Деление на ноль: почему нельзя

Деление на ноль в математике - деление, при котором делитель равен нулю. Такое деление может быть формально записано ⁄ 0 , где - это делимое.

В обычной арифметике (с вещественными числами) данное выражение не имеет смысла, так как:

  • при ≠ 0 не существует числа, которое при умножении на 0 даёт, поэтому ни одно число не может быть принято за частное ⁄ 0 ;
  • при = 0 деление на ноль также не определено, поскольку любое число при умножении на 0 даёт 0 и может быть принято за частное 0 ⁄ 0 .

Исторически одна из первых ссылок на математическую невозможность присвоения значения ⁄ 0 содержится в критике Джорджа Берклиисчисления бесконечно малых.

Логические ошибки

Поскольку при умножении любого числа на ноль в результате мы всегда получаем ноль, при делении обеих частей выражения × 0 = × 0, верного вне зависимости от значения и, на 0 получаем неверное в случае произвольно заданных переменных выражение = . Поскольку ноль может быть задан не явно, но в виде достаточно сложного математического выражения, к примеру в форме разности двух значений, сводимых друг к другу путём алгебраических преобразований, такое деление может быть достаточно неочевидной ошибкой. Незаметное внесение такого деления в процесс доказательства с целью показать идентичность заведомо разных величин, тем самым доказывая любое абсурдное утверждение, является одной из разновидностей математического софизма .

В информатике

В программировании, в зависимости от языка программирования, типа данных и значения делимого, попытка деления на ноль может приводить к различным последствиям. Принципиально различны последствия деления на ноль в целой и вещественной арифметике:

  • Попытка целочисленного деления на ноль всегда является критической ошибкой, делающей невозможным дальнейшее исполнение программы. Она приводит либо к генерации исключения (которое программа может обработать сама, избежав тем самым аварийной остановки), либо к немедленной остановке программы с выдачей сообщения о неисправимой ошибке и, возможно, содержимого стека вызовов. В некоторых языках программирования, например, в Go, целочисленное деление на нулевую константу считается синтаксической ошибкой и приводит к аварийному прекращению компиляции программы.
  • В вещественной арифметике последствия могут быть различным в разных языках:
  • генерация исключения или остановка программы, как и при целочисленном делении;
  • получение в результате операции специального нечислового значения. Вычисления при этом не прерываются, а их результат впоследствии может быть интерпретирован самой программой или пользователем как осмысленное значение или как свидетельство некорректности вычислений. Широко используется принцип, согласно которому при делении вида ⁄ 0 , где ≠ 0 - число с плавающей запятой, результат оказывается равен положительной или отрицательной (в зависимости от знака делимого) бесконечности - или, а при = 0 в результате получается специальное значению NaN (сокр. от англ. not a number - «не число»). Такой подход принят в стандарте IEEE 754, который поддерживается многими современными языками программирования.

Случайное деление на ноль в компьютерной программе порой становится причиной дорогих или опасных сбоев в работе управляемого программой оборудования. К примеру, 21 сентября 1997 года в результате деления на ноль в компьютеризированной управляющей системе крейсера USS Yorktown (CG-48) Военно-морского флота США произошло отключение всего электронного оборудования в системе, в результате чего силовая установка корабля прекратила свою работу .

См. также

Примечания

Функция = 1 ⁄ . Когда стремится к нулю справа, стремится к бесконеч­ности; когда стремится к нулю слева, стремится к минус бесконечности

Если на обычном калькуляторе поделить какое-либо число на ноль, то он вам выдаст букву Е или слово Error, то есть «ошибка».

Калькулятор компьютера в аналогичном случае пишет (в Windows XP) : «Деление на нуль запрещено».

Всё согласуется с известным со школы правилом, что на ноль делить нельзя.

Разберёмся, почему.

Деление — это математическая операция, обратная умножению. Деление определяется через умножение.

Поделить число a (делимое, например 8) на число b (делитель, например число 2) — значит найти такое число x (частное), при умножении которого на делитель b получается делимое a (4 · 2 = 8), то есть a разделить на b значит решить уравнение x · b = a.

Уравнение a: b = x равносильно уравнению x · b = a.

Мы заменяем деление умножением: вместо 8: 2 = x пишем x · 2 = 8.

8: 2 = 4 равносильно 4 · 2 = 8

18: 3 = 6 равносильно 6 · 3 = 18

20: 2 = 10 равносильно 10 · 2 = 20

Результат деления всегда можно проверить умножением. Результатом умножения делителя на частное должно быть делимое.

Аналогично попробуем поделить на ноль.

Например, 6: 0 = … Нужно найти такое число, которое при умножении на 0 даст 6. Но мы знаем, что при умножении на ноль всегда получается ноль. Не существует числа, которое при умножении на ноль дало бы что-то другое кроме нуля.

Когда говорят, что на ноль делить нельзя или запрещено, то имеется в виду, что не существует числа, соответствующего результату такого деления (делить-то на ноль можно, разделить — нельзя:)).

Зачем в школе говорят, что на ноль делить нельзя?

Поэтому в определении операции деления a на b сразу подчёркивается, что b ≠ 0.

Если всё выше написанное вам показалось слишком сложным, то совсем на пальцах: Разделить 8 на 2 означает узнать, сколько нужно взять двоек, чтобы получилось 8 (ответ: 4). Поделить 18 на 3 означает узнать, сколько нужно взять троек, чтобы получить 18 (ответ: 6).

Поделить 6 на ноль означает узнать, сколько нужно взять нулей, чтобы получить 6. Сколько ни бери нулей, всё равно получится ноль, но никогда не получится 6, т. е. деление на ноль не определено.

Интересный результат получается, если попробовать поделить число на ноль на калькуляторе андроида. На экране отобразится ∞ (бесконечность) (или — ∞, если делите отрицательное число). Данный результат является неверным, т. к. не существует числа ∞. По-видимому, программисты спутали совершенно разные операции — деление чисел и нахождение предела числовой последовательности n/x, где x → 0. При делении же нуля на нуль будет написано NaN (Not a Number — Не число).

«Делить на ноль нельзя!» — большинство школьников заучивает это правило наизусть, не задаваясь вопросами. Все дети знают, что такое «нельзя» и что будет, если в ответ на него спросить: «Почему?» А ведь на самом деле очень интересно и важно знать, почему же нельзя.

Всё дело в том, что четыре действия арифметики — сложение, вычитание, умножение и деление — на самом деле неравноправны. Математики признают полноценными только два из них — сложение и умножение. Эти операции и их свойства включаются в само определение понятия числа. Все остальные действия строятся тем или иным образом из этих двух.

Рассмотрим, например, вычитание. Что значит 5 - 3 ? Школьник ответит на это просто: надо взять пять предметов, отнять (убрать) три из них и посмотреть, сколько останется. Но вот математики смотрят на эту задачу совсем по-другому. Нет никакого вычитания, есть только сложение. Поэтому запись 5 - 3 означает такое число, которое при сложении с числом 3 даст число 5 . То есть 5 - 3 — это просто сокращенная запись уравнения: x + 3 = 5 . В этом уравнении нет никакого вычитания.

Деление на ноль

Есть только задача — найти подходящее число.

Точно так же обстоит дело с умножением и делением. Запись 8: 4 можно понимать как результат разделения восьми предметов по четырем равным кучкам. Но в действительности это просто сокращенная форма записи уравнения 4 · x = 8 .

Вот тут-то и становится ясно, почему нельзя (а точнее невозможно) делить на ноль. Запись 5: 0 — это сокращение от 0 · x = 5 . То есть это задание найти такое число, которое при умножении на 0 даст 5 . Но мы знаем, что при умножении на 0 всегда получается 0 . Это неотъемлемое свойство нуля, строго говоря, часть его определения.

Такого числа, которое при умножении на 0 даст что-то кроме нуля, просто не существует. То есть наша задача не имеет решения. (Да, такое бывает, не у всякой задачи есть решение.) А значит, записи 5: 0 не соответствует никакого конкретного числа, и она просто ничего не обозначает и потому не имеет смысла. Бессмысленность этой записи кратко выражают, говоря, что на ноль делить нельзя.

Самые внимательные читатели в этом месте непременно спросят: а можно ли ноль делить на ноль?

В самом деле, ведь уравнение 0 · x = 0 благополучно решается. Например, можно взять x = 0 , и тогда получаем 0 · 0 = 0 . Выходит, 0: 0=0 ? Но не будем спешить. Попробуем взять x = 1 . Получим 0 · 1 = 0 . Правильно? Значит, 0: 0 = 1 ? Но ведь так можно взять любое число и получить 0: 0 = 5 , 0: 0 = 317 и т. д.

Но если подходит любое число, то у нас нет никаких оснований остановить свой выбор на каком-то одном из них. То есть мы не можем сказать, какому числу соответствует запись 0: 0 . А раз так, то мы вынуждены признать, что эта запись тоже не имеет смысла. Выходит, что на ноль нельзя делить даже ноль. (В математическом анализе бывают случаи, когда благодаря дополнительным условиям задачи можно отдать предпочтение одному из возможных вариантов решения уравнения 0 · x = 0 ; в таких случаях математики говорят о «раскрытии неопределенности», но в арифметике таких случаев не встречается.)

Вот такая особенность есть у операции деления. А точнее — у операции умножения и связанного с ней числа ноль.

Ну, а самые дотошные, дочитав до этого места, могут спросить: почему так получается, что делить на ноль нельзя, а вычитать ноль можно? В некотором смысле, именно с этого вопроса и начинается настоящая математика. Ответить на него можно только познакомившись с формальными математическими определениями числовых множеств и операций над ними. Это не так уж сложно, но почему-то не изучается в школе. Зато на лекциях по математике в университете вас в первую очередь будут учить именно этому.

Функция «деление» не определена для области значений, в которой делитель равен нулю. Делить можно, но результат — не определён

Дельть на ноль нельзя. Математика 2 класса средней школы.

Если мне не изменяет память, то ноль можно представить как бесконечно малую величину, так что бесконечность будет. А школьное «ноль — ничего» — это просто упрощение, их таких в школьной математике ууууууу сколько) . Но без них никак, все в свое время.

Войдите, чтобы написать ответ

Деление на ноль

Частное от деления на ноль какого-либо числа, отличного от нуля, не существует.

Рассуждения здесь следующие: так как в этом случае никакое число не может удовлетворить определению частного.

Напишем, например,

какое бы число ни взять на пробу (скажем, 2, 3, 7), оно не годится потому что:

\[ 2 · 0 = 0 \]

\[ 3 · 0 = 0 \]

\[ 7 · 0 = 0 \]

Что будет если поделить на 0?

д., а нужно получить в произведении 2,3,7.

Можно сказать, что задача о делении на нуль числа, отличного от нуля, не имеет решения. Однако число, отличное от нуля, можно разделить, на число, как угодно близкое к нулю, и чем ближе делитель к нулю, тем больше будет частное. Так, если будем делить 7 на

\[ \frac{1}{10}, \frac{1}{100}, \frac{1}{1000}, \frac{1}{10000} \]

то получим частные 70, 700, 7000, 70 000 и т. д., которые неограниченно возрастают.

Поэтому часто говорят, что частное от деления 7 на 0 «бесконечно велико», или «равно бесконечности», и пишут

\[ 7: 0 = \infin \]

Смысл этого выражения состоит в том, что если делитель приближается к нулю, а делимое остается равным 7 (или приближается к 7), то частное неограниченно увеличивается.

Число 0 можно представить, как некую границу, отделяющую мир реальных чисел от мнимых или отрицательных. Благодаря двусмысленному положению, многие операции с этой числовой величиной не подчиняются математической логике. Невозможность деления на нуль - яркий тому пример. А разрешенные арифметические действия с нулем могут быть выполнены с помощью общепринятых определений.

История нуля

Ноль является точкой отсчета во всех стандартных системах исчисления. Европейцы стали использовать это число сравнительно недавно, но мудрецы Древней Индии пользовались нулем за тысячу лет до того, как пустое число стало регулярно использоваться европейскими математиками. Ещё раньше индийцев ноль являлся обязательной величиной в числовой системе майя. Этот американский народ использовал двенадцатеричную систему исчисления, а нулем у них начинался первый день каждого месяца. Интересно, что у майя знак, обозначающий «ноль», полностью совпадал со знаком, определяющим «бесконечность». Таким образом, древние майя делали вывод о тождественности и непознаваемости этих величин.

Математические действия с нулем

Стандартные математические операции с нулем можно свести к нескольким правилам.

Сложение: если к произвольному числу добавить ноль, то оно не изменит своего значения (0+x=x).

Вычитание: при вычитании нуля из любого числа значение вычитаемого остается неизменным (x-0=x).

Умножение: любое число, умноженное на 0, дает в произведении 0 (a*0=0).

Деление: ноль можно разделить на любое число, не равное нулю. При этом значение такой дроби будет 0. А деление на ноль запрещено.

Возведение в степень. Это действие можно выполнить с любым числом. Произвольное число, возведенное в нулевую степень, даст 1 (x 0 =1).

Ноль в любой степени равен 0 (0 а =0).

При этом сразу возникает противоречие: выражение 0 0 не имеет смысла.

Парадоксы математики

О том, что деление на ноль невозможно, многие знают со школьной скамьи. Но объяснить причину такого запрета почему-то не получается. В самом деле, почему формула деления на ноль не существует, а вот другие действия с этим числом вполне разумны и возможны? Ответ на этот вопрос дают математики.

Все дело в том, что привычные арифметические действия, которые школьники изучают в начальных классах, на самом деле далеко не так равноправны, как нам кажется. Все простые операции с числами могут быть сведены к двум: сложению и умножению. Эти действия составляют суть самого понятия числа, а остальные операции строятся на использовании этих двух.

Сложение и умножение

Возьмем стандартный пример на вычитание: 10-2=8. В школе его рассматривают просто: если от десяти предметов отнять два, останется восемь. Но математики смотрят на эту операцию совсем по-другому. Ведь такой операции, как вычитание, для них не существует. Данный пример можно записать и другим способом: х+2=10. Для математиков неизвестная разность - это просто число, которое нужно добавить к двум, чтобы получилось восемь. И никакого вычитания здесь не требуется, нужно просто найти подходящее числовое значение.

Умножение и деление рассматриваются так же. В примере 12:4=3 можно понять, что речь идет о разделении восьми предметов на две равные кучки. Но в действительности это просто перевернутая формула записи 3х4=12.Такие примеры на деление можно приводить бесконечно.

Примеры на деление на 0

Вот тут и становится понемногу понятным, почему нельзя делить на ноль. Умножение и деление на ноль подчиняется своим правилам. Все примеры на деление этой величины можно сформулировать в виде 6:0=х. Но это же перевернутая запись выражения 6 * х=0. Но, как известно, любое число, умноженное на 0, дает в произведении только 0. Это свойство заложено в самом понятии нулевой величины.

Выходит, что такого числа, которое при умножении на 0 дает какую-либо осязаемую величину, не существует, то есть данная задача не имеет решения. Такого ответа бояться не следует, это естественный ответ для задач такого типа. Просто запись 6:0 не имеет никакого смысла, и она ничего не может объяснить. Кратко говоря, это выражение можно объяснить тем самым бессмертным «деление на ноль невозможно».

Существует ли операция 0:0? Действительно, если операция умножения на 0 законна, можно ли ноль разделить на ноль? Ведь уравнение вида 0х 5=0 вполне легально. Вместо числа 5 можно поставить 0, произведение от этого не поменяется.

Действительно, 0х0=0. Но поделить на 0 по-прежнему нельзя. Как было сказано, деление - это просто обратная операция умножения. Таким образом, если в примере 0х5=0, нужно определить второй множитель, получаем 0х0=5. Или 10. Или бесконечность. Деление бесконечности на ноль — как вам это понравится?

Но если в выражение подходит любое число, то оно не имеет смысла, мы не можем из бесконечного множества чисел выбрать какое-то одно. А раз так, это значит и выражение 0:0 не имеет смысла. Получается, что на ноль нельзя делить даже сам ноль.

Высшая математика

Деление на ноль — это головная боль для школьной математики. Изучаемый в технических вузах математический анализ немного расширяет понятие задач, которые не имеют решения. Например, к уже известному выражению 0:0 добавляются новые, которые не имеют решения в школьных курсах математики:

  • бесконечность, разделенная на бесконечность: ∞:∞;
  • бесконечность минус бесконечность: ∞−∞;
  • единица, возведенная в бесконечную степень: 1 ∞ ;
  • бесконечность, умноженная на 0: ∞*0;
  • некоторые другие.

Элементарными методами решить такие выражения невозможно. Но высшая математика благодаря дополнительным возможностям для ряда подобных примеров дает конечные решения. Особенно это видно в рассмотрении задач из теории пределов.

Раскрытие неопределенности

В теории пределов значение 0 заменяется условной бесконечно малой переменной величиной. А выражения, в которых при подставлении нужного значения получается деление на ноль, преобразовываются. Ниже представлен стандартный пример раскрытия предела при помощи обычных алгебраических преобразований:

Как видно в примере, простое сокращение дроби приводит ее значение к вполне рациональному ответу.

При рассмотрении пределов тригонометрических функций их выражения стремятся свести к первому замечательному пределу. При рассмотрении пределов, в которых знаменатель обращается в 0 при подставлении предела, используют второй замечательный предел.

Метод Лопиталя

В некоторых случаях пределы выражений можно заменить пределом их производных. Гийом Лопиталь - французский математик, основоположник французской школы математического анализа. Он доказал, что пределы выражений равны пределам производных этих выражений. В математической записи его правило выглядит следующим образом.

Строгий запрет на деление на ноль налагается ещё в младших классах школы. Дети обычно и не задумываются о его причинах, но на самом деле знать, почему что-нибудь запрещается, и интересно, и полезно.

Арифметические действия

Арифметические действия, которые изучаются в школе, неравноценны с точки зрения математиков. Они признают полноправными только две из этих операций - сложение и умножение. Они входят в само понятие числа, и все остальные действия с числами так или иначе строятся на этих двух. То есть невозможно не только деление на ноль, но и деление вообще.

Вычитание и деление

Чего же не хватает остальным действиям? Опять же, из школы известно, что, например, вычесть из семи четыре - значит, взять семь конфет, четыре из них съесть и посчитать те, что останутся. Но математики поеданием конфет и вообще воспринимают их совершенно иначе. Для них есть только сложение, то есть запись 7 - 4 означает число, которое в сумме с числом 4 будет равно 7. То есть для математиков 7 - 4 - это краткая запись уравнения: х + 4 = 7. Это не вычитание, а задача - найти такое число, которое нужно поставить вместо х.

То же самое относится к делению и умножению. Деля десять на два, младшеклассник раскладывает десять конфет на две одинаковые кучки. Математик же и здесь видит уравнение: 2 · х = 10.

Так и выясняется, почему запрещено деление на ноль: оно просто невозможно. Запись 6: 0 должна превращаться в уравнение 0 · х = 6. То есть требуется найти число, которое можно умножить на ноль и получить 6. Но известно, что умножение на ноль всегда даёт ноль. Это сущностное свойство ноля.

Таким образом, нет такого числа, которое, умножаясь на ноль, давало бы какое-то число, отличное от ноля. Значит, у этого уравнения нет решения, нет такого числа, которое соотносилось бы с записью 6: 0, то есть она не имеет смысла. О её бессмысленности и говорят, когда запрещают деление на ноль.

Делится ли ноль на ноль?

А можно ли ноль разделить на ноль? Уравнение 0 · х = 0 не вызывает затруднений, и можно взять за х этот самый ноль и получить 0 · 0 = 0. Тогда 0: 0 = 0? Но, если, например, принять за х единицу, тоже получится 0 · 1 = 0. Можно принять за х вообще какое угодно число и делить на ноль, и результат останется прежним: 0: 0 = 9, 0: 0 = 51 и так далее.

Таким образом, в это уравнение можно вставить совершенно любое число, и невозможно выбрать какое-то конкретное, невозможно определить, какое число обозначается записью 0: 0. То есть и эта запись тоже не имеет смысла, и деление на ноль всё равно невозможно: он не делится даже сам на себя.

Такова важная особенность операции деления, то есть умножения и связанного с ним числа ноль.

Остаётся вопрос: но вычитать его можно? Можно сказать, что настоящая математика начинается с этого интересного вопроса. Чтобы найти ответ на него, необходимо узнать формальные математические определения числовых множеств и познакомиться с операциями над ними. Например, существуют не только простые, но и делениекоторых отличается от деления обычных. Это не входит в школьную программу, но университетские лекции по математике начинаются именно с этого.

Каждый из нас со школы вынес как минимум два незыблемых правила: «жи и ши — пиши с буквой И» и «на ноль делить нельзя «. И если первое правило можно объяснить особенностью Русского языка, то второе вызывает вполне логичный вопрос: «А почему?»

Почему нельзя делить на ноль?

Не совсем понятно, почему об этом не говорят в школе, но с точки зрения арифметики ответ очень даже прост.

Возьмем число 10 и поделим его на 2 . Это подразумевает, что мы взяли 10 каких-либо предметов и расставили их по 2 равным группам, то есть 10: 2 = 5 (по 5 предметов в группе). Этот же пример можно записать и с помощью уравнения x * 2 = 10 х здесь будет равен 5 ).

Теперь, на секунду представим, что на ноль делить можно, и попробуем 10 делить на 0 .

Получится следующее: 10: 0 = х , следовательно х * 0 = 10 . Но наши расчеты не могут быть верны, так как при умножении любого числа на 0 всегда получается 0 . В математике не существует такого числа, которое при умножении на 0 давало бы, что-то кроме 0 . Следовательно, уравнения 10: 0 = х и х * 0 = 10 не имеют решения. Ввиду этого и говорят, что на ноль делить нельзя.

Когда можно делить на ноль?

Есть вариант, при котором деление на ноль все же имеет некоторый смысл. Если мы делим сам ноль то получаем следующее 0: 0 = х , а значит х * 0 = 0 .

Предположим, что х=0 , тогда уравнение не вызывает никаких вопросов, все идеально сходится 0: 0 = 0 , а значит и 0 * 0 = 0 .

Но что если х ≠ 0 ? Предположим, что х = 9 ? Тогда 9 * 0 = 0 и 0: 0 = 9 ? А если х=45 , то 0: 0 = 45 .

Мы действительно можем делить 0 на 0 . Но это уравнение будет иметь бесконечное множество решений, так как 0: 0 = чему угодно .

Почему 0: 0 = NaN

Пробовали ли Вы когда-нибудь поделить 0 на 0 на смартфоне? Так как ноль деленный на ноль дает абсолютно любое число, программистам пришлось искать выход из данной ситуации, ведь не может же калькулятор игнорировать ваши запросы. И они нашли своеобразный выход: при делении ноль на ноль вы получите NaN (not a number — не число) .

Почему x: 0 = а x: -0 = —

Если Вы попробуете на смартфоне разделить какое-либо число на ноль,то ответ будет равен бесконечности. Все дело в том, что в математике 0 иногда рассматривается не как «ничего», а как «бесконечно малая величина». Следовательно, если любое число поделить на бесконечно малую величину, получится бесконечно большая величина (∞) .

Так можно ли делить на ноль?

Ответ, как это часто бывает, неоднозначен. В школе, лучше всего, зарубить себе на носу, что на ноль делить нельзя — это избавит Вас от ненужных сложностей. А вот если будете поступать на математический факультет в университете, на ноль все-таки делить придется.

Говорят, можно поделить на ноль если определить результат деления на ноль. Просто нужно расширить алгебру. По странному стечению обстоятельств найти хоть какой-то, а лучше понятный и простой, пример такого расширения не удается. Чтобы исправить интернет нужна либо демонстрация одного из способов такого расширения, либо описание почему это не возможно.


Статья написана в продолжение тренда:

Disclaimer

Цель данной статьи - объяснить «человеческим языком», как работают фундаментальные основы математики, структурировать знания и восстановить упущенные причинно-следственные связи между разделами математики. Все рассуждения являются философскими, в части суждений расходятся с общепринятыми (следовательно, не претендует на математическую строгость). Статья рассчитана на уровень читателя «сдал вышку много лет назад».

Понимание принципов арифметики, элементарной, общей и линейной алгебры, математического и нестандартного анализа, теории множеств, общей топологии, проективной и аффинной геометрии - желательно, но не обязательно.

В ходе экспериментов ни одна бесконечность не пострадала.

Пролог

Выход «за рамки» - это естественный процесс поиска новых знаний. Но не всякий поиск приносит новое знание и следовательно пользу.

1. Вобще-то уже все поделили до нас!

1.1 Аффинное расширение числовой прямой

Начнем с того, с чего начинают, наверное, все искатели приключений при делении на ноль. Вспомним график функции .


Слева и справа от нуля функция уходит в разные стороны «небытия». В самом нуле вообще “омут” и ничего не видно.

Вместо того, чтобы бросаться в «омут» с головой, посмотрим что туда втекает и что оттуда вытекает. Для этого воспользуемся пределом - основным инструментом математического анализа . Основная “фишка” в том, что предел позволяет идти к заданной точке так близко, как это возможно, но не “наступить на нее”. Такая себе “оградка” перед “омутом”.


Оригинал

Хорошо, «оградку» поставили. Уже не так страшно. У нас есть два пути к «омуту». Зайдем слева - крутой спуск, справа - крутой подъем. Сколько к “оградке” не иди, ближе она не становится. Пересечь нижнее и верхнее «небытие» никак не выходит. Возникают подозрения, может мы идем по кругу? Хотя нет, числа-то меняются, значит не по кругу. Пороемся в сундучке с инструментами математического анализа еще. Кроме пределов с «оградкой» в комплекте идет положительная и отрицательная бесконечности . Величины совершенно абстрактные (не являются числами), хорошо формализованы и готовы к употреблению! Это нам подходит. Дополним наше «бытие» (множество вещественных чисел) двумя бесконечностями со знаком.


Математическим языком:
Именно это расширение позволяет брать предел при аргументе стремящемся к бесконечности и получить бесконечность в качестве результата взятия предела.

Есть два раздела математики которые описывают одно и тоже используя разную терминологию.

Подытожим:

В сухом остатке. Старые подходы перестали работать. Сложность системы, в виде кучи “если”, “для всех, кроме” и т.п., возросла. У нас было только две неопределенности 1/0 и 0/0 (мы не рассматривали степенные операции), стало пять. Раскрытие одной неопределенности породило еще больше неопределенностей.

1.2 Колесо

На введении беззнаковой бесконечности все не остановилось. Для того чтобы выбраться из неопределенностей нужно второе дыхание.

Итак, у нас есть множество вещественных чисел и две неопределенности 1/0 и 0/0. Для устранения первой мы выполнили проективное расширение числовой прямой (то есть ввели беззнаковую бесконечность). Попробуем разобраться со второй неопределенностью вида 0/0. Сделаем аналогично. Дополним множество чисел новым элементом, представляющим вторую неопределенность.


Определение операции деления основано на умножении. Это нам не подходит. Отвяжем операции друг от друга, но сохраним привычное поведение для вещественных чисел. Определим унарную операцию деления, обозначаемую знаком "/".


Доопределим операции.


Данная структура называется «Колесом» (Wheel). Термин был взят из-за схожести с топологической картинкой проективного расширения числовой прямой и точки 0/0.


Вроде все неплохо выглядит, но дьявол кроется в деталях:

Чтобы устаканить все особенности, дополнительно к расширению множества элементов прилагается бонус в виде не одного, а двух тождеств, описывающих дистрибутивный закон.


Математическим языком:
С точки зрения общей алгебры мы оперировали полем . А в поле, как известно, определены всего две операции (сложение и умножение). Понятие деления выводится через обратные, а если еще глубже, то единичные элементы. Внесенные изменения превращают нашу алгебраическую систему в моноид как по операции сложения (с нулем в качестве нейтрального элемента), так и по операции умножения (с единицей в качестве нейтрального элемента).

В трудах первооткрывателей не всегда используются символы ∞ и ⊥. Вместо этого можно встретить запись в виде /0 и 0/0.


Мир уже не так прекрасен, не правда ли? Все же не стоит спешить. Проверим, справятся ли новые тождества дистрибутивного закона с нашим расширенным множеством .


На этот раз результат намного лучше.

Подытожим:

В сухом остатке. Алгебра работает отлично. Однако за основу было взято понятие «не определено» которое стали считать чем-то существующим и оперировать им. Однажды кто-нибудь скажет, что все плохо и нужно разбить данное «не определено» еще на несколько “не определено", но помельче. Общая алгебра скажет: “Без проблем, Бро!".
Примерно так постулированы дополнительные (j и k) мнимые единицы в кватернионах Добавить метки



Статьи по теме: