На чем основан ферментативный катализ? Ферменты,понятие. Сходства в действии ферментов и неорганических катализаторов. Общие свойства ферментов

Афанасьев Илья

Катализаторы и ферменты - вещества ускоряющие химические процессы, но сами при этом не расходуются.

Скачать:

Предварительный просмотр:

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Сравнение неорганических катализаторов и биологических ферментов Презентацию подготовил Ученик 10В класса МАОУ «Лицей №131» Афанасьев Илья Учитель: Сафонова Эльфия Рустямовна

С чего начать? Академик Георгий Константинович Боресков,советский химик и инженер, однажды в полушуточном стиле описал, что было бы, если бы на Земле вдруг исчезли все катализаторы, суть описания сводилась к тому, что наша планета скоро стала бы безжизненной пустыней, омываемой океаном слабой азотной кислоты .

Но о каких именно катализаторах говорил Академик Боресков? Ведь наравне с неорганическими катализаторами, в химии используются и биологические ферменты, без которых существование нашего организма было бы невозможным. Давайте узнаем, что из себя представляют ферменты и неорганические катализаторы, и в чем их отличия Палладий-один из часто используемых катализаторов Биологические Ферменты

Ферменты Ферменты - биологические катализаторы белковой природы. Термин фермент (от лат. fermentum - закваска) был предложен в начале XVII в. голландским ученым Ван Гельмонтом для веществ, влияющих на спиртовое брожение.

История открытия ферментов Человек, на протяжении жизни, замечал, что что-то какие-то вещества оказывают влияние на производство хлеба, создания вина и молочных изделий. Но только в 1833 году из прорастающих зерен ячменя было выделено вещество, осуществляющее превращение крахмала в сахар и впоследстивии именуем амилазой. Но только в конце 19 века было доказано,что при растирании дрожжевых клеток образуется сок, который обеспечивает процесс спиртового брожения. Амила́за (др.-греч. άμυλον - крахмал

Функции ферментов Ферменты участвуют в осуществлении всех процессов обмена веществ и в реализации генетической информации возможность. Возможность быстрого переваривания продуктов в живом организме осуществляется благодаря им Ферменты выделяют из легких углекислый газ Повышают уровень выносливости организма Поддерживают работу иммунной системы для борьбы с инфекциями Именно ферменты осуществляют поиск раковых клеток в организме, впоследствии уничтожая их.

Химические свойства ферментов По химическим свойствам ферменты являются амфотерными электролитами. Они обладают высокой молекулярной массой(48000 Д= 7.970544000006 x 1 0 ^ 23 кг) Они очень видоспецифичны (для каждого органа может быть свой фермент Из этого пункта следует, что для каждого органа требуется своя температура, кислотность, давление и т.д

Примеры реакций с участием ферментов Реакции брожения глюкозы с использованием различных ферментов, в результате которой одна молекула глюкозы преобразуется в 2 молекулы этанола и в 2 молекулы углекислого газа.

Н.Клеман, Ш.Дезорм (1806 г.) Оксиды азота – агенты, способные окисляться кислородом воздуха и передавать кислород сернистому газу Неогранические катализаторы

К.Кирхгоф (1811 г.) Работы Клемана, Дезорма и Кирхгофа инициировали поиск таких уникальных веществ. За 20 лет было найдено множество реакций:

Механизм Катализатора

Универсальные катализаторы Никель Ренея Никель Ренея, иначе «скелетный никель» - твёрдый микрокристаллический пористый никелевый катализатор.Представляет собой серый высокодисперсный порошок (размер частиц обычно 400-800 нм), содержащий, помимо никеля, некоторое количество алюминия (до 15 масс.%) и насыщенный водородом (до 33 ат.%). Никель Ренея широко применяется как катализатор разнообразных процессов гидрирования или восстановления водородом органических соединений (например, гидрирования аренов, алкенов, растительных масел и т. п.). Ускоряет также и некоторые процессы окисления кислородом воздуха. Получают никель Ренея сплавлением при 1200 °C никеля с алюминием (20-50 % Ni ; иногда в сплав добавляются незначительные количества цинка или хрома), после чего размолотый сплав для удаления алюминия обрабатывают горячим раствором гидроксида натрия с концентрацией 10 - 35 %; остаток промывают водой в атмосфере водорода. Лежащий в основе приготовления никеля Ренея принцип используется и для получения каталитически активных форм других металлов - кобальта, меди, железа и т. д.

Универсальные Катализаторы Палладий Палладий - переходный металл серебристо-белого цвета с гранецентрированной кубической решёткой типа Cu Палладий часто применяется как катализатор, в основном, в процессе гидрогенизации жиров и крекинге нефти. Хлорид палладия используется как катализатор и для обнаружения микроколичеств угарного газа в воздухе или газовых смесях

Универсальные катализаторы Платина Платина, особенно в мелкодисперсном состоянии, является очень активным катализатором многих химических реакций, в том числе используемых в промышленных масштабах. Например, платина катализирует реакцию присоединения водорода к ароматическим соединениям даже при комнатной температуре и атмосферном давлении водорода. Ещё в 1821 немецкий химик И. В. Дёберейнер обнаружил, что платиновая чернь способствует протеканию ряда химических реакций; при этом сама платина не претерпевала изменений. Так, платиновая чернь окисляла пары винного спирта до уксусной кислоты уже при обычной температуре. Через два года Дёберейнер открыл способность губчатой платины при комнатной температуре воспламенять водород. Если смесь водорода и кислорода (гремучий газ) ввести в соприкосновение с платиновой чернью или с губчатой платиной, то сначала идет сравнительно спокойная реакция горения. Но так как эта реакция сопровождается выделением большого количества теплоты, платиновая губка раскаляется, и гремучий газ взрывается. На основании своего открытия Дёберейнер сконструировал «водородное огниво» - прибор, широко применявшийся для получения огня до изобретения спичек.

Сравнение Неорганических Катализаторов и Биологических ферментов Общее между ферментами и неорганическими катализаторами: 1. Увеличивают скорость химических реакций, при этом сами не расходуются. 2. Ферменты и неорганические катализаторы ускоряют энергетически возможные реакции. 3. Энергия химической системы остается постоянной. 4. В ходе катализа направление реакции не изменяется.

Ферменты обладают конформационной лабильностью - способностью к небольшим изменениям своей структуры за счет разрыва и образования новых слабых связей, не обладают неорганические катализаторы

Сравнение Неорганических Катализаторов и Биологических ферментов Признаки Сравнения Неорганические катализаторы Ферменты Химическая природа Низкомолекулярные вещества, образованные одним или несколькими элементами Белки-высокомолекулярные полимеры Видоспецифичность Универсальные катализаторы На каждую реакцию нужен свой фермент Кислотная среда Сильнокислая или щелочная У каждого органа своя кислотная среда Интервалы t Очень широкие 35-42 градуса Цельсия,затем денатурируют Увеличение скорости реакций От 10 ^2 до 10^6 раз От 10^8 до 10^12 раз Стабильность Могут быть побочные эффекты(70%) Почти 100% выход продуктов.

П ерекись водорода без присутствия катализаторов разлагается довольно медленно. При наличии неорганического катализатора (обычно солей железа) реакция несколько убыстряется. А при добавлении фермента каталазы пероксид разлагается с невообразимой скоростью. MnO2+H2O2=>O2+H2O+MnO

В отличие от катализаторов неорганической природы ферменты "работают" в "мягких" условиях: при атмосферном давлении, при температуре 30 - 40°С, при значении рН-среды близком к нейтральному. Скорость ферментативного катализа намного выше, чем небиологического. Единственная молекула фермента может катализировать от тысячи до миллиона молекул субстрата за 1 минуту. Такая скорость недостижима для катализаторов неорганической природы.

Итог Несмотря на то, что и ферменты, и неорганические катализаторы используются для одной цели-ускорять вещества, они обладают довольно разными свойствами. Но не стоит забывать, что без них люди не смогли достичь успехов не только в химии, но и в других науках. Не нужно искать золотую середину в поиске идеального, нужно использовать их для своего случае, где смогут себя проявить по максимуму.

Основу всех жизненных процессов составляют тысячи химических реакций, катализируемых ферментами. Значение ферментов точно и образно определил И.П.Павлов, назвав их "возбудителями жизни" . Нарушения в работе ферментов ведут к возникновению тяжелых заболеваний – фенилкетонурия , гликогенозы , галактоземия , тирозинемия или существенному снижению качества жизни – дислипопротеинемии , гемофилия.

Известно, что для осуществления химической реакции необходимо, чтобы реагирующие вещества имели суммарную энергию выше, чем величина, называемая энергетическим барьером реакции. Для характеристики величины энергетического барьера Аррениус ввел понятие энергии активации . Преодоление энергии активации в химической реакции достигается либо увеличением энергии взаимодействующих молекул, например нагреванием, облучением, повышением давления, либо снижением требуемых для реакции затрат энергии (т.е. энергии активации) при помощи катализаторов.

Величина энергии активации с ферментом и без него

По своей функции ферменты являются биологическими катализаторами. Сущность действия ферментов, так же как неорганических катализаторов, заключается:

  • в активации молекул реагирующих веществ,
  • в разбиении реакции на несколько стадий, энергетический барьер каждой из которых ниже такового общей реакции.

Однако энергетически невозможные реакции ферменты катализировать не будут, они ускоряют только те реакции, которые могут идти в данных условиях.

Сходство и отличия ферментов и неорганических катализаторов

Ускорение реакций при помощи ферментов весьма значительно, например:

А. Уреаза ускоряет реакцию разложения вполне устойчивой мочевины до аммиака и воды в 10 13 раз, поэтому при инфекции мочевых путей (появление бактериальной уреазы) моча приобретает аммиачный запах.

Б. Рассмотрим реакцию разложения пероксида водорода:

2Н 2 О 2 → О 2 + 2Н 2 О

Если скорость реакции без катализатора принять за единицу, то в присутствии платиновой черни скорость реакции увеличивается в 2×10 4 раза и энергия активации снижается с 18 до 12 ккал/моль, в присутствии фермента каталазы скорость реакции возрастает в 2×10 11 раза с энергией активации 2 ккал/моль.

Сравнение каталитического действия ферментов и неорганических катализаторов

Сходство ферментов и неорганических катализаторов Отличие ферментов от неорганических катализаторов
1. Ускоряют только термодинамически возможные реакции 1. Для ферментов характерна высокая специфичность: субстратная специфичность : ▪ абсолютная (1 фермент - 1 субстрат), ▪ групповая (1 фермент – несколько похожих субстратов) ▪ стереоспецифичность (ферменты работают с субстратами только определенного стереоряда L или D). каталитическая специфичность (ферменты катализируют реакции преимущественно одного из типов химических реакций – гидролиза, окисления-восстановления и др)
2. Не изменяют состояние равновесия реакций, а только ускоряют его достижение. 2. Высокая эффективность действия: ферменты ускоряют реакции в10 8 -10 14 раз.
3. В реакциях не расходуются 3. Ферменты действуют только в мягких условиях (t = 36-37ºС, рН ~ 7,4, атмосферное давление), т.к. они обладают конформационной лабильностью – способностью к изменению конформации молекулы под действием денатурирующих агентов (рН, Т, химические вещества).
4. Действуют в малых количествах 4. В организме действие ферментов регулируется специфически (катализаторы только неспецифически)
5. Чувствительны к активаторам и ингибиторам 5. Широкий диапазон действия (большинство процессов в организме катализируют ферменты).

В настоящее время учение о ферментах является центральным в биохимии и выделено в самостоятельную науку – энзимологию . Достижения энзимологии используются в медицине для диагностики и лечения, для изучения механизмов патологии, а, кроме того, и в других областях, например, в сельском хозяйстве, пищевой промышленности, химической, фармацевтической и др.

Строение ферментов

Метаболит - вещество, которое участвует в метаболических процессах.

Субстрат – вещество, которое вступает в химическую реакцию.

Продукт – вещество, которое образуется в ходе химической реакции.

Ферменты характеризуются наличием специфических центров катализа.

Активный центр (Ац) – это часть молекулы фермента, которая специфически взаимодействует с субстратом и принимает непосредственное участие в катализе. Ац, как правило, находиться в нише (кармане). В Ац можно выделить два участка: участок связывания субстрата – субстратный участок (контактная площадка) и собственно каталитический центр .

Большинство субстратов образует, по меньшей мере, три связи с ферментом, благодаря чему молекула субстрата присоединяется к активному центру единственно возможным способом, что обеспечивает субстратную специфичность фермента. Каталитический центр обеспечивает выбор пути химического превращения и каталитическую специфичность фермента.

У группы регуляторных ферментов есть аллостерические центры , которые находятся за пределами активного центра. К аллостерическому центру могут присоединяться “+” или “–“ модуляторы, регулирующие активность ферментов.

Различают ферменты простые, состоят только из аминокислот, и сложные, включают также низкомолекулярные органические соединения небелковой природы (коферменты) и (или) ионы металлов (кофакторы).

Коферменты – это органические вещества небелковой природы, принимающие участие в катализе в составе каталитического участка активного центра. В этом случае белковую составляющую называют апоферментом , а каталитически активную форму сложного белка – холоферментом . Таким образом: холофермент = апофермент + кофермент.

В качестве коферментов функционируют:

· нуклеотиды,

· коэнзим Q,

· Глутатион

· производные водорастворимых витаминов:

Кофермент, который присоединен к белковой части ковалентными связями называется простетической группой . Это, например, FAD, FMN, биотин, липоевая кислота. Простетическая группа не отделяется от белковой части. Кофермент, который присоединен к белковой части нековалентными связями называется косубстрат . Это, например, НАД + , НАДФ + . Косубстрат присоединяется к ферменту в момент реакции.

Кофакторы ферментов – это ионы металлов, необходимые для проявления каталитической активности многих ферментов. В качестве кофакторов выступают ионы калия, магния, кальция, цинка, меди, железа и т.д. Их роль разнообразна, они стабилизируют молекулы субстрата, активный центр фермента, его третичную и четвертичную структуру, обеспечивают связывание субстрата и катализ. Например, АТФ присоединяется к киназам только вместе с Mg 2+ .

Изоферменты – это множественные формы одного фермента, катализирующие одну и ту же реакцию, но отличающие по физическим и химическим свойствам (сродству к субстрату, максимальной скорости катализируемой реакции, электрофоретической подвижности, разной чувствительности к ингибиторам и активаторам, оптимуму рН и термостабильности). Изоферменты имеют четвертичную структуру, которая образована четным количеством субъединиц (2, 4, 6 и т.д.). Изоформы фермента образуются в результате различных комбинаций субъединиц.

В качестве примера можно рассмотреть лактатдегидрогеназу (ЛДГ), фермент, который катализирует обратимую реакцию:

НАДН 2 НАД +

пируват ← ЛДГ → лактат

ЛДГ существует в виде 5 изоформ, каждая из которых состоит из 4-х протомеров (субъединиц) 2 типов М (muscle) и Н (heart). Синтез протомеров М и Н типа кодируется двумя разными генетическими локусами. Изоферменты ЛДГ различаются на уровне четвертичной структуры: ЛДГ 1 (НННН), ЛДГ 2 (НННМ), ЛДГ 3 (ННММ), ЛДГ 4 (НМММ), ЛДГ 5 (ММММ).

Полипептидные цепи Н и М типа имеют одинаковую молекулярную массу, но в составе первых преобладают карбоновые аминокислоты, последних – диаминокислоты, поэтому они несут разный заряд и могут быть разделены методом электрофореза.

Кислородный обмен в тканях влияет на изоферментный состав ЛДГ. Где доминирует аэробный обмен, там преобладают ЛДГ 1 , ЛДГ 2 (миокард, надпочечники), где анаэробный обмен - ЛДГ 4 , ЛДГ 5 (скелетная мускулатура, печень). В процессе индивидуального развития организма в тканях происходит изменение содержания кислорода и изоформ ЛДГ. У зародыша преобладают ЛДГ 4 , ЛДГ 5 . После рождения в некоторых тканях происходит увеличение содержания ЛДГ 1 , ЛДГ 2 .

Существование изоформ повышает адаптационную возможность тканей, органов, организма в целом к меняющимся условиям. По изменению изоферментного состава оценивают метаболическое состояние органов и тканей.

Локализация и компартментализация ферментов в клетке и тканях .

Ферменты по локализации делят на 3 группы:

I – общие ферменты (универсальные)

II - органоспецифические

III - органеллоспецифические

Общие ферменты обнаруживаются практически во всех клетках, обеспечивают жизнедеятельность клетки, катализируя реакции биосинтеза белка и нуклеиновых кислот, образование биомембран и основных клеточных органелл, энергообмен. Общие ферменты разных тканей и органов, тем не менее, отличаются по активности.

Органоспецифичные ферменты свойственны только определенному органу или ткани. Например: Для печени – аргиназа. Для почек и костной ткани – щелочная фосфатаза. Для предстательной железы – КФ (кислая фосфатаза). Для поджелудочной железы – α-амилаза, липаза. Для миокарда – КФК (креатинфосфокиназа), ЛДГ, АсТ и т.д.

Внутри клеток ферменты также распределены неравномерно. Одни ферменты находятся в коллоидно-растворенном состоянии в цитозоле, другие вмонтированы в клеточных органеллах (структурированное состояние).

Органеллоспецифические ферменты . Разным органеллам присущ специфический набор ферментов, который определяет их функции.

Органеллоспецифические ферменты это маркеры внутриклеточных образований, органелл:

1) Клеточная мембрана: ЩФ (щелочная фосфатаза), АЦ (аденилатциклаза), К-Nа-АТФаза

2) Цитоплазма: ферменты гликолиза, пентозного цикла.

3) ЭПР: ферменты обеспечивающие гидроксилирование (микросомальное окисление).

4) Рибосомы: ферменты обеспечивающие синтез белка.

5) Лизосомы: содержат гидролитические ферменты, КФ (кислая фосфатаза).

6) Митохондрии: ферменты окислительного фосфорилирования, ЦТК (цитохромоксидаза, сукцинатдегидрогеназа), β-окисления жирных кислот.

7) Ядро клетки: ферменты обеспечивающие синтез РНК, ДНК (РНК-полимераза, НАД-синтетаза).

8) Ядрышко: ДНК-зависимая-РНК-полимераза

В результате в клетке образуются отсеки (компартменты), которые отличаются набором ферментов и метаболизмом (компартментализация метаболизма).

Среди ферментов выделяется немногочисленная группа регуляторных ферментов, которые способны отвечать на специфические регуляторные воздействия изменением активности. Эти ферменты имеются во всех органах и тканях и локализуются в начале или в местах разветвления метаболических путей.

Строгая локализация всех ферментов закодирована в генах.

Определение в плазме или сыворотке крови активности органо- органеллоспецифических ферментов широко используется в клинической диагностике.

Сходство

1. Катализируют только энергетически возможные реакции. 2. Не изменяют направления реакции. 3. Ускоряют наступление равновесия реакции, но не сдвигают его. 4. Не расходуются в процессе реакции.

1. Скорость ферментативной реакции намного выше. 2. Высокая специфичность. 3. Мягкие условия работы (внутриклеточные). 4. Возможность регулирования скорости реакции. 5. Скорость ферментативной реакции пропорциональна количеству фермента.

Ферментативный катализ имеет свои особенности

Этапы катализа

В ферментативной реакции можно выделить следующие этапы:

1. Присоединение субстрата (S) к ферменту (E) с образованием фермент-субстратного комплекса (E-S).

2. Преобразование фермент-субстратного комплекса в один или несколько переходных комплексов (E-X) за одну или несколько стадий.

3. Превращение переходного комплекса в комплекс фермент-продукт (E-P).

4. Отделение конечных продуктов от фермента.

Механизмы катализа

Доноры

Акцепторы

СООН -NH 3 + -SH

СОО- -NH 2 -S-

1. Кислотно-основной катализ – в активном центре фермента находятся группы специфичных аминокислотных остатков, которые являются хорошими донорами или акцепторами протонов. Такие группы представляют собой мощные катализаторы многих органических реакций.

2. Ковалентный катализ – ферменты реагируют со своими субстратами, образуя при помощи ковалентных связей очень нестабильные фермент-субстратные комплексы, из которых в ходе внутримолекулярных перестроек образуются продукты реакции.

Типы ферментативных реакций

1. Тип "пинг-понг" – фермент сначала взаимодействует с субстратом А, отбирая у него какие либо химические группы и превращая в соответствующий продукт. Затем к ферменту присоединяется субстрат В, получающий эти химические группы. Примером являются реакции переноса аминогрупп от аминокислот на кетокислоты - трансаминирование.

Ферментативная реакция по типу "пинг-понг"

2. Тип последовательных реакций – к ферменту последовательно присоединяются субстраты А и В, образуя "тройной комплекс", после чего осуществляется катализ. Продукты реакции также последовательно отщепляются от фермента.

Ферментативная реакция по типу "последовательных реакций"

3. Тип случайных взаимодействий – субстраты А и В присоединяются к ферменту в любом порядке, неупорядоченно, и после катализа так же отщепляются.

Ферментативная реакция по типу "случайных взаимодействий"

Ферменты имеют белковую природу

Давно выяснено, что все ферменты являются белками и обладают всеми свойствами белков. Поэтому подобно белкам ферменты делятся на простые и сложные.

Простые ферменты состоят только из аминокислот – например, пепсин , трипсин , лизоцим .

Сложные ферменты (холоферменты) имеют в своем составе белковую часть, состоящую из аминокислот –апофермент , и небелковую часть – кофактор . Кофактор, в свою очередь, может называться коферментом или простетической группой. Примером могут быть сукцинатдегидрогеназа (содержит ФАД) (в цикле трикарбоновых кислот), аминотрансферазы (содержат пиридоксальфосфат) (функция), пероксидаза (содержит гем). Для осуществления катализа необходим полноценный комплекс апобелка и кофактора, по отдельности катализ они осуществить не могут.

Как многие белки, ферменты могут быть мономерами , т.е. состоят из одной субъединицы, и полимерами , состоящими из нескольких субъединиц.


Неорганические катализаторы практически не зависят от реакции среды.  

Неорганические катализаторы, как показывает опыт, могут отлично работать и при более высоких температурах - до нескольких сот градусов.  

От неорганических катализаторов ферменты отличаются рядом характерных особенностей. Прежде всего ферменты чрезвычайно эффективны и проявляют в миллионы и миллиарды раз более высокую каталитическую активность в условиях умеренной температуры (температура тела), нормального давления и в области близких к нейтральным значениям рН среды.  

Как и неорганические катализаторы, ферменты ускоряют только те реакции, которые протекают самопроизвольно, но с очень малыми скоростями.  


В отличие от неорганических катализаторов ферменты проявляют свою активность в строго определенном диапазоне значений рН среды. В табл. 43 приведены значения рН, при которых различные ферменты проявляют свою максимальную активность.  

В отличие от неорганических катализаторов ферменты проявляют свою активность в строго определенном диапазоне значений рН среды. В табл. 20 приведены значения рН, при которых различные ферменты проявляют свою максимальную активность.  

Ферменты отличаются от неорганических катализаторов колоссальной активностью, которая вместе с химической специфичностью составляет главную особенность ферментативного катализа. Абсолютная активность ферментов достигает огромных величин, которые на несколько порядков превышают даже самые производительные неорганические катализаторы.  

Ферменты значительно эффективнее обычных неорганических катализаторов. При ферментативном катализе реакции часто идут в 100 000 - 1 000 000 раз быстрее, чем при обычном катализе. Если бы реакции протекали медленнее, то жизнь была бы невозможна. Известно, например, что одна из основных реакций в нервной системе проходит всего за миллионные доли секунды.  

Если сравнить влияние органических и неорганических катализаторов, то первые при горении тротила были более эффективны в области низких давлений, а при горении нитрогуанидина - в области высоких. При горении ВВ с металлооргапическими солями в том случае, когда данный металл не является катализатором, преобладает ингибирующее действие органической части молекулы добавки, являющейся восстановителем.  

По сравнению с неорганическими катализаторами ферменты имеют значительно более сложное строение. Каждый фермент содержит белок, которым и обусловлена высокая специфичность биологических катализаторов. По своему строению ферменты подразделяются на два больших класса: однокомпонентные и двухкомпонентные. К однокомпонентным относятся ферменты, состоящие только из белковых тел, которые обладают каталитическими свойствами. У этих ферментов роль активных групп выполняют определенные химические группировки, входящие в состав белковой молекулы и получившие название активных центров.  

По сравнению с неорганическими катализаторами строение ферментов значительно более сложное.  

По сравнению с неорганическими катализаторами ферменты имеют значительно более сложное строение. Каждый фермент содержит белок, которым и обусловлена высокая специфичность биологических катализаторов. По своему строению ферменты подразделяются на два больших класса: однокомпонент-ные и двухкомпонентные. К однокомпонентным относятся ферменты, состоящие только из белковых тел, которые обладают каталитическими свойствами. У этих ферментов роль активных групп выполняют определенные химические группировки, входящие в состав белковой молекулы и получившие название активных центров.  



Статьи по теме: