проходило Солнце, уже тогда имевшее почти "современный" вид. В этой гипотезе нет трудностей с вращательным моментом.(рис.18,20)

Литлтон Реймонд Артур (рис.14)

Начиная с 1961 г., гипотезу Шмидта развивал английский космогонист Литлтон. Следует заметить: чтобы Солнце захватило достаточно много вещества, его скорость по отношению к туманности должна быть очень маленькой, порядка ста метров в секунду. Попросту, Солнце должно застрять в этом облаке и двигаться вместе с ним. В этой гипотезе образование планет не связывается с процессом звездообразования.

Заключение

Вот мы и пришли к заключению проекта. Процесс образования Солнечной системы нельзя считать досконально изученным. Происхождение Солнечной системы, формирования галактик и возникновения Вселенной еще далеко до завершения. А дело в том, что ученые наблюдают за огромным количеством звезд, которые находятся на разных стадиях эволюции. О солнечной системе и ее происхождении изучаются во многих институтах мира. Этой теме уделяется важное место в жизни.

Из проекта можно выделить две теории происхождения Солнечной Системы и самой Вселенной в целом. Первая гласит о теории Большого взрыва, а вторая о том, что материя, энергия, пространство и время существовали всегда.

Все мы вправе полагать, что есть и другие планеты, на которых может существовать жизнь, в том числе и разумная. В начале проекта мы говорили, что нашей целью является установить хронологию развития представлений о происхождении Солнечной системы. И вот мы можем с уверенностью сказать, что наша цель достигнута.

Список литературы

    Агекян Т.А. Звезды, Галактики, Метагалактика. - М.: Наука, 1970.

    Вайнберг С. Первые три минуты. Современный взгляд на происхождение Вселенной (пер. с англ. Я. Зельдовича). - М.: Энергоиздат, 1981.

    Горелов А.А. Концепции современного естествознания. - М.: Центр, 1997.

    Каплан С.А. Физика звезд. - М.: "Наука", 1970.

    Ксанфомалити Л.В. Планеты, открытые заново. - М.: Наука, 1978.

    Новиков И.Д. Эволюция Вселенной. - М.: Наука, 1983.

    Осипов Ю.С. Гравитационный захват // Кварк. - 1985. - № 5.

    Редже Т. Этюды о Вселенной. - М.: Мир, 1985.

    Филиппов Е.М. Вселенная, Земля, жизнь. - Киев: "Наукова думка", 1983.

    Шкловский И.С. Вселенная, жизнь, разум. - М.: Наука, 1980

    http://mirznanii.com/a/183/proiskhozhdenie-solnechnoy-sistemy 1

    http://ukhtoma.ru/universe8.htm 2

    https://ru.wikipedia.org 3

4. 5. 6. 7. 8. 9.

1 Звезда проходит рядом с Солнцем,вытягивая из него вещество (рис. А и В); планеты формируются

из этого материала (рис. С)



Статьи по теме: