Чему равняется длина окружности. Составление системы уравнений

    Известно, что независимо от длины окружности, ее отношение к диаметру является постоянным числом. Если известен диаметр окружности, то нужно эту величину умножить на число Пи (3,14).

    Формула выглядит так:

    Если известен радиус, то чтобы найти диаметр, умножаем его на два, а для нахождения длины окружности опять же на число Пи.

    Окружностью в геометрии называют фигуру на плоскости, все точки, лежащие на окружности круга, удалены на равном расстоянии от центра окружности

    Радиусом окружности называют в геометрии величину расстояния, отрезок от центра окружности до ее любой точки на окружности.

    Длину окружности с радиусом вычисляют по формуле

    Длина окружности L равно 2pi умножить на R.

    Или выглядит формула так. Чтобы не путаться, запомните, что длина окружности это есть периметр круга.

    r - это радиус

    D - диаметр

    Приблизительно 3,14

    Но окружность - это не круг

    Смотрите картинку, на которой видна разница между кругом и окружностью

    Окружность это кривая, ограничивающая круг. Все ее точки находятся на равном от центра расстоянии. В формуле вычисления длины окружности используются значения радиуса или двойная величина радиуса -- диаметр и число, всегда имеющее значение 3,14.

    Формула, таким образом, выглядит так: L=d или L=2R , где L -- значение длины окружности, получаемое умножением числа (3,14) на величину радиуса окружности или двойного диаметра.

    Еще из средней школьной программы отчетливо помню формулу измерения длины окружности. Эта формула выглядит так- 2Пr, где r- это радиус окружности, которая равна половине диаметра, а число П неизменна и равна 3.14.

    Формула длины окружности равна Пи умноженное на Диаметр или Пи умноженное на Радиус умноженный на 2.

    Длину окружности можно найти одним из представленных способов:

    • если известен диаметр окружности, то формула выглядит так L = ПD
    • если известен радиус окружности, то формула имеет следующий вид L = 2Пr.
  • Формула длины окружности

    Если воспользоваться Яндексом, то длину окружности можно посчитать в самом поисковом интерфейсе. Введите в Яндексе формула длины окружности , он вам выдаст формулу расчета и окошко для ввода значения. Дальше нужно будет нажать кнопку Посчитать.

    Окружность это такая геометрическая фигура, которая является совокупностью всех своих точек на плоскости, равноудаленных от ее центра, на расстояние, называемое радиусом.

    Для того, чтобы вычислить длину окружности, обозначаемую обычно как L, надо радиус, обозначаемый как R, умножить на 2 и на число Пи. L=2ПиR. Пи - величина постоянная и равна 3,14.

    Или можно взять удвоенный радиус, то есть диаметр (D) и тогда формула будет выглядеть так: L=ПиD.

    Можно найти длину окружности не зная радиуса. Для этого нужно знать площадь круга.

    Формула для расчета длины окружности по известной площади круга выглядит так:

    L=2*корень квадратный пи*S

    где S площадь круга.

    Длина окружности

    Можете скопировать себе на компьютер нижеприведенную табличку с основными формулами окружности и круга. Она вас, при решении геометрических задач, еще не раз выручит.

    Здесь же присутствует формула длины окружности. Она имеет вид: L=2ПR

    На сайте Сборник формул, можно посчитать длину окружности, введя имеющиеся у вас данные. Там же,

    Решение уравнений:

    Геометрическая прогрессия:

    Комбинаторика:

    Решить химическое уравнение

Ее диаметр.Для этого только надо применить формулу длины окружности.L = п DЗдесь:L – длина окружности,п – число Пи, равное 3.14,D – диаметр окружности.Переставьте в формуле длины окружности искомое в левую часть и получите:D = L/п

Разберем практическую задачу. Предположим, вам необходимо изготовить крышку на круглый дачный колодец, доступа к которому в данный момент нет. Не , и неподходящие погодные условия. Но у вас есть данные по длине его окружности. Предположим, это 600 см.В указанную формулу подставляем значения:D = 600/3,14 = 191.08 см.Итак, 191 см диаметр вашего .Увеличивайте диаметр до 2-х с учетом припуска за края. Устанавливайте циркуль на радиус 1 м (100 см) и вычерчивайте окружность.

Полезный совет

Окружности сравнительно больших диаметров в домашних условиях удобно вычерчивать циркулем, который быстро можно изготовить. Делается это так. В рейку вбивается два гвоздя на расстоянии друг от друга, равному радиусу окружности. Один гвоздь неглубоко вбейте в заготовку. А другой используйте, вращая рейку, в качестве маркера.

Окружностью называется геометрическая фигура на плоскости, которая состоит из всех точек этой плоскости находящихся на одинаковом расстоянии от заданной точки. Заданная точка при этом называется центром окружности , а расстояние, на котором точки окружности находятся от её центра – радиусом окружности . Область плоскости ограниченная окружностью называется кругом.Существует несколько методов расчёта диаметра окружности , выбор конкретного зависти от имеющихся первоначальных данных.

Инструкция

В простейшем случае, если окружность радиуса R, то её будет равен
D = 2 * R
Если радиус окружности не известен, но известна её , то диаметр можно вычислить по формуле длины окружности
D = L/П, где L – длина окружности , П – П.
Так же диаметр окружности можно рассчитать, зная площадь ею ограниченной
D = 2 * v(S/П), где S – площадь круга, П – число П.

Источники:

  • диаметр круга расчет

В курсе планиметрии средней школы, понятие окружность определяется как геометрическая фигура, состоящая из всех точек плоскости лежащих на расстоянии радиуса от точки, называемой её центром. Внутри окружности можно провести множество отрезков, различным образом соединяющих её точки. В зависимости от построения этих отрезков, окружность можно поделить на несколько частей разными способами.

Инструкция

Наконец, окружность можно поделить построением сегментов. Сегментом часть окружности, составленная из хорды и дуги окружности. Хордой в этом случае является отрезок, соединяющий любые две точки окружности. С помощью сегментов окружность можно поделить на бесконечное множество частей с образованием или без в его центре.

Видео по теме

Обратите внимание

Полученные перечисленными способами фигуры – многоугольники, сегменты и сектора, можно также разделить, использую соответствующие методы, например, диагонали многоугольников или биссектрисы углов.

Кругом называют плоскую геометрическую фигуру, а линию, ее ограничивающую, принято называть окружностью. Основное свойство заключается в том, что каждая точка на этой линии находится на одинаковом расстоянии от центра фигуры. Отрезок с началом в центре круга и окончанием на любой из точек окружности называется радиусом, а отрезок, соединяющий две точки окружности и проходящий через центр - диаметром.

Инструкция

Используйте число Пи для нахождения длины диаметра по известной длине окружности. Эта константа выражает постоянное соотношение между этими двумя параметрами круга - независимо от размеров круга, деление длины его окружности на длину диаметра всегда дает одно и то же число. Из этого вытекает, что для нахождения длины диаметра следует длину окружности разделить на число Пи. Как правило, для практических вычислений длины диаметра достаточно точности до сотых единицы, то есть до двух знаков после запятой, поэтому число Пи можно считать равным 3,14. Но так как эта константа является числом иррациональным, то имеет бесконечное число знаков после запятой. Если возникнет необходимость в более точном определении , то нужное число знаков для пи можно найти, например, по этой ссылке - http://www.math.com/tables/constants/pi.htm .

При известных длинах сторон (a и b) прямоугольника, вписанного в круг, длину диаметра (d) можно вычислить, найдя длину диагонали этого прямоугольника. Поскольку диагональ здесь является гипотенузой в прямоугольном треугольнике, катеты которого образуют стороны известной длины, то по теореме Пифагора длину диагонали, а вместе с ней и длину диаметра описанной окружности, можно рассчитать, найдя из суммы квадратов длин известных сторон: d=√(a² + b²).

Деление на несколько равных частей - часто встречающаяся задача. Так можно построить правильный многоугольник, начертить звезду или подготовить основу для схемы. Есть несколько способов решения этой интересной задачи.

Вам понадобится

  • - окружность с обозначенным центром (если центр не обозначен, вам придется найти его любым способом);
  • - транспортир;
  • - циркуль с грифелем;
  • - карандаш;
  • - линейка.

Инструкция

Самый простой способ разделить окружность на равные части - при помощи транспортира. Разделив 360° на нужное число частей, вы получите угол . Начните с любой точки на окружности - соответствующий ей радиус будет нулевой отметкой. Начиная с него, делайте по транспортиру отметки, соответствующие вычисленному углу.Этот способ рекомендуется, если вам нужно разделить окружность на пять, семь, девять и т.д. частей. Например, для построения правильного пятиугольника его вершины должны располагаться через каждые 360/5 = 72°, то есть на отметках 0°, 72°, 144°, 216°, 288°.

Чтобы разделить окружность на шесть частей, можно воспользоваться свойством правильного - его длиннейшая диагональ равна удвоенной стороне. Правильный шестиугольник как бы составлен из шести равносторонних треугольников.Установите раствор циркуля, равный радиусу окружности, и делайте им засечки, начиная с любой произвольной точки. Засечки образуют правильный шестиугольник, одна из вершин которого будет находиться в этой точке.Соединив вершины через одну, вы построите правильный треугольник, вписанный в окружность , то есть ее на три равные части.

Чтобы разделить окружность на четыре части, начните с произвольного диаметра. Его концы дадут две из необходимых четырех точек. Чтобы найти остальные, установите раствор циркуля, равный окружности. Поставив иглу циркуля на один из концов диаметра, сделайте засечки за пределами окружности и снизу. Повторите то же самое с другим концом диаметра.Проведите вспомогательную линию между точками пересечения засечек. Она даст вам второй диаметр, строго перпендикулярный исходному. Его концы станут остальными двумя вершинами квадрата, вписанного в окружность .

При помощи метода, описанного выше, можно найти середину любого отрезка. Как следствие, этим методом можно удвоить число равных частей, на которые вы окружность . Найдя середину каждой стороны правильного n- , вписанного в окружность , вы можете провести к ним перпендикуляры, найти точку их пересечения с окружность ю и таким образом построить вершины правильного 2n-угольника. Эту процедуру можно повторять угодно раз. Так, квадрат превращается в , тот - в и т.д. Начав с квадрата, вы можете, например, разделить окружность на 256 равных частей.

Обратите внимание

Для деления окружности на равные части обычно применяют делительные головки или делительные столы, позволяющие разделить окружность на равные части с высокой точностью. Когда необходимо разделить окружность на равные части пользуются приведенной ниже таблицей. Для этого нужно умножить диаметр делимой окружности на коэффициент, приведенный в таблице: К х D.

Полезный совет

Деление окружности на три, шесть и двенадцать равных частей. Проводят две перпендикулярные оси, которые пересекая окружность в точках 1,2,3,4 делят ее на четыре равные части; Применяя известный прием деления прямого угла на две равные части при помощи циркуля или угольника строят биссектрисы прямых углов, которые пересекаясь с окружностью в точках 5, 6, 7, и 8 делят каждую четвертую часть окружности пополам.

При проведении построений различных геометрических фигур иногда требуется определить их характеристики: длину, ширину, высоту и так далее. Если речь идет о круге или окружности, то часто приходится определять их диаметр. Диаметр представляет собой отрезок прямой, который соединяет две наиболее удаленных друг от друга точки, расположенные на окружности.

Вам понадобится

  • - измерительная линейка;
  • - циркуль;
  • - калькулятор.

Часто звучит, как часть плоскости, которая ограничена окружностью. Окружность круга является плоской замкнутой кривой. Все точки, расположенные на кривой, удалены от центра круга на одинаковое расстояние. В круге его длина и периметр одинаковы. Соотношение длины любой окружности и ее диаметра постоянное и обозначается числом π = 3,1415 .

Определение периметра круга

Периметр круга радиуса r равен удвоенному произведению радиуса r на число π(~3.1415)

Формула периметра круга

Периметр круга радиуса \(r\) :

\[ \LARGE{P} = 2 \cdot \pi \cdot r \]

\[ \LARGE{P} = \pi \cdot d \]

\(P \) – периметр (длина окружности).

\(r \) – радиус.

\(d \) – диаметр.

Окружностью будем называть такую геометрическую фигуру, которая будет состоять из всех таких точек, которые находятся на одинаковом расстоянии от какой-либо заданной точки.

Центром окружности будем называть точку, которая задается в рамках определения 1.

Радиусом окружности будем называть расстояние от центра этой окружности до любой ее точки.

В декартовой системе координат \(xOy \) мы также можем ввести уравнение любой окружности. Обозначим центр окружности точкой \(X \) , которая будет иметь координаты \((x_0,y_0) \) . Пусть радиус этой окружности равняется \(τ \) . Возьмем произвольную точку \(Y \) , координаты которой обозначим через \((x,y) \) (рис. 2).

По формуле расстояния между двумя точками в заданной нами системе координат, получим:

\(|XY|=\sqrt{(x-x_0)^2+(y-y_0)^2} \)

С другой стороны, \(|XY| \) - это расстояние от любой точки окружности до выбранного нами центра. То есть, по определению 3, получим, что \(|XY|=τ \) , следовательно

\(\sqrt{(x-x_0)^2+(y-y_0)^2}=τ \)

\((x-x_0)^2+(y-y_0)^2=τ^2 \) (1)

Таким образом, мы и получаем, что уравнение (1) является уравнением окружности в декартовой системе координат.

Длина окружности (периметр круга)

Будем выводить длину произвольной окружности \(C \) с помощью её радиуса, равного \(τ \) .

Будем рассматривать две произвольные окружности. Обозначим их длины через \(C \) и \(C" \) , у которых радиусы равняются \(τ \) и \(τ" \) . Будем вписывать в эти окружности правильные \(n \) -угольники, периметры которых равняются \(ρ \) и \(ρ" \) , длины сторон которых равняются \(α \) и \(α" \) , соответственно. Как мы знаем, сторона вписанного в окружность правильного \(n \) – угольника равняется

\(α=2τsin\frac{180^0}{n} \)

Тогда, будем получать, что

\(ρ=nα=2nτ\frac{sin180^0}{n} \)

\(ρ"=nα"=2nτ"\frac{sin180^0}{n} \)

\(\frac{ρ}{ρ"}=\frac{2nτsin\frac{180^0}{n}}{2nτ"\frac{sin180^0}{n}}=\frac{2τ}{2τ"} \)

Получаем, что отношение \(\frac{ρ}{ρ"}=\frac{2τ}{2τ"} \) будет верным независимо от значения числа сторон вписанных правильных многоугольников. То есть

\(\lim_{n\to\infty}(\frac{ρ}{ρ"})=\frac{2τ}{2τ"} \)

С другой стороны, если бесконечно увеличивать число сторон вписанных правильных многоугольников (то есть \(n→∞ \) ), будем получать равенство:

\(lim_{n\to\infty}(\frac{ρ}{ρ"})=\frac{C}{C"} \)

Из последних двух равенств получим, что

\(\frac{C}{C"}=\frac{2τ}{2τ"} \)

\(\frac{C}{2τ}=\frac{C"}{2τ"} \)

Видим, что отношение длины окружности к его удвоенному радиусу всегда одно и тоже число, независимо от выбора окружности и ее параметров, то есть

\(\frac{C}{2τ}=const \)

Эту постоянную принять называть числом «пи» и обозначать \(π \) . Приближенно, это число будет равняться \(3,14 \) (точного значения этого числа нет, так как оно является иррациональным числом). Таким образом

\(\frac{C}{2τ}=π \)

Окончательно, получим, что длина окружности (периметр круга) определяется формулой

\(C=2πτ \)

В вашем браузере отключен Javascript.
Чтобы произвести расчеты, необходимо разрешить элементы ActiveX!

Окружностью называется ряд равноудалённых точек от одной точки, которая, в свою очередь, является центром этой окружности. Окружность имеет также свой радиус, равный расстоянию этих точек от центра.

Отношение длины, какой либо окружности к её диаметру, для всех окружностей одинаково. Это отношение есть число, являющееся математической константой, которое обозначается греческой буквой π .

Определение длины окружности

Произвести расчёт окружности можно по следующей формуле:

L = π D = 2 π r

r - радиус окружности

D - диаметр окружности

L - длина окружности

π - 3.14

Задача:

Вычислить длину окружности , имеющей радиус 10 сантиметров.

Решение:

Формула для вычисления дины окружности имеет вид:

L = π D = 2 π r

где L – длина окружности, π – 3,14 , r – радиус окружности, D – диаметр окружности.

Таким образом, длина окружности, имеющей радиус 10 сантиметров равна:

L = 2 × 3,14 × 10 = 62,8 сантиметра

Окружность представляет собой геометрическую фигуру, являющуюся совокупностью всех точек на плоскости, удаленных от заданной точки, которая называется ее центром, на некоторое расстояние, не равное нулю и именуемое радиусом. Определять ее длину с различной степенью точности ученые умели уже в глубокой древности: историки науки считают, что первая формула для вычисления длины окружности была составлена примерно в 1900 году до нашей эры в древнем Вавилоне.

С такими геометрическими фигурами, как окружности, мы сталкиваемся ежедневно и повсеместно. Именно ее форму имеет внешняя поверхность колес, которыми оснащаются различные транспортные средства. Эта деталь, несмотря на свою внешнюю простоту и незатейливость, считаются одним из величайших изобретений человечества, причем интересно, что аборигены Австралии и американские индейцы вплоть до прихода европейцев совершенно не имели понятия о том, что это такое.

По всей вероятности, самые первые колеса представляли собой отрезки бревен, которые насаживались на ось. Постепенно конструкция колеса совершенствовалась, их конструкция становилась все более и более сложной, а для их изготовления требовалось использовать массу различных инструментов. Сначала появились колеса, состоящие из деревянного обода и спиц, а затем, для того, чтобы уменьшить износ их внешней поверхности, ее стали обивать металлическими полосами. Для того чтобы определить длины этих элементов, и требуется использовать формулу расчета длины окружности (хотя на практике, вероятнее всего, мастера это делали «на глаз» или просто опоясывая колесо полосой и отрезая требуемый ее участок).

Следует заметить, что колесо используется отнюдь не только в транспортных средствах. Например, его форму имеет гончарный круг, а также элементы шестеренок зубчатых передач, широко применяемых в технике. Издавна колеса использовались в конструкциях водяных мельниц (самые древние из известных ученым сооружений такого рода строились в Месопотамии), а также прялок, применявшихся для изготовления нитей из шерсти животных и растительных волокон.

Окружности нередко можно встретить и в строительстве. Их форму имеют достаточно широко распространенные круглые окна, очень характерные для романского архитектурного стиля. Изготовление этих конструкций – дело весьма непростое и требует высокого мастерства, а также наличия специального инструмента. Одной из разновидностей круглых окон являются иллюминаторы, устанавливаемые в морских и воздушных судах.

Таким образом, решать задачу определения длины окружности часто приходится инженерам-конструкторам, разрабатывающим различные машины, механизмы и агрегаты, а также архитекторам и проектировщикам. Поскольку число π , необходимое для этого, является бесконечным, то с абсолютной точностью определить этот параметр не представляется возможным, и поэтому при вычислениях учитывается та ее степень, которая в том или ином конкретном случае является необходимой и достаточной.

Сначала разберемся в отличии между кругом и окружностью. Чтобы увидеть эту разницу, достаточно рассмотреть, чем являются обе фигуры. Это бесчисленное количество точек плоскости, располагающиеся на равном расстоянии от единственной центральной точки. Но, если круг состоит и из внутреннего пространства, то окружности оно не принадлежит. Получается, что круг это и окружность, ограничивающая его (о-кру(г)жность), и бесчисленное число точек, что внутри окружности.

Для любой точки L , лежащей на окружности, действует равенство OL=R . (Длина отрезка OL равняется радиусу окружности).

Отрезок, который соединяет две точки окружности, является ее хордой .

Хорда, проходящая прямо через центр окружности, является диаметром этой окружности (D) . Диаметр можно вычислить по формуле: D=2R

Длина окружности вычисляется по формуле: C=2\pi R

Площадь круга : S=\pi R^{2}

Дугой окружности называется та ее часть, которая располагается между двух ее точек. Эти две точки и определяют две дуги окружности. Хорда CD стягивает две дуги: CMD и CLD . Одинаковые хорды стягивают одинаковые дуги.

Центральным углом называется такой угол, который находится между двух радиусов.

Длину дуги можно найти по формуле:

  1. Используя градусную меру: CD = \frac{\pi R \alpha ^{\circ}}{180^{\circ}}
  2. Используя радианную меру: CD = \alpha R

Диаметр, что перпендикулярен хорде, делит хорду и стянутые ею дуги пополам.

В случае, если хорды AB и CD окружности имеют пересечение в точке N , то произведения отрезков хорд, разделенные точкой N , равны между собой.

AN\cdot NB = CN \cdot ND

Касательная к окружности

Касательной к окружности принято называть прямую, у которой имеется одна общая точка с окружностью.

Если же у прямой есть две общие точки, ее называют секущей .

Если провести радиус в точку касания, он будет перпендикулярен касательной к окружности.

Проведем две касательные из этой точки к нашей окружности. Получится, что отрезки касательных сравняются один с другим, а центр окружности расположится на биссектрисе угла с вершиной в этой точке.

AC = CB

Теперь к окружности из нашей точки проведем касательную и секущую. Получим, что квадрат длины отрезка касательной будет равен произведению всего отрезка секущей на его внешнюю часть.

AC^{2} = CD \cdot BC

Можно сделать вывод: произведение целого отрезка первой секущей на его внешнюю часть равняется произведению целого отрезка второй секущей на его внешнюю часть.

AC \cdot BC = EC \cdot DC

Углы в окружности

Градусные меры центрального угла и дуги, на которую тот опирается, равны.

\angle COD = \cup CD = \alpha ^{\circ}

Вписанный угол — это угол, вершина которого находится на окружности, а стороны содержат хорды.

Вычислить его можно, узнав величину дуги, так как он равен половине этой дуги.

\angle AOB = 2 \angle ADB

Опирающийся на диаметр, вписанный угол, прямой.

\angle CBD = \angle CED = \angle CAD = 90^ {\circ}

Вписанные углы, которые опираются на одну дугу, тождественны.

Опирающиеся на одну хорду вписанные углы тождественны или их сумма равняется 180^ {\circ} .

\angle ADB + \angle AKB = 180^ {\circ}

\angle ADB = \angle AEB = \angle AFB

На одной окружности находятся вершины треугольников с тождественными углами и заданным основанием.

Угол с вершиной внутри окружности и расположенный между двумя хордами тождественен половине суммы угловых величин дуг окружности, которые заключаются внутри данного и вертикального углов.

\angle DMC = \angle ADM + \angle DAM = \frac{1}{2} \left (\cup DmC + \cup AlB \right)

Угол с вершиной вне окружности и расположенный между двумя секущими тождественен половине разности угловых величин дуг окружности, которые заключаются внутри угла.

\angle M = \angle CBD - \angle ACB = \frac{1}{2} \left (\cup DmC - \cup AlB \right)

Вписанная окружность

Вписанная окружность — это окружность, касающаяся сторон многоугольника.

В точке, где пересекаются биссектрисы углов многоугольника, располагается ее центр.

Окружность может быть вписанной не в каждый многоугольник.

Площадь многоугольника с вписанной окружностью находится по формуле:

S = pr ,

p — полупериметр многоугольника,

r — радиус вписанной окружности.

Отсюда следует, что радиус вписанной окружности равен:

r = \frac{S}{p}

Суммы длин противоположных сторон будут тождественны, если окружность вписана в выпуклый четырехугольник. И наоборот: в выпуклый четырехугольник вписывается окружность, если в нем суммы длин противоположных сторон тождественны.

AB + DC = AD + BC

В любой из треугольников возможно вписать окружность. Только одну единственную. В точке, где пересекаются биссектрисы внутренних углов фигуры, будет лежать центр этой вписанной окружности.

Радиус вписанной окружности вычисляется по формуле:

r = \frac{S}{p} ,

где p = \frac{a + b + c}{2}

Описанная окружность

Если окружность проходит через каждую вершину многоугольника, то такую окружность принято называть описанной около многоугольника .

В точке пересечения серединных перпендикуляров сторон этой фигуры будет находиться центр описанной окружности.

Радиус можно найти, вычислив его как радиус окружности, которая описана около треугольника, определенного любыми 3 -мя вершинами многоугольника.

Есть следующее условие: окружность возможно описать около четырехугольника только, если сумма его противоположных углов равна 180^{ \circ} .

\angle A + \angle C = \angle B + \angle D = 180^ {\circ}

Около любого треугольника можно описать окружность, причем одну-единственную. Центр такой окружности будет расположен в точке, где пересекаются серединные перпендикуляры сторон треугольника.

Радиус описанной окружности можно вычислить по формулам:

R = \frac{a}{2 \sin A} = \frac{b}{2 \sin B} = \frac{c}{2 \sin C}

R = \frac{abc}{4 S}

a , b , c — длины сторон треугольника,

S — площадь треугольника.

Теорема Птолемея

Под конец, рассмотрим теорему Птолемея.

Теорема Птолемея гласит, что произведение диагоналей тождественно сумме произведений противоположных сторон вписанного четырехугольника.

AC \cdot BD = AB \cdot CD + BC \cdot AD



Статьи по теме: