Соответственные односторонние углы. Накрест лежащие

Которые лежат в одной плоскости и либо совпадают, либо не пересекаются. В некоторых школьных определениях совпадающие прямые не считаются параллельными, здесь такое определение не рассматривается.

Свойства

  1. Параллельность - бинарное отношение эквивалентности , поэтому разбивает всё множество прямых на классы параллельных между собой прямых.
  2. Через любую точку можно провести ровно одну прямую, параллельную данной. Это отличительное свойство евклидовой геометрии , в других геометриях число 1 заменено другими (в геометрии Лобачевского таких прямых минимум две)
  3. 2 параллельные прямые в пространстве лежат в одной плоскости.
  4. При пересечении 2 параллельных прямых третьей, называемой секущей :
    1. Секущая обязательно пересекает обе прямые.
    2. При пересечении образуется 8 углов, некоторые характерные пары которых имеют особые названия и свойства:
      1. Накрест лежащие углы равны.
      2. Соответственные углы равны.
      3. Односторонние углы в сумме составляют 180°.

В геометрии Лобачевского

В геометрии Лобачевского в плоскости через точку C вне данной прямой A B проходит бесконечное множество прямых, не пересекающих A B . Из них параллельными к A B называются только две. Прямая C E называется равнобежной (параллельной) прямой A B в направлении от A к B , если:

  1. точки B и E лежат по одну сторону от прямой A C ;
  2. прямая C E не пересекает прямую A B , но всякий луч, проходящий внутри угла A C E , пересекает луч A B .

Аналогично определяется прямая, равнобежная A B в направлении от B к A .

Все остальные прямые, не пересекающие данную, называются ультрапараллельными или расходящимися .

См. также

Wikimedia Foundation . 2010 .

Смотреть что такое "Накрест лежащие" в других словарях:

    Эта теорема о параллельных прямых. Об угле, опирающемся на диаметр, см. другую теорему. Теорема Фалеса одна из теорем планиметрии. Если на одной из двух прямых отложить последовательно несколько равных отрезков и через их концы провести… … Википедия

    Русский орден Св. Анны, учрежден был владетельным герцогом Шлезвиг Гольштинским Карлом Фредериком в 1736 г. в честь супруги своей цесаревны Анны Петровны (дочери Петра Великого) и причислен к русским орденам императором Петром III. Орден Св. Анны …

    Для испытания охотничьих ружейных стволов учреждены во всех западно европейских государствах. Наиболее известные из них находятся в Лондоне, Бирмингеме, Люттихе, Зуле и Сент Этьене. По новым, недавно введенным в Англии правилам каждый ствол… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

    Так называется один из способов количественного определения содержания веществ в растворах; методы К. применимы к количественному определению всех тех веществ, которые дают окрашенные растворы, или могут быть, с помощью какой либо реакции,… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

    Жалуемый за особые заслуги или отличие знак, установленной формы, носимый на ленте, цепи или иным образом. Имеются указания, что в восточной римской империи еще со времен Константина Великого императоры установляли кавалерские товарищества или… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

    Жалуемый за особые заслуги или отличие знак, установленной формы, носимый на ленте, цепи или иным образом. Имеются указания, что в вост. римской империи еще со времен Константина Вел., императоры установляли кавалерские товарищества или ордена,… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

    Второе семейство этого отряда состоит из одного рода и вида моржа (Odobenus rosmarus)*, самого огромного из всех ластоногих. * Моржи имеют в анатомии черты сходства с ушастыми тюленями и также происходят от примитивного медведеобразного… … Жизнь животных

    - (др. греч. παραλληλόγραμμον от παράλληλος параллельный и γραμμή линия) это четырёхуго … Википедия

    Пересечения прямых (анимация) Аксиома параллельности Евклида, или пятый постулат одна из аксиом, лежащ … Википедия

    Пересечения прямых (анимация) Аксиома параллельности Евклида, или пятый постулат одна из аксиом, лежащих в основании классической планиметрии. Впервые приведена в «Началах» Евклида : И если прямая, падающая на две прямые, образует внутренние и … Википедия

Пусть прямая с пересекает параллельные прямые а и b. При этом образуется восемь углов. Углы при параллельных прямых и секущей так часто используются в задачах, что в геометрии им даны специальные названия.

Углы 1 и 3 - вертикальные. Очевидно, вертикальные углы равны, то есть
∠1 = ∠3,
∠2 = ∠4.

Конечно, углы 5 и 7, 6 и 8 - тоже вертикальные.

Углы 1 и 2 - смежные , это мы уже знаем. Сумма смежных углов равна 180º.

Углы 3 и 5 (а также 2 и 8, 1 и 7, 4 и 6) - накрест лежащие. Накрест лежащие углы равны.
∠3 = ∠5,
∠1 = ∠7,
∠2 = ∠8,
∠4 = ∠6.

Углы 1 и 6 - односторонние. Они лежат по одну сторону от всей «конструкции». Углы 4 и 7 - тоже односторонние. Сумма односторонних углов равна180° , то есть
∠1 + ∠6 = 180°,
∠4 + ∠7 = 180°.

Углы 2 и 6 (а также 3 и 7, 1 и 5, 4 и 8) называются соответственными .

Соответственные углы равны , то есть
∠2 = ∠6,
∠3 = ∠7.

Углы 3 и 5 (а также 2 и 8, 1 и 7, 4 и 6) называют накрест лежащими .

Накрест лежащие углы равны , то есть
∠3 = ∠5,
∠1 = ∠7,
∠2 = ∠8,
∠4 = ∠6.

Чтобы применять все эти факты в решении задач ЕГЭ, надо научиться видеть их на чертеже. Например, глядя на параллелограмм или трапецию, можно увидеть пару параллельных прямых и секущую, а также односторонние углы. Проведя диагональ параллелограмма, видим накрест лежащие углы. Это - один из шагов, из которых и состоит решение.

1. Биссектриса тупого угла параллелограмма делит противоположную сторону в отношении 3:4, считая от вершины тупого угла. Найдите большую сторону параллелограмма, если его периметр равен 88.

Напомним, что биссектриса угла - это луч, выходящий из вершины угла и делящий угол пополам.

Пусть ВМ - биссектриса тупого угла В. По условию, отрезки МD и АВ равны 3х и 4х соответственно.

Рассмотрим углы СВМ и ВМА. Поскольку АD и ВС параллельны, ВМ - секущая, углы СВМ и ВМА являются накрест лежащими. Мы знаем, что накрест лежащие углы равны. Значит, треугольник АВМ - равнобедренный, следовательно, АВ = АМ = 4х.

Периметр параллелограмма - это сумма всех его сторон, то есть
7х + 7х + 4х + 4х = 88.
Отсюда х = 4, 7х = 28.

2. Диагональ параллелограмма образует с двумя его сторонами углы 26º и 34º. Найдите больший угол параллелограмма. Ответ дайте в градусах.

Нарисуйте параллелограмм и его диагональ. Заметив на чертеже накрест лежащие углы и односторонние углы, вы легко получите ответ: 120º.

3. Чему равен больший угол равнобедренной трапеции, если известно, что разность противолежащих углов равна 50º? Ответ дайте в градусах.


Мы знаем, чторавнобедренной (или равнобокой) называется трапеция, у которой боковые стороны равны. Следовательно, равны углы при верхнем основании, а также углы при нижнем основании.

Давайте посмотрим на чертеж. По условию, α - β = 50°, то есть α = β + 50°.

Углы α и β - односторонние при параллельных прямых и секущей, следовательно,
α + β = 180°.

Итак, 2β + 50° = 180°
β = 65°, тогда α = 115°.

Ответ: 115.

EGE-Study » Методические материалы » Геометрия: с нуля до C4 » Высоты, медианы, биссектрисы треугольника

Признаки параллельности двух прямых

Теорема 1. Если при пересечении двух прямых секущей:

    накрест лежащие углы равны, или

    соответственные углы равны, или

    сумма односторонних углов равна 180°, то

прямые параллельны (рис.1).

Доказательство. Ограничимся доказательством случая 1.

Пусть при пересечении прямых а и b секущей АВ накрест лежащие углы равны. Например, ∠ 4 = ∠ 6. Докажем, что а || b.

Предположим, что прямые а и b не параллельны. Тогда они пересекаются в некоторой точке М и, следовательно, один из углов 4 или 6 будет внешним углом треугольника АВМ. Пусть для определенности ∠ 4 - внешний угол треугольника АВМ, а ∠ 6 - внутренний. Из теоремы о внешнем угле треугольника следует, что ∠ 4 больше ∠ 6, а это противоречит условию, значит, прямые а и 6 не могут пересекаться, поэтому они параллельны.

Следствие 1 . Две различные прямые на плоскости, перпендикулярные одной и той же прямой, параллельны (рис.2).

Замечание. Способ, которым мы только что доказали случай 1 теоремы 1, называется методом доказательства от противного или приведением к нелепости. Первое название этот способ получил потому, что в начале рассуждения делается предположение, противное (противоположное) тому, что требуется доказать. Приведением к нелепости он называется вследствие того, что, рассуждая на основании сделанного предположения, мы приходим к нелепому выводу (к абсурду). Получение такого вывода заставляет нас отвергнуть сделанное вначале допущение и принять то, которое требовалось доказать.

Задача 1. Построить прямую, проходящую через данную точку М и параллельную данной прямой а, не проходящей через точку М.

Решение. Проводим через точку М прямую р перпендикулярно прямой а (рис. 3).

Затем проводим через точку М прямую b перпендикулярно прямой р. Прямая b параллельна прямой а согласно следствию из теоремы 1.

Из рассмотренной задачи следует важный вывод:
через точку, не лежащую на данной прямой, всегда можно провести прямую, параллельную данной .

Основное свойство параллельных прямых состоит в следующем.

Аксиома параллельных прямых. Через данную точку, не лежащую на данной прямой, проходит только одна прямая, параллельная данной.

Рассмотрим некоторые свойства параллельных прямых, которые следуют из этой аксиомы.

1) Если прямая пересекает одну из двух параллельных прямых, то она пересекает и другую (рис.4).

2) Если две различные прямые параллельны третьей прямой, то они параллельны (рис.5).

Справедлива и следующая теорема.

Теорема 2. Если две параллельные прямые пересечены секущей, то:

    накрест лежащие углы равны;

    соответственные углы равны;

    сумма односторонних углов равна 180°.

Следствие 2. Если прямая перпендикулярна к одной из двух параллельных прямых, то она перпендикулярна и к другой (см. рис.2).

Замечание. Теорема 2 называется обратной теореме 1. Заключение теоремы 1 является условием теоремы 2. А условие теоремы 1 является заключением теоремы 2. Не всякая теорема имеет обратную, т. е. если данная теорема верна, то обратная теорема может быть неверна.

Поясним это на примере теоремы о вертикальных углах. Эту теорему можно сформулировать так: если два угла вертикальные, то они равны. Обратная ей теорема была бы такой: если два угла равны, то они вертикальные. А это, конечно, неверно. Два равных угла вовсе не обязаны быть вертикальными.

Пример 1. Две параллельные прямые пересечены третьей. Известно, что разность двух внутренних односторонних углов равна 30°. Найти эти углы.

Решение. Пусть условию отвечает рисунок 6.



Статьи по теме: