Урок "область определения и область значений функции". Решение производной для чайников: определение, как найти, примеры решений

Инструкция

Если вы хотите найти значение функции, используя формулу, подставьте в эту формулу вместо аргумента (х), его допустимые значения, то есть значения, входящие в ее область определения. Для этого допустимых значений данной функции.

Чтобы найти область определения функции, определите, вид она имеет. Если представлена вида у = а/в, то ее областью определения будут являться все значения в, за исключением нуля. Число а является любым . Для нахождения области определения функции подкоренного выражения при условии четного показателя, данное выражение должно быть нуля или равно ему. Находя область определения функции того же выражения, но с нечетным показателем, учитывайте, что х – может быть любым числом в том случае, если подкоренное выражение не дробное. Находя область определения логарифмической функции, руководствуйтесь правилом о том, что выражение, которое стоит под знаком логарифма, должно быть положительной величиной.

Отыскав область определения функции, переходите к ее решению. Например, чтобы функцию : у = 2,5 х – 10 при х = 100, подставьте в данную формулу вместо х число 100. Данная операция будет выглядеть следующим образом: у = 2,5 × 100 – 10; у = 240. Это число и будет искомым значением функции.

Чтобы найти значение функции, используя , отложите в координат на оси ОХ значение аргумента (отметьте точку, соответствующую аргументу). Затем из данной точки проведите перпендикуляр до пересечения его с графиком функции. Из полученной точки пересечения перпендикуляра с графиком функции опустите перпендикуляр на ось ОУ. Основание построенного перпендикуляра будет соответствовать искомому значению функции.

Видео по теме

Связанная статья

Источники:

  • как найти функцию от аргумента по таблице

Еще в школьные годы подробно изучаются функции и строятся их графики. Но, к сожалению, читать график функции и находить ее тип по представленному чертежу практически не учат. В действительности это довольно просто, если помнить основные виды функций.

Инструкция

Если представленным графиком является , которая через начало координат и с осью ОX угол α (который является углом наклона прямой к положительной полуоси), то функция, описывающая такую прямую, будет представлена как y = kx. При этом коэффициент пропорциональности k равен тангенсу угла α.

Если заданная прямая проходит через вторую и четвертую координатные четверти, то k равен 0, и функция возрастает. Пусть представленный график является прямой линией, располагающейся любым образом относительно осей координат. Тогда функцией такого графика будет линейная, которая представлена видом y = kx + b, где переменные y и х стоят в первой , а b и k могут принимать как отрицательные, так и положительные значения или .

Если прямая параллельна прямой с графиком y = kx и отсекает на оси ординат b единиц, тогда уравнение имеет вид x = const, если график параллелен оси абсцисс, то k = 0.

Кривая линия, которая состоит из двух ветвей, симметричных относительно начала координат и располагающихся в разных четвертях, гиперболой. Такой график показывает обратную зависимость переменной y от переменной x и описывается уравнением вида y = k/x, где k не должен быть равен нулю, так как является коэффициентом обратной пропорциональности. При этом, если значение k больше нуля, функция убывает; если же k меньше нуля – возрастает.

Если предложенным графиком является парабола, проходящая через начало координат, ее функция при выполнении условия, что b = с = 0, будет иметь вид y = ax2. Это самый простой случай квадратичной функции. График функции вида y = ax2 + bx + с будет иметь такой же вид, что и простейший случай, однако вершина (точка, где график пересекается с осью ординат) будет находиться не в начале координат. В квадратичной функции, представленной видом y = ax2 + bx + с, значения величин a, b и c – постоянные, при этом a не равно нулю.

Параболой также может являться график степенной функции, выраженной уравнением вида y = xⁿ, только если n является любым четным числом. Если же значение n - нечетное число, такой график степенной функции будет представлен кубической параболой. В случае, если переменная n является любым отрицательным числом, уравнение функции приобретает вид .

Видео по теме

Логарифмической называется функция, которая обратна показательной. Такая функция имеет вид: y = logax, в которой значение a – положительное число (не равное нулю). Внешний вид графика логарифмической функции зависит от значения a.

Вам понадобится

  • - математический справочник;
  • - линейка;
  • - простой карандаш;
  • - тетрадь;
  • - ручка.

Инструкция

Прежде чем приступить к построению графика логарифмической функции обратите внимание на то, что областью определения данной функции есть множество положительных : эта величина R+. Вместе с тем, у логарифмической функции есть область значения, которая представлена действительными .

Внимательно изучите условия . Если а>1, то на графике изображают возрастающую логарифмическую функцию. Доказать такую особенность логарифмической функции несложно. Для примера, возьмите два произвольных положительных значения x1 и x2, причем, x2>x1. Докажите, что loga x2>loga x1 (сделать это можно методом от ).

Предположите, что loga x2≤loga x1. Учитывая то, что показательная функция вида у=ах при а>1 возрастает, неравенство примет следующий вид: aloga x2≤aloga x1. По общеизвестному определению aloga x2=x2, в то как aloga x1=x1. Ввиду этого, неравенство приобретает вид: x2≤x1, а это напрямую противоречит первоначальным допущениям, в согласии с x2>x1. Таким образом, вы пришли к тому, что и требовалось доказать: при а>1 возрастает.

Изобразите график логарифмической функции. График функции y = logax будет проходить через точку (1;0). Если a>1, функция будет возрастающей. Следовательно, если 0

Обратите внимание

Если в задании логарифм будет обозначен lg x, не думайте, что авторы математического пособия допустили ошибку, пропустив букву «о»: перед вами десятичный логарифм.

Полезный совет

Для точности построения графика логарифмической функции рассчитайте, чем будет равен y при разных значениях x (0,5; 2; 4, 8). На основании этих данных поставьте точки и по ним постройте график.

Источники:

  • Определение и основные свойства логарифмической функции
  • график логарифмической функции

Термин решения функции как таковой в математике не используется. Под данной формулировкой следует понимать выполнение некоторых действий над заданной функцией с целью нахождения какой-то определенной характеристики, а также выяснение необходимых данных для построения графика функции.

Инструкция

Можно рассмотреть примерную схему, по которой целесообразно поведение функции и строить ее график.
Найдите область определения функции. Определите, является ли функция четной и нечетной. В случае нахождения нужного ответа, продолжите только на требуемой полуоси. Определите, является ли функция периодической. В случае положительного ответа продолжите исследование только на одном периоде. Найдите точки и определите ее поведение в окрестности этих точек.

Найдите точки пересечения графика функции с осями координат. Найдите , если они есть. Исследуйте с помощью первой производной функцию на экстремумы и интервалы монотонности. Также проведите исследование с помощью второй производной на выпуклость, вогнутость и точки перегиба. Выберите точки для уточнения функции и вычислите в них значения функции. Постройте график функции, учитывая полученные результаты по всем проведенным исследованиям.

На оси 0Х следует выделить характерные точки: точки разрыва, х=0 , нули функции, точки экстремума, точки перегиба. В этих х вычислите значения функции (если они существуют) и на плоскости 0xy отметьте соответствующие точки графика, а также точки, выбранные для уточнения. Линия, проведенная через все построенные точки с учетом интервалов монотонности, направлений выпуклости и , и даст эскиз графика функции.

Так, на конкретном примере функции y=((x^2)+1)/(x-1) проведите исследование с помощью первой производной. Перепишите функцию в виде y=x+1+2/(x-1). Первая производная будет y’=1-2/((x-1)^2).
Найдите критические точки первого рода: y’=0, (x-1)^2=2, в результате получатся две точки: x1=1-sqrt2, x2=1+sqrt2. Отметьте полученные значения на области определения функции (рис. 1).
Определите знак производной на каждом из интервалов. На основе от «+» к «-» и от «-» к «+», получите, что точка максимума функции x1=1-sqrt2, а точка минимума x2=1+sqrt2. Этот же вывод можно сделать и по знаку второй производной.

Совет 5: Как решить дифференциальное уравнение первого порядка

Дифференциальное уравнение первого порядка относится к простейшим дифференциальным уравнениям. Они наиболее легко поддаются исследованию и решению, а в конечном итоге их всегда можно проинтегрировать.

Инструкция

Решение дифференциального первого порядка рассмотрим на примере xy"=y. Вы видите, что оно содержит: х - независимую ; у - зависимую переменную, функцию; y" - первую производную функции.

Не пугайтесь, если в некоторых случаях первого порядка не будет «х» или (и) «у». Главное, чтобы в дифференциальном уравнении обязательно была y" (первая производная), и отсутствовали y"", y"""( высших порядков).

Теперь разделите переменные. Например, в левой части оставьте только переменные содержащие y, а в правой - переменные содержащие x. У вас должно получиться следующее: dyy=dxx.

Выберем на плоскости прямоугольную систему координат и будем откладывать на оси абсцисс значения аргумента х , а на оси ординат - значения функции у = f (х) .

Графиком функции y = f(x) называется множество всех точек, у которых абсциссы принадлежат области определения функции, а ординаты равны соответствующим значениям функции.

Другими словами, график функции y = f (х) - это множество всех точек плоскости, координаты х, у которых удовлетворяют соотношению y = f(x) .



На рис. 45 и 46 приведены графики функций у = 2х + 1 и у = х 2 - 2х .

Строго говоря, следует различать график функции (точное математическое определение которого было дано выше) и начерченную кривую, которая всегда дает лишь более или менее точный эскиз графика (да и то, как правило, не всего графика, а лишь его части, расположенного в конечной части плоскости). В дальнейшем, однако, мы обычно будем говорить «график», а не «эскиз графика».

С помощью графика можно находить значение функции в точке. Именно, если точка х = а принадлежит области определения функции y = f(x) , то для нахождения числа f(а) (т. е. значения функции в точке х = а ) следует поступить так. Нужно через точку с абсциссой х = а провести прямую, параллельную оси ординат; эта прямая пересечет график функции y = f(x) в одной точке; ордината этой точки и будет, в силу определения графика, равна f(а) (рис. 47).



Например, для функции f(х) = х 2 - 2x с помощью графика (рис. 46) находим f(-1) = 3, f(0) = 0, f(1) = -l, f(2) = 0 и т. д.

График функции наглядно иллюстрирует поведение и свойства функции. Например, из рассмотрения рис. 46 ясно, что функция у = х 2 - 2х принимает положительные значения при х < 0 и при х > 2 , отрицательные - при 0 < x < 2; наименьшее значение функция у = х 2 - 2х принимает при х = 1 .

Для построения графика функции f(x) нужно найти все точки плоскости, координаты х , у которых удовлетворяют уравнению y = f(x) . В большинстве случаев это сделать невозможно, так как таких точек бесконечно много. Поэтому график функции изображают приблизительно - с большей или меньшей точностью. Самым простым является метод построения графика по нескольким точкам. Он состоит в том, что аргументу х придают конечное число значений - скажем, х 1 , х 2 , x 3 ,..., х k и составляют таблицу, в которую входят выбранные значения функции.

Таблица выглядит следующим образом:



Составив такую таблицу, мы можем наметить несколько точек графика функции y = f(x) . Затем, соединяя эти точки плавной линией, мы и получаем приблизительный вид графика функции y = f(x).

Следует, однако, заметить, что метод построения графика по нескольким точкам очень ненадежен. В самом деле поведение графика между намеченными точками и поведение его вне отрезка между крайними из взятых точек остается неизвестным.

Пример 1 . Для построения графика функции y = f(x) некто составил таблицу значений аргумента и функции:




Соответствующие пять точек показаны на рис. 48.



На основании расположения этих точек он сделал вывод, что график функции представляет собой прямую (показанную на рис. 48 пунктиром). Можно ли считать этот вывод надежным? Если нет дополнительных соображений, подтверждающих этот вывод, его вряд ли можно считать надежным. надежным.

Для обоснования своего утверждения рассмотрим функцию

.

Вычисления показывают, что значения этой функции в точках -2, -1, 0, 1, 2 как раз описываются приведенной выше таблицей. Однако график этой функции вовсе не является прямой линией (он показан на рис. 49). Другим примером может служить функция y = x + l + sinπx; ее значения тоже описываются приведенной выше таблицей.

Эти примеры показывают, что в «чистом» виде метод построения графика по нескольким точкам ненадежен. Поэтому для построения графика заданной функции,как правило, поступают следующим образом. Сначала изучают свойства данной функции, с помощью которых можно построить эскиз графика. Затем, вычисляя значения функции в нескольких точках (выбор которых зависит от установленных свойств функции), находят соответствующие точки графика. И, наконец, через построенные точки проводят кривую, используя свойства данной функции.

Некоторые (наиболее простые и часто используемые) свойства функций, применяемые для нахождения эскиза графика, мы рассмотрим позже, а сейчас разберем некоторые часто применяемые способы построения графиков.


График функции у = |f(x)|.

Нередко приходится строить график функции y = |f(x) |, где f(х) - заданная функция. Напомним, как это делается. По определению абсолютной величины числа можно написать

Это значит, что график функции y =|f(x)| можно получить из графика, функции y = f(x) следующим образом: все точки графика функции у = f(х) , у которых ординаты неотрицательны, следует оставить без изменения; далее, вместо точек графика функции y = f(x) , имеющих отрицательные координаты, следует построить соответствующие точки графика функции у = -f(x) (т. е. часть графика функции
y = f(x) , которая лежит ниже оси х, следует симметрично отразить относительно оси х ).



Пример 2. Построить график функции у = |х|.

Берем график функции у = х (рис. 50, а) и часть этого графика при х < 0 (лежащую под осью х ) симметрично отражаем относительно оси х . В результате мы и получаем график функции у = |х| (рис. 50, б).

Пример 3 . Построить график функции y = |x 2 - 2x|.


Сначала построим график функции y = x 2 - 2x. График этой функции - парабола, ветви которой направлены вверх, вершина параболы имеет координаты (1; -1), ее график пересекает ось абсцисс в точках 0 и 2. На промежутке (0; 2) фукция принимает отрицательные значения, поэтому именно эту часть графика симметрично отразим относительно оси абсцисс. На рисунке 51 построен график функции у = |х 2 -2х| , исходя из графика функции у = х 2 - 2x

График функции y = f(x) + g(x)

Рассмотрим задачу построения графика функции y = f(x) + g(x). если заданы графики функций y = f(x) и y = g(x) .

Заметим, что областью определения функции y = |f(x) + g(х)| является множество всех тех значений х, для которых определены обе функции y = f{x) и у = g(х), т. е. эта область определения представляет собой пересечение областей определения, функций f{x) и g{x).

Пусть точки (х 0 , y 1 ) и (х 0 , у 2 ) соответственно принадлежат графикам функций y = f{x) и y = g(х) , т. е. y 1 = f(x 0), y 2 = g(х 0). Тогда точка (x0;. y1 + y2) принадлежит графику функции у = f(х) + g(х) (ибо f(х 0) + g(x 0 ) = y1 +y2 ),. причем любая точка графика функции y = f(x) + g(x) может быть получена таким образом. Следовательно, график функции у = f(х) + g(x) можно получить из графиков функций y = f(x) . и y = g(х) заменой каждой точки (х n , у 1) графика функции y = f(x) точкой (х n , y 1 + y 2), где у 2 = g(x n ), т. е. сдвигом каждой точки (х n , у 1 ) графика функции y = f(x) вдоль оси у на величину y 1 = g(х n ). При этом рассматриваются только такие точки х n для которых определены обе функции y = f(x) и y = g(x) .

Такой метод построения графика функции y = f(x) + g(х ) называется сложением графиков функций y = f(x) и y = g(x)

Пример 4 . На рисунке методом сложения графиков построен график функции
y = x + sinx .

При построении графика функции y = x + sinx мы полагали, что f(x) = x, а g(x) = sinx. Для построения графика функции выберем точки с aбциссами -1,5π, -, -0,5, 0, 0,5,, 1,5, 2. Значения f(x) = x, g(x) = sinx, y = x + sinx вычислим в выбранных точках и результаты поместим в таблице.


Описание видеоурока

Функцией называется зависимость переменной игрек от переменной икс, при которой каждому значению переменной икс соответствует единственное значение переменной игрек.

Икс называется независимой переменной или аргументом. Игрек называется зависимой переменной, значением функции или просто функцией.

Если зависимость переменной игрек от переменной икс является функцией, то коротко записывают так: игрек равно эф от икс. Этим символом обозначают также значение функции, соответствующее значению аргумента икс.

Пусть функция задана формулой игрек равно три икс квадрат минус пять. Тогда можно записать, что эф от икс равно три икс квадрат минус пять. Найдем значения функции эф для значений икс, равных двум и минус пяти. Они будут равны семи и семидесяти.

Заметим, что в записи игрек равно эф от икс вместо эф можно употреблять и другие буквы: же, фи и так далее.

Все значения икс образуют область определения функции. Все значения, которые принимает игрек, образуют область значений функции.

Функция считается заданной, если указана её область определения и правило, согласно которому каждому значению икс поставлено в соответствие единственное значение игрек.

Если функция игрек равно эф от икс задана формулой и ее область определения не указана, то считают, что область определения функции состоит из всех значений переменной икс, при которых выражение эф от икс имеет смысл…

Графиком функции называется множество всех точек координатной плоскости, абсциссы которых равны значениям аргумента, а ординаты - соответствующим значениям функции.

На рисунке изображен график функции игрек равно эф от икс, областью определения которой является отрезок от единицы до пяти. С помощью графика можно найти, например, что функция от числа один равна минус трем, функция от двух равна двум, функция от числа четыре равна минус двум, функция от числа пять равна минус четырем. Наименьшее значение функции равно минус четырем, а наибольшее - двум. При этом любое число от минус четырех до двух, включая эти числа, является значением данной функции. Таким образом, областью значений функции игрек равно эф от икс является отрезок от минус четырех до двух.

Ранее нами уже были изучены некоторые виды функций:

  • Линейная функция, задаваемая формулой игрек равно ка икс плюс бэ, где ка и бэ - некоторые числа;
  • Прямая пропорциональность - частный случай линейной функции, она задается формулой игрек равно ка икс, где ка не равно нулю;
  • Обратная пропорциональность - функция игрек равно ка деленное на икс, где ка не равно нулю.

Графиком функции игрек равно ка икс плюс бэ является прямая. Область определения этой функции - множество всех чисел. Областью значений этой функции при ка не равном нулю является множество всех чисел, а при ка равном нулю ее область значений состоит из одного числа бэ.

График функции игрек равно ка деленное на икс называется гиперболой.

На рисунке изображен график функции игрек равно ка деленное на икс, для ка большего нуля. Областью определения этой функции является множество всех чисел, кроме нуля. Это множество является и областью ее значений…

Функциями описываются многие реальные процессы и закономерности. Например, прямой пропорциональностью является зависимость массы тела от его объема при постоянной плотности; зависимость длины окружности от ее радиуса. Обратной пропорциональностью является зависимость силы тока на участке цепи от сопротивления проводника при постоянном напряжении; зависимость времени, которое затрачивает равномерно движущееся тело на прохождение заданного пути, от скорости движения.

Изучались также функции, заданные формулами игрек равно икс квадрат, игрек равно икс куб, игрек равно корень квадратный из икс.

Рассмотрим функцию, заданную формулой игрек равно модуль икс.

Так как выражение модуль икс имеет смысл при любом икс, то областью определения этой функции является множество всех чисел. По определению модуль икс равен икс, если икс больше либо равен нулю, и минус икс, если икс меньше нуля. Поэтому функцию игрек равно модуль икс можно задать следующей системой.

График рассматриваемой функции в промежутке от нуля до плюс бесконечности, включая ноль, совпадает с графиком функции игрек равно икс, а в промежутке от минус бесконечности до нуля - с графиком функции игрек равно минус икс. График функции игрек равно модуль икс состоит из двух лучей, которые исходят из начала координат и являются биссектрисами первого и второго координатных углов.

Если задано множество чисел X и указан способ f , по которому для каждого значения х ЄX ставится в соответствие только одно число у . Тогда считается заданной функция y = f (х ), у которой область определения X (обычно обозначают D (f ) = X ). Множество Y всех значений у , для которых есть как минимум одно значение х ЄX , такое, что y = f (х ), такое множество называют множеством значений функции f (чаще всего обозначают E (f )= Y ).

Или зависимость одной переменной у от другой х , при которой каждому значению переменной х из определенного множества D соответствует единственное значение переменной у , называется функцией .

Функциональную зависимость переменной у от х часто подчеркивают записью у(х), которую читают игрек от икс.

Область определения функции у (х ), т. е. множество значений ее аргумента х , обозначают символом D (y ), который читают дэ от игрек.

Область значений функции у (х ), т. е. множество значений, которые принимает функция у, обозначают символом Е (у ), который читают е от игрек.

Основными способами задания функции являются:

а) аналитический (с помощью формулы y = f (х )). К этому способу можно отнести и случаи, когда функция задается системой уравнений. Если функция задана формулой, то область ее определения составляют все те значения аргумента, при которых выражение, записанное в правой части формулы, имеет значения.

б) табличный (с помощью таблицы соответствующих значений х и у ). Таким способом часто задается температурный режим или курсы валют, но этот способ не такой наглядный, как следующий;

в) графический (с помощью графика). Это один из самых наглядных способов задания функции, поскольку по графику сразу "читаются" изменения. Если функция у (х ) задана графиком, то область ее определения D (y ) есть проекция графика на ось абсцисс, а область значений Е (у ) - проекция графика на ось ординат (смотри рисунок).

г) словестный . Этот способ часто применяется в задачах, а точнее в описании их условия. Обычно этот способ заменяют одним из приведенных выше.

Функции y = f (х ), x ЄX , и y = g (х ), x ЄX , называются тождественно равными на подмножестве М СX , если для каждого x 0 ЄМ справедливо равенство f (х 0) = g (х 0).

График функции y = f (х ) можно представить, как множество таких точек (х ; f (х )) на координатной плоскости, где х - произвольная переменная, из D (f ). Если f (х 0) = 0, где х 0 то точка с координатами (x 0 ; 0) - это точка, в которой график функции y = f (х ) пересекается с осью Оx . Если 0ЄD (f ), то точка (0; f (0)) - это точка, в которой график функции у = f (x ) пересекается с осью Оу .

Число х 0 из D (f ) функции y = f (х ) это нуль функции, тогда, когда f (х 0) = 0.

Промежуток М СD (f ) это промежуток знакопостоянства функции y = f (х ), если либо для произвольного x ЄМ верно f (х ) > 0, либо для произвольного х ЄМ верно f (х ) < 0.

Есть приборы , которые вырисовывают графики зависимостей между величинами. Это барографы - приборы для фиксации зависимости атмосферного давления от времени, термографы - приборы для фиксации зависимости температуры от времени, кардиографы - приборы для графической регистрации деятельности сердца. У термографа есть барабан, он равномерно вращается. Бумаги, намотанной на барабан, касается самописец, который в зависимости от температуры поднимается и опускается и вырисовывает на бумаге определенную линию.

От представления функции формулой можно перейти к ее представлению таблицей и графиком.

При изучении математики очень важно понимать, что такое функция, ее области определения и значения. С помощью исследования функций на экстремум можно решить многие задачи по алгебре. Даже задачи по геометрии иногда сводятся к рассмотрению уравнений геометрических фигур на плоскости.

Урок по теме «Область определения и область значений функции» проводится в 10 классе в курсе алгебры и начал анализа. На объяснение материала по данной теме автор отводит 8:47 минут. этого времени достаточно для того, чтобы обучающиеся прослушали необходимую информацию, зафиксировали ее в своих тетрадях и поняли содержание материала. Примерно столько же времени затрачивает учитель на уроке при объяснении нового материала.

Автор позаботился об учителях, нагрузка которых итак достаточно велика, поэтому разработал данный видеоурок с учетом всех требований. То есть, урок соответствует возрасту обучающихся, их уровню образования и особенностей восприятия материала. Учителю останется лишь подобрать материал для закрепления новой информации, полученной из данного урока.

Урок начинается с информации о том, что функция задается вместе с областью определения. Далее автор определяет переменные xи y? как аргумент и значение функции соответственно. После этого вводятся определения понятий область определения функции и область значений функции.

Затем рассматривается пример, где функция задана графически, и необходимо определить ее область определения. Решение данного примера подробно расписывается на экране. Автор поясняет каждый момент, где обучающиеся могут допустить ошибки. Все объяснение сопровождается наглядной иллюстрацией на рисунке.

Далее автор переходит к пункту «Область определения рациональной функции». Для обучающихся говорится о том, что в область определения рациональных функций не входят те значения аргумента, которые обращают знаменатель в нуль. Это поясняется на случае общего написания рациональной функции.

Затем на этот случай рассматривается пример. Здесь необходимо найти область определения рациональной функции. Решение пример основано на той информации, которую только что автор поведал обучающимся. То есть, он находит все те значения, которые обращают знаменатель в нуль и исключает их из множества действительных чисел, получая, таким образом, область определения функции.

после этого предлагается рассмотреть еще один пример, где требуется найти область определения рациональной функции. Но здесь наблюдается следующая особенность: знаменатель дроби никогда не обращается в нуль. Поясняя это, автор делает вывод, что областью определения данной функции является множество действительных чисел. После этого примера предлагается запомнить закономерность, которая только что была использована в примере.

Далее автор переходит к пункту «Область определения иррациональной функции». Здесь важно запомнить то, что подкоренное выражение никогда не может быть отрицательным. Это подкрепляется математической интерпретацией на математической языке. Здесь же поясняется, что если иррациональное выражение в записи функции находится в знаменателе, то подкоренное выражение будет не просто неотрицательным, а строго положительным.

К этому материалу прилагается пример, где требуется найти область определения иррациональной функции. Решая неравенство: подкоренное выражение неотрицательно, автор получает значения аргумент, которые образуют область определения заданной функции.

Затем рассматривается область определения функции с натуральным логарифмом. Сначала дается теоретический экскурс по данному материалу, а затем приводится пример с подробным описанием каждого шага решения.

После всего теоретического материала автор предлагает рассмотреть три примера, где требуется найти область определения и область значений функции, заданной графически. Это можно использовать как небольшой элемент закрепления выданного только что материала.

Урок будет полезен не только учителям, но и обучающимся, которые занимаются самообразованием или пропустили урок по данной теме по определенным причинам. Из этого урока обучающиеся смогут почерпнуть не только теоретический материал, но и подкрепить полученные знания практическими упражнениями.

ТЕКСТОВАЯ РАСШИФРОВКА:

Область определения и область значений функции.

Из определения функции следует, что функция игрек равен эф от икс задается вместе с ее областью определения икс большое.

Для изучения этой темы нам необходимо вспомнить: как называется переменная икс? число у?

Независимую переменную икс называют аргументом функции, а число игрек, соответствующее числу икс, называют значением функции эф в точке икс и обозначают эф от икс

Какое множество называется областью определения функции?

Если нам дана функция у=f(х),то ее область определения - это множество значений «икс» , для которых существуют значения «игрек»и обозначают дэ большое от эф.

Область значений функции - множество, состоящее из всех чисел эф от х, таких, что икс принадлежит икс большому и обозначают е большое от эф.

Рассмотрим пример. Функция задана графически. Определить дэ большое от эф.

Область определения данной функции представляет собой объединение промежутков:
интервал от минус бесконечности до а, луч от вэ до цэ и интервал от цэ до плюс бесконечности. Действительно так, если взять любое значение «икс» из интервала от минус бесконечности до а, или из полуинтервала от вэ до цэ, или из интервала от цэ до плюс бесконечности, то для каждого такого «икс» будет существовать значение «игрек».

Как ?

Рассмотрим примеры.

Первое.

Область определения рациональной функции, т.е. аргумент у которой есть в содержится в знаменателе.

Запомните:

значения аргумента, которые обращают знаменатель в ноль - не входят в область определения данной функции .

Предположим, дана функция, содержащая некоторую дробь единица, деленная на альфа от ихс. Как вы знаете, на ноль делить нельзя: поэтому альфа от икс не равно нулю

Найти область определения функции

эф от икс равен дроби, числитель которой икс плюс два, а знаменатель - икс квадрат минус три. Данная функция задана аналитически.

Решение : обращаем внимание на знаменатель, он должен быть не нулевым. Приравняем его к нулю и найдем значение аргумента которые обращают знаменатель функции в ноль:

икс квадрат минус триравно нулю.

икс квадрат равно трем.

Полученное уравнение имеет два корня:

минус квадратный корень из трех, квадратный корень из трех.

Данные значения не входят в область определения функции , так как при этих значениях знаменатель дроби обращается в ноль.

Ответ : дэ большое от эф равен объединению промежутков:интервал от минус бесконечности до квадратного корня из трех,интервал от минус квадратного корня из трех до квадратного кореня из трех.

и интервал от квадратного кореня из трех

до плюс бесконечности.

Рассмотрим еще пример.

Найти область определения функции

эф от икс равен дроби, числитель которой единица, а знаменатель - икс квадрат плюс один.

Рассмотрим выражение стоящее в знаменателе: к квадрату числа икс прибавляют единицу он всегда положительно т.е. какое бы значение «икс» мы не взяли, знаменатель не обратится в ноль, более того, будет всегда положителен, значит область определения функции, дэ большое от эф равено множеству всех действительных чисел.

определена на всей числовой оси.

Запомните!

при любом значении «икс» и положительной константе ка :
икс квадрат плюс ка больше нуля.

Второе.

Область определения иррациональной функции (содержащий радикал или корень).

подкоренное выражение неотрицательно

Функция вида игрек равен квадратный корень из альфа от икс определена только при тех значениях икс из области определения дэ от альфа, когда альфа от икс не отрицательно, т.е. больше или равна нулю. Если функция содержащая радикал в знаменателе дроби, то альфа от х строго больше нуля.

Найти область определения функции
эф от икс равен квадратный корень из трех минус два икс.

Решение : подкоренное выражение должно быть неотрицательным:

три минус два икс больше или равно нулю

минус два икс больше или равно минус трем

два икс меньше или равно трем

икс меньше или равнотрем вторым

Ответ: дэ большое от эф равен полуинтервалу от минус бесконечности до трех вторых.

Третье .

Область определения функций с натуральным логарифмом.

Пусть функция содержит натуральный логарифм альфа от икс., то в её область определения входят только те значения икс, удовлетворяющие неравенству альфа от икс строго больше нуля.

Если логарифм находится в знаменателе: то дополнительно накладывается условие альфа от икс не равно единице, (так как натуральный логарифм единицы равен нулю).

Найти область определения функции

эф от икс равен дроби числитель равен единице, а знаменатель - натуральный логарифм из выражения икс плюс три.

Решение : в соответствии с вышесказанным составим и решим систему:

икс плюс три больше нуля

и икс плюс три не равно единице

икс больше минус трех и икс не равно минус двум.

Изобразим множество решений системы на прямой и сделаем вывод.

Ответ: дэ большое от эф равно объединению промежутков: интервалам от минус трех до минус двух и от минус двух до плюс бесконечности.

Дэ большое от эф равен отрезку от минус четырех до двух;

Е большое от эф равно отрезку от минус одного до двух;

Найтиобласть определения и область значений функции.

Дэ большое от эф равен интервалу от минус двух до пяти;

Е большое от эф равно отрезку от минус двух до трех;

Найтиобласть определения и область значений функции.

Дэ большое от эф равен отрезку от минус четырех до трех;

Е большое от эф равно отрезку от минус пяти до нуля;



Статьи по теме: