Теория хаоса

Бифуркационная диаграмма для логистического отображения x rx (1 - x ). Каждый вертикальный сектор показывает аттрактор при соответствующем значении r . На диаграмме видно серию удвоениий периода при увеличении r . После некоторого значения r аттрактор становится хаотическим.

Тео́рия ха́оса - математический аппарат, описывающий поведение некоторых нелинейных динамических систем , подверженных при определённых условиях явлению, известному как хаос (динамический хаос , детерминированный хаос ). Поведение такой системы кажется случайным, даже если модель, описывающая систему, является детерминированной . Для акцентирования особого характера изучаемого в рамках этой теории явления обычно принято использовать название теория динамического хаоса .

Примерами подобных систем являются атмосфера , турбулентные потоки , некоторые виды аритмий сердца, биологические популяции , общество как система коммуникаций и его подсистемы: экономические, политические, психологические (культурно-исторические и интер-культуральные) и другие социальные системы. Их изучение, наряду с аналитическим исследованием имеющихся рекуррентных соотношений, обычно сопровождается математическим моделированием .

Теория хаоса - область исследований, связывающая математику и физику.

Основные сведения

Теория хаоса гласит, что сложные системы чрезвычайно зависимы от первоначальных условий, и небольшие изменения в окружающей среде могут привести к непредсказуемым последствиям.

Математические системы с хаотическим поведением являются детерминированными, то есть подчиняются некоторому строгому закону, и, в некотором смысле, являются упорядоченными. Такое использование слова «хаос» отличается от его обычного значения (см. хаос в мифологии). Отдельная область физики - теория квантового хаоса - изучает недетерминированные системы, подчиняющиеся законам квантовой механики .

Пионерами теории считаются французский физик и философ Анри Пуанкаре (доказал теорему о возвращении), советские математики А. Н. Колмогоров и В. И. Арнольд и немецкий математик Ю. К. Мозер , построившие теорию хаоса, называемую КАМ (теория Колмогорова - Арнольда - Мозера). Теория вводит понятие аттракторов (в том числе, странных аттракторов как притягивающих канторовых структур), устойчивых орбит системы (т. н. КАМ-торов).

Понятие хаоса

Содержание статьи

ХАОСА ТЕОРИЯ, раздел математики, изучающий кажущееся случайным или очень сложное поведение детерминированных динамических систем. Динамическая система – это такая система, состояние которой меняется во времени в соответствии с фиксированными математическими правилами; последние обычно задаются уравнениями, связывающими будущее состояние системы с текущим. Такая система детерминирована, если эти правила не включают явным образом элемента случайности.

Вплоть до 1960-х годов многим казалось естественным полагать, что динамическая система, описываемая простыми детерминистическими уравнениями, должна вести себя относительно просто, хотя уже более столетия было известно, что это верно лишь в некоторых весьма специальных случаях, таких, как Солнечная система . Однако к 1980 математики и естествоиспытатели обнаружили, что хаос вездесущ.

Пример хаотического поведения из повседневной жизни – движение жидкости в миксере. Это устройство подчиняется простым механическим законам: его нож-смеситель вращается с постоянной скоростью, и взаимодействие жидкости с ножом внутри миксера можно описать простыми детерминистическими уравнениями. Однако возникающее при этом движение жидкости весьма сложно. Ее соседние области рассекаются ножом и разделяются, а отдаленные области могут сближаться. Короче говоря, жидкость перемешивается – для этого миксеры и предназначены.

Выражение «теория хаоса» используется преимущественно в популярной литературе. Специалисты же рассматривают эту дисциплину как раздел теории динамических систем.

Основные принципы.

Для изучения хаоса используют общие математические принципы и компьютерное моделирование. Фундаментальной характеристикой всякой динамической системы является итерация, т.е. результат повторного (многократного) применения одного и того же математического правила к некоторому выбранному состоянию. Состояние обычно описывается числом или набором чисел, но это может быть также геометрическая фигура или конфигурация. Например, пусть правилом будет «разделить на два». Начав с исходного состояния, задаваемого числом 1, это правило дает итерации 1/2, 1/4, 1/8,..., образующие очевидную закономерную последовательность. Правило «возвести в квадрат и вычесть единицу», примененное к 0, дает последовательность –1, 0, –1, 0,..., которая циклически и неограниченно скачет между числами 0 и -1. Однако правило «возвести в квадрат, удвоить и затем вычесть единицу», если начать применять его, скажем, к значению 0,1, порождает последовательность чисел -0,98, 0,92, 0,69, -0,03,..., в которой не удается заметить никакой очевидной закономерности.

Основным понятием теории хаоса является аттрактор, т.е. то поведение, к которому в конце концов приходит или в пределе стремится система. Аттракторами для трех описанных выше систем являются: единственное число 0; пара чисел (0, -1); весь интервал чисел между –1 и 1. Динамика в этих трех случаях соответственно стационарная, периодическая и хаотическая. Хаотический аттрактор обладает скрытой структурой, которая часто становится явной после графического представления итераций. Состояние динамической системы – это набор чисел, которые можно интерпретировать как координаты изображающей его точки в некотором фазовом пространстве. Когда состояние системы меняется, эта точка движется. Для стационарного аттрактора движущаяся точка стремится к фиксированному положению, а для периодического аттрактора она циклически проходит через фиксированную последовательность положений. В случае хаотического аттрактора движущаяся точка образует более сложную конфигурацию с очень хитроумной, многослойной структурой. Такие конфигурации называют фракталами; этот термин был введен в 1970 Б.Мандельбротом. Его работы впоследствии стимулировали огромное количество исследований по фрактальной геометрии.

Важной чертой хаотической динамики является ее непредсказуемость. Представим себе две частички порошка, находящиеся рядом друг с другом в жидкости внутри миксера. После включения миксера эти две частички недолго останутся рядом; они быстро разойдутся в разные стороны и вскоре начнут двигаться независимо. Подобным же образом, если дважды запустить хаотическую систему из очень близких начальных состояний, ее поведение в этих двух случаях быстро станет совершенно непохожим. Это означает, что на больших временных интервалах хаотические системы непредсказуемы. Малейшая погрешность измерения начального состояния быстро растет, и предсказание будущего состояния становится все более неточным. Однако, в отличие от случайной системы, краткосрочное прогнозирование здесь возможно.

История вопроса.

В 1926–1927 голландский инженер Б.Ван-дер-Пол сконструировал электронную схему, соответствующую математической модели сердечных сокращений. Он обнаружил, что при определенных условиях возникающие в схеме колебания были не периодическими, как при нормальном сердцебиении, а нерегулярными. Его работа получила серьезное математическое обоснование в годы Второй мировой войны , когда Дж.Литтлвуд и М.Картрайт исследовали принципы радиолокации. В начале 1960-х годов американский математик С.Смейл попытался построить исчерпывающую классификацию типичных разновидностей поведения динамических систем. Поначалу он предполагал, что можно обойтись различными комбинациями периодических движений, но вскоре понял, что возможно значительно более сложное поведение. В частности, он подробнее исследовал открытое Пуанкаре сложное движение в ограниченной задаче трех тел, упростив геометрию и получив при этом систему, известную ныне как «подкова Смейла». Он доказал, что такая система, несмотря на ее детерминированность, проявляет некоторые черты случайного поведения. Другие примеры подобных явлений были разработаны американской и российской школами в теории динамических систем, причем особенно важным оказался вклад В.И.Арнольда. Так начала возникать общая теория хаоса. Сам термин «хаос» ввели Дж.Йорке и Т.Ли в 1975 в краткой статье, посвященной обсуждению некоторых результатов исследований российской школы.

Исследования хаотических систем время от времени появлялись и в литературе по прикладным вопросам. Наиболее известная из таких моделей была введена метеорологом Э.Лоренцем в 1963. Лоренц построил модель конвекции в атмосфере, создав приближения очень сложных уравнений, описывающих это явление, значительно более простыми уравнениями с тремя неизвестными. Численно решая их на компьютере, он обнаружил, что решения колеблются нерегулярным, почти случайным образом. Лоренц также установил, что если слегка изменять начальные значения переменных, то отклонения будут усиливаться, пока новое решение не окажется совершенно непохожим на исходное. Описание им этого явления в последующих лекциях привело к популярному ныне выражению «эффект бабочки»: взмах крыла бабочки может изменить погоду.

Примеры приложений.

Ранняя работа Э.Лоренца в области метеорологии получила дальнейшее развитие, и теперь известно, что полные уравнения поведения атмосферы, используемые при прогнозировании погоды, могут вести себя хаотически. Это означает, что долгосрочные прогнозы погоды на основе данных о ее прошлом состоянии подвержены «эффекту бабочки», так что погода обычно не может быть предсказана более чем на четыре или пять дней вперед – независимо от мощности используемых компьютеров.

Движение в Солнечной системе тоже, как известно, хаотично, но здесь требуются десятки миллионов лет, прежде чем какое-то изменение станет непредсказуемым. Хаос проявляет себя многообразными способами. Например, спутник Сатурна Гиперион обращается по регулярной, предсказуемой орбите вокруг своей планеты, но при этом он хаотически кувыркается, изменяя направление оси собственного вращения. Теория хаоса объясняет это кувыркание как побочное действие приливных сил, создаваемых Сатурном. Теория хаоса объясняет также распределение тел в поясе астероидов между Марсом и Юпитером. Оно неравномерно: на одних расстояниях от Солнца существуют сгущения, на других – пустые промежутки. И сгущения, и пустые промежутки их гелиоцентрических орбит находятся на расстояниях, образующих «резонансы» с Юпитером, т.е. период обращения каждого астероида составляет некую простую дробь с периодом обращения Юпитера. Например, в резонансе 2:3 период обращения астероида равен 2/3 периода обращения Юпитера. Теория хаоса показывает, что одни резонансы порождают устойчивое поведение (сгущения), тогда как другие – неустойчивое (пустые промежутки). В частности, астероиды в резонансе 1:3 с Юпитером имеют неустойчивые орбиты и могут испытать возмущения, заставляющие их пересечь орбиту Марса, после чего они могут испытать дальнейшие возмущения и пересечь орбиту Земли. В 1995 Ж.Ласкар установил, что на временных масштабах десятков миллионов лет вся Солнечная система хаотична. Однако хаос не делает все черты движения в Солнечной системе непредсказуемыми. Например, форма планетной орбиты может быть предсказуемой, однако точное положение планеты на орбите остается непредсказуемым. Ласкар предсказал вероятное будущее Солнечной системы в целом на следующие несколько миллиардов лет. Согласно его вычислениям, ничего существенного не случится с орбитами внешних планет – Юпитера, Сатурна, Урана, Нептуна и Плутона. Орбиты Земли и Венеры тоже не претерпели бы существенных изменений, если бы не Марс, орбита которого изменится настолько, что он едва не столкнется с Землей. Меркурий тоже приблизится к Венере и будет либо выброшен из Солнечной системы, либо поменяется местами с Венерой.

Хаос имеет место также в биологии и экологии. В конце 19 в. было установлено, что популяции животных редко бывают стабильными; им свойственны нерегулярно чередующиеся периоды быстрого роста и почти полного вымирания. Теория хаоса показывает, что простые законы изменения численности популяций могут объяснить эти флуктуации без введения случайных внешних воздействий. Теория хаоса также объясняет динамику эпидемий, т.е. флуктуирующих популяций микроорганизмов в организмах людей.

Может создаться впечатление, что теория хаоса не должна иметь каких-либо полезных применений, поскольку хаотические системы непредсказуемы. Однако это неверно, во-первых, потому, что лишь некоторые аспекты хаотических систем непредсказуемы, и, во-вторых, потому, что полезность теории не ограничивается способностью прямого прогнозирования. В частности, теория хаоса предлагает новые методы анализа данных и обнаружения скрытых закономерностей там, где прежде систему считали случайной и никаких закономерностей в ее поведении не искали, полагая, что их просто не существует. Одним из приложений этого подхода служит машина FRACMAT, обеспечивающая дешевую и быструю процедуру контроля качества пружинной проволоки.

К числу наиболее перспективных применений теории хаоса принадлежит «хаотическое управление». В 1950 Дж.фон Нейман предположил, что неустойчивость погоды может в один прекрасный день обернуться благом, поскольку неустойчивость означает, что желаемый эффект может быть достигнут очень малым возмущением. В 1990 С.Гребоджи, Э.Отт и Дж.Йорке опубликовали теоретическую схему использования этого вида неустойчивости для управления хаотическими системами. Их схема представляет собой общую форму того метода, с помощью которого в 1985 инженеры НАСА послали космический зонд на встречу с кометой Джакобини – Циннера. Зонд пять раз облетел Луну, используя хаотичность взаимодействия трех тел, позволяющую совершать большие изменения траектории с малыми затратами топлива. Тот же метод был применен для синхронизации батареи лазеров; для управления нерегулярностями сердцебиения, что открывает возможность создать «интеллектуальный» стимулятор сердечного ритма; для управления биотоками мозга, что, в частности, может помочь контролировать эпилептические припадки; наконец, для ламинаризации турбулентного течения жидкости – метод, который способен уменьшить расход топлива самолетами.

Тео́рия ха́оса - математический аппарат, описывающий поведение некоторых нелинейных динамических систем , подверженных при определённых условиях явлению, известному как хаос (динамический хаос , детерминированный хаос ). Поведение такой системы кажется случайным, даже если модель, описывающая систему, является детерминированной . Для акцентирования особого характера изучаемого в рамках этой теории явления, обычно принято использовать название: теория динамического хаоса .

Примерами подобных систем являются атмосфера , турбулентные потоки , некоторые виды аритмий сердца, биологические популяции , общество как система коммуникаций и его подсистемы: экономические, политические, психологические (культурно-исторические и интер-культуральные) и другие социальные системы. Их изучение, наряду с аналитическим исследованием имеющихся рекуррентных соотношений, обычно сопровождается математическим моделированием .

Теория хаоса - область исследований, связывающая математику и физику.

Энциклопедичный YouTube

    1 / 5

    ✪ Тайна теории хаоса раскрыта!

    ✪ 15x4 - 15 минут о теории хаоса

    ✪ Илья Щуров. Бифуркации, катастрофы и хаос

    ✪ Veritasium #1 Что НЕ является Случайностью?

    ✪ Теория струн для чайников

    Субтитры

    всем привет меня зовут артур шарифов и вы смотрите мое новое видео на канале кверти как я сюда попал буквально откуда я пришел слева может быть справа может я вообще сидел на корточках и просто привстал вы затрудняетесь ответить ведь то что вы видите это лишь результат это конечная точка а конечная точка чего можно вообразить себе много разных вариантов развития событий при которых я оказался бы там где я оказался теория хаоса пытается дать ответы на подобного рода вопросы но она немного уходит в сторону хитрит куда проще и как оказалось куда полезней дать ответ на вопрос а что могло бы помешать мне здесь оказался все что угодно любое даже самое незначительное изменение в прошлом неминуемо привело бы к тому что я бы здесь не оказался это явление называется эффект бабочки это одно из ключевых свойств хаотичных систем теория хаоса на самом деле занимается изучением неистинного хауса неполного беспорядков хаотичная система в данном контексте тоже упорядочена причинно- следственная связь присутствует только вот управлять такой системой становится практически невозможно давайте рассмотрим вот такой пример расстояние от деревни горшки до парижа который в челябинской области 100 километров я выезжаю из горшков в париж и еду со скоростью 50 километров час через сколько часов я доеду до парижа решаем задачку если я за один час проезжаю 50 километров то за два часа я как раз проезду 100 километров да для того чтобы добраться от горшков до парижа мне нужно два часа действительно ли все так просто да на самом деле все потому что мы знаем что если я буду двигаться и чуть чуть быстрей то и приеду я чуть чуть раньше а если я буду двигаться немножко медленней то чутка позже и приеду в точку назначения это яркий пример устойчивой системы система описанная по математическим законам может считаться устойчивой если при малых изменениях начальных условий мы наблюдаем малые изменения результата двигался чуть чуть быстрее приехал чуть чуть раньше чем сложнее система тем она как правило неустойчивее но когда речь идет о сложных системах уже по самому названию можно понять что не все здесь так просто в английском языке есть слово complex и слово complicated b они оба переводятся на русский язык как сложный но при этом их значения немного разнятся и по иронии именно эти маленькие различия имеют очень большое значение комплекс это сложный в смысле навороченный продвинутый возможно состоящий из нескольких других объектов которые тоже можно считать навороченными например айфон достаточно сложная навороченная штука которая внутри состоит из большого количества компьютеров сложная но тем не менее устойчивая мы ведь очень легко управляемся с айфонами при этом при малых изменения параметров мы наблюдаем малое изменение результата такие сложные на самом деле ведь сложные системы являются устойчивыми к начальным условиям а вот те сложные системы которые по-английски называются complecated как раз и являются неустойчивыми они и есть объекты изучения теории хаоса в таких системах при малых изменениях начальных условий происходит просто колоссальное изменение результата самый лучший синоним который я смог подобрать в русском языке это слово запутанный создателем теории хаоса является эдвард лоренц нет это не тот лоренц который открыл силу лоренца и преобразование лоренца наш лоренц в первую очередь был метеоролог просто видимо у метеорологов очень скучная работа и лоенц видать от скуки начал просто по несколько раз перепроверять результаты он получал лист с распечаткой всей информации по исследованию а затем брал начальные условия и снова забивал их в компьютер парадокс в том что каждый раз после такого вот повторного прогона компьютер выдавал результаты которые значительно отличались от основного исследования причем чем долгосрочнее прогноз тем сильнее были различия лоренц конечно не хотел делать вывод о неправильности метеорологии как области знаний и естесственно начал искать причину таких глобальных несостыковок и этим самым он навсегда изменил математику дело в том что данные в компьютер вбивались с точностью до шести знаков после запятой а на распечатке данные округлялись до трех знаков после запятой то есть когда лоренц вбивал данные повторно с листочка он вбивал не изначальные данные а данные которые были уже округлены и хотя это очень маленькие различия то есть максимальная ошибка ведь составляет одну тысячную это очень незначительно и этого было достаточно для того чтобы вместо яркой и солнечной погоды начался ураган с градом лоренц стал все глубже опускаться в математику и таким образом открыл новую науку которая называется теория хаоса кстати термин эффект бабочки тоже был введен лоренцом график показывающий изменение множества состоянии нелинейной динамической системы с течением времени в трехмерном случае подозрительно напоминает крылья бабочки но как он сам признаётся такое название ему предложили организаторы его конференции лоренц для большей ироничности привел вот такой пример взмах крыльев бабочки в бразилии может породить целую цепочку событий которые проведут за собой смерч в техасе эффект бабочки является центральным понятием теории хаоса при этом очень важно не путать хаос и случайность многие явления в биологии химии, медицине и даже экономике которые раньше было сложно писать математические законами которые тогда условно считались случайными сейчас оказались хаотичными и работать с ними можно по законам теории хаоса к примеру стало намного проще предсказывать приступы эпилепсии у больных движение спутников по орбите оказались хаотичными транспортный поток по многополосной трассе также подвержен эффекту бабочки особенно сильное влияние теория хаоса оказала на демографические и экологические исследования ну и конечно у синоптиков теперь есть отговорка почему это не обещали нам теплую и ясную погоду а на улице холодно идет дождь бабочка где-нибудь в бразилии махнула крыльями мы ничего не могли поделать конечно же исследования лоренца были революционными и оказали огромное влияние на массовую культуру в трилогии фильмов назад в будущее можно заметить как изменяя что то в прошлом марти макфлай наблюдает колоссальные изменения в настоящем это и есть эффект бабочки лично у меня словосочетание эффект бабочки в первую очередь ассоциируется с эштоном катчером хотя бы потому что мое первое знакомство с этим явлением произошло именно благодаря одноименному фильму где в главной роли был эштон наш мир что уж там скрывать сложная конструкция сразу во всех смыслах очень навороченная и очень запутанная штука в своем прошлом видео я рассказал о таком абстрактном компьютере который вполне возможно мог бы предсказывать будущее на сотни или даже тысячи лет вперед так вот эффект бабочки который несомненно присутствует в нашем запутанном и хаотичном мире делает такое предсказание практически невозможным никаких округлений никаких приближений никаких допущений это запрещено а одна маленькая незначительная упущенная деталь будет стоить нам больших последствий в наших естественно неудачных попытках предсказать будущее причем чем дальше тем сильнее будут неточности чем дальше тем безнадежнее выглядит вся эта задумка если вам понравилось это видео обязательно поставьте ему большой палец вверх кстати говоря я пришел оттуда а теория хаоса все еще берет верх над нами так и не давая нам понять как же это вышло и что будет дальше на этом все если это видео соберет большое количество пальцев вверх то мы с вами увидимся уже на следующем видеоролике всем пока

Основные сведения

Теория хаоса гласит, что сложные системы чрезвычайно зависимы от первоначальных условий, и небольшие изменения в окружающей среде могут привести к непредсказуемым последствиям.

Математические системы с хаотическим поведением являются детерминированными, то есть подчиняются некоторому строгому закону, и, в некотором смысле, являются упорядоченными. Такое использование слова «хаос» отличается от его обычного значения (см. хаос в мифологии). Отдельная область физики - теория квантового хаоса - изучает недетерминированные системы, подчиняющиеся законам квантовой механики .

Пионерами теории считаются французский физик и философ Анри Пуанкаре (доказал теорему о возвращении), советские математики А. Н. Колмогоров и В. И. Арнольд и немецкий математик Ю. К. Мозер , построившие теорию хаоса, называемую КАМ (теория Колмогорова - Арнольда - Мозера). Теория вводит понятие аттракторов (в том числе, странных аттракторов как притягивающих канторовых структур), устойчивых орбит системы (т. н. КАМ-торов).

Понятие хаоса

Чувствительность к начальным условиям в такой системе означает, что все точки, первоначально близко приближенные между собой, в будущем имеют значительно отличающиеся траектории . Таким образом, произвольно небольшое изменение текущей траектории может привести к значительному изменению в её будущем поведении. Доказано, что последние два свойства фактически подразумевают чувствительность к первоначальным условиям (альтернативное, более слабое определение хаоса использует только первые два свойства из вышеупомянутого списка).

Чувствительность к начальным условиям более известна как «Эффект бабочки ». Термин возник в связи со статьёй «Предсказание: Взмах крыльев бабочки в Бразилии вызовет торнадо в штате Техас», которую Эдвард Лоренц в 1972 году вручил американской «Ассоциации для продвижения науки» в Вашингтоне . Взмах крыльев бабочки символизирует мелкие изменения в первоначальном состоянии системы, которые вызывают цепочку событий, ведущих к крупномасштабным изменениям. Если бы бабочка не хлопала крыльями, то траектория системы была бы совсем другой, что в принципе доказывает определённую линейность системы. Но мелкие изменения в первоначальном состоянии системы могут и не вызывать цепочку событий.

Топологическое смешивание

Топологическое смешивание в динамике хаоса означает такую схему расширения системы, что одна её область в какой-то стадии расширения накладывается на любую другую область. Математическое понятие «смешивание» как пример хаотической системы соответствует смешиванию разноцветных красок или жидкостей.

Тонкости определения

В популярных работах чувствительность к первоначальным условиям часто путается с самим хаосом. Грань очень тонкая, поскольку зависит от выбора показателей измерения и определения расстояний в конкретной стадии системы. Например, рассмотрим простую динамическую систему , которая неоднократно удваивает первоначальные значения. Такая система имеет чувствительную зависимость от первоначальных условий везде, так как любые две соседние точки в первоначальной стадии впоследствии случайным образом будут на значительном расстоянии друг от друга. Однако её поведение тривиально, поскольку все точки кроме нуля имеют тенденцию к бесконечности , и это не топологическое смешивание. В определении хаоса внимание обычно ограничивается только закрытыми системами, в которых расширение и чувствительность к первоначальным условиям объединяются со смешиванием.

Даже для закрытых систем, чувствительность к первоначальным условиям не идентична с хаосом в смысле изложенном выше. Например, рассмотрим тор (геометрическая фигура, поверхность вращения окружности вокруг оси лежащей в плоскости этой окружности - имеет форму бублика), заданный парой углов (x, y) со значениями от нуля до 2π . Отображение любой точки (x, y) определяется как (2x, y+a), где значение a/2π является иррациональным . Удвоение первой координаты в отображении указывает на чувствительность к первоначальным условиям. Однако, из-за иррационального изменения во второй координате, нет никаких периодических орбит - следовательно отображение не является хаотическим согласно вышеупомянутому определению.

Аттракторы

Наиболее интересны случаи хаотического поведения, когда большой набор первоначальных условий приводит к изменению на орбитах аттрактора. Простой способ продемонстрировать хаотический аттрактор - это начать с точки в районе притяжения аттрактора и затем составить график его последующей орбиты. Из-за состояния топологической транзитивности , это похоже на отображения картины полного конечного аттрактора.

Например, в системе описывающей маятник - пространство двумерное и состоит из данных о положении и скорости. Можно составить график положений маятника и его скорости. Положение маятника в покое будет точкой, а один период колебаний будет выглядеть на графике как простая замкнутая кривая . График в форме замкнутой кривой называют орбитой. Маятник имеет бесконечное количество таких орбит, формируя по виду совокупность вложенных эллипсов .

Странные аттракторы

Странные аттракторы появляются в обеих системах , и в непрерывных динамических (типа системы Лоренца) и в некоторых дискретных (например, отображение Эно (Hénon)). Некоторые дискретные динамические системы названы системами Жулиа по происхождению. И странные аттракторы, и системы Жулиа имеют типичную рекурсивную, фрактальную структуру.

Теорема Пуанкаре-Бендиксона доказывает, что странный аттрактор может возникнуть в непрерывной динамической системе, только если она имеет три или больше измерений . Однако это ограничение не работает для дискретных динамических систем. Дискретные двух- и даже одномерные системы могут иметь странные аттракторы. Движение трёх или большего количества тел , испытывающих гравитационное притяжение при некоторых начальных условиях может оказаться хаотическим движением .

Простые хаотические системы

Хаотическими могут быть и простые системы без дифференциальных уравнений . Примером может быть логистическое отображение, которое описывает изменение количества населения с течением времени. Логистическое отображение является полиномиальным отображением второй степени и часто приводится в качестве типичного примера того, как хаотическое поведение может возникать из очень простых нелинейных динамических уравнений . Ещё один пример - это модель Рикера, которая также описывает динамику населения.

Простую модель консервативного (обратимого) хаотического поведения демонстрирует так называемое отображение «кот Арнольда». В математике отображение «кот Арнольда» является моделью тора , которую он продемонстрировал в 1960 году с использованием образа кошки.

Показать хаос для соответствующих значений параметра может даже одномерное отображение, но для дифференциального уравнения требуется три или больше измерений . Теорема Пуанкаре - Бендиксона утверждает, что двумерное дифференциальное уравнение имеет очень стабильное поведение. Zhang и Heidel доказали, что трехмерные квадратичные системы только с тремя или четырьмя переменными не могут демонстрировать хаотическое поведение. Причина в том, что решения таких систем являются асимптотическими по отношению к двумерным плоскостям, и поэтому представляют собой стабильные решения.

Хронология

Первым исследователем хаоса был Анри Пуанкаре . В 1880-х, при изучении поведения системы с тремя телами, взаимодействующими гравитационно, он заметил, что могут быть непериодические орбиты , которые постоянно и не удаляются и не приближаются к конкретной точке. В 1898 Жак Адамар издал влиятельную работу о хаотическом движении свободной частицы, скользящей без трения по поверхности постоянной отрицательной кривизны. В своей работе «бильярд Адамара» он доказал, что все траектории непостоянны и частицы в них отклоняются друг от друга с положительной экспонентой Ляпунова .

Почти вся более ранняя теория, под названием эргодическая теория, была разработана только математиками. Позже нелинейные дифференциальные уравнения изучали Г. Биргхоф , A. Колмогоров , M. Каретник, Й. Литлвуд и Стивен Смэйл. Кроме С. Смэйла, на изучение хаоса всех их вдохновила физика: поведение трёх тел в случае с Г. Биргхофом, Турбулентность и астрономические исследования в случае с А. Колмогоровым, радиотехника в случае с М. Каретником и Й. Литлвудом. Хотя хаотическое планетарное движение не изучалось, экспериментаторы столкнулись с турбулентностью течения жидкости и непериодическими колебаниями в радиосхемах, не имея достаточной теории чтобы это объяснить.

Несмотря на попытки понять хаос в первой половине двадцатого столетия, теория хаоса как таковая начала формироваться только с середины столетия. Тогда для некоторых учёных стало очевидно, что преобладающая в то время линейная теория просто не может объяснить некоторые наблюдаемые эксперименты подобно логистическому отображению. Чтобы заранее исключить неточности при изучении - простые «помехи» в теории хаоса считали полноценной составляющей изучаемой системы.

Явления хаоса наблюдали многие экспериментаторы ещё до того, как его начали исследовать. Например, в 1927 году Ван дер Поль, а в 1958 году П. Ивес. 27 ноября 1961 Й. Уэда, будучи аспирантом в лаборатории Киотского университета, заметил некую закономерность и назвал её «случайные явления превращений», когда экспериментировал с аналоговыми вычислительными машинами. Тем не менее его руководитель не согласился тогда с его выводами и не позволил ему представить свои выводы общественности до 1970 года.

Тогда же в 1986 Нью-Йоркская Академия Наук вместе с национальным Институтом Мозга и центром Военно-морских исследований организовали первую важную конференцию по хаосу в биологии и медицине. Там Бернардо Уберман продемонстрировал математическую модель глаза и нарушений его подвижности среди шизофреников . Это привело к широкому применению теории хаоса в физиологии в 1980-х, например в изучении патологии сердечных циклов .

В 1987 Пер Бак, Чао Тан и Курт Висенфелд напечатали статью в газете, где впервые описали систему самодостаточности (СС), которая является одним из природных механизмов. Многие исследования тогда были сконцентрированы вокруг крупномасштабных естественных или социальных систем. CC стала сильным претендентом на объяснение множества естественных явлений, включая землетрясения, солнечные всплески, колебания в экономических системах, формирование ландшафта, лесные пожары, оползни, эпидемии и биологическую эволюцию .

Учитывая нестабильное и безмасштабное распределение случаев возникновения, странно, что некоторые исследователи предложили рассмотреть как пример CC возникновение войн. Эти «прикладные» исследования включали в себя две попытки моделирования: разработка новых моделей и приспособление существующих к данной естественной системе.

В тот же самый год Джеймс Глеик издал работу «Хаос: создание новой науки», которая стала бестселлером и представила широкой публике общие принципы теории хаоса и её хронологию. Теория хаоса прогрессивно развивалась как межпредметная и университетская дисциплина, главным образом под названием «анализ нелинейных систем». Опираясь на концепцию Томаса Куна о парадигме сдвига, много «учёных-хаотиков» (так они сами назвали себя) утверждали, что эта новая теория и есть пример сдвига.

Доступность более дешевых, более мощных компьютеров расширяет возможности применения теории хаоса. В настоящее время, теория хаоса продолжает быть очень активной областью исследований, вовлекая много разных дисциплин (математика, топология , физика, биология, метеорология, астрофизика, теория информации, и т. д.).

Эволюции для предсказаний приступов, учитывая первоначальное состояние организма.

Похожая область физики, названная квантовой теорией хаоса, исследует связь между хаосом и квантовой механикой . Недавно появилась новая область, названная хаосом относительности, чтобы описать системы, которые развиваются по законам общей теории относительности .

Различия между случайными и хаотическими данными

Только по исходным данным трудно сказать, каким является наблюдаемый процесс - случайным или хаотическим, потому что практически не существует явного чистого "сигнала" отличия. Всегда будут некоторые помехи, даже если их округлять или не учитывать. Это значит, что любая система, даже если она детерминированная, будет содержать немного случайностей.

Чтобы отличить детерминированный процесс от стохастического, нужно знать, что детерминированная система всегда развивается по одному и тому же пути от данной отправной точки. Таким образом, чтобы проверить процесс на детерминизм необходимо:

  1. Выбрать тестируемое состояние.
  2. Найти несколько подобных или почти подобных состояний.
  3. Сравнить их развитие во времени.

Погрешность определяется как различие между изменениями в тестируемом и подобном состояниях. Детерминированная система будет иметь очень маленькую погрешность (устойчивый, постоянный результат) или она будет увеличиваться по экспоненте со временем (хаос). Стохастическая система будет иметь беспорядочно распределенную погрешность.

По существу все методы определения детерминизма основываются на обнаружении состояний, самых близких к данному тестируемому (то есть, измерению корреляции , экспоненты Ляпунова, и т. д.). Чтобы определить состояние системы обычно полагаются на пространственные методы определения стадии развития. Исследователь выбирает диапазон измерения и исследует развитие погрешности между двумя близлежащими состояниями. Если она выглядит случайной, тогда нужно увеличить диапазон, чтобы получить детерминированную погрешность. Кажется, что это сделать просто, но на деле это не так. Во-первых, сложность состоит в том, что, при увеличении диапазона измерения, поиск близлежащего состояния требует намного большего количества времени для вычислений чтобы найти подходящего претендента. Если диапазон измерения выбран слишком маленьким, то детерминированные данные могут выглядеть случайными, но если диапазон слишком большой, то этого не случится - метод будет работать.

Когда в нелинейную детерминированную систему вмешиваются внешние помехи, её траектория постоянно искажается. Более того, действия помех усиливаются из-за нелинейности и система показывает полностью новые динамические свойства. Статистические испытания, пытающиеся отделить помехи от детерминированной основы или изолировать их, потерпели неудачу. При наличии взаимодействия между нелинейными детерминированными компонентами и помехами, в результате появляется динамика, которую традиционные испытания на нелинейность иногда не способны фиксировать.

Вам может показаться, что теория Хаоса весьма далека от фондового рынка и трейдинга в в частности. И действительно, каким боком один из разделов математики, в котором рассматриваются сложные динамические системы нелинейного характера, может относиться к миру трейденга? А вот и может!

Особенность нелинейных систем заключается в том, что их поведение находится в прямой зависимости от начальных условий. Но даже конкретные модели не позволяют предугадать их дальнейшего поведения.

На планете существует множество примеров подобных систем - турбулентность, атмосфера, биологические популяции и прочее.

Но, несмотря на свою непредсказуемость, динамические системы строго подчиняются одному закону и при желании могут быть смоделированы. К примеру, на фондовом рынке трейдеры и инвесторы также сталкиваются с кривыми, которые поддаются анализу.

Немного истории

Теория Хаоса нашла свое применение еще в 19 веке, но это были лишь первые шаги. Более серьезно изучением данной теории занялись Эдвард Лоренс и Бенуа Мандельброт, но произошло это уже позже – во второй половине 20-го века. При этом Лоуренс в своей теории пытался спрогнозировать погоду. И ему удалось вывести основную причину ее хаотичного поведения – различные начальные условия.

Основные инструменты

К основным инструментам теории Хаоса можно отнести фракталы и аттракторы. В чем суть каждого из них? Аттрактор – это то, к чему притягивается система, куда пытается прийти в конечном итоге. Его величина чаще всего является статистической мерой хаоса в целом. В свою очередь фрактал представляет собой некую геометрическую фигуру, часть которой постоянно повторяется. К слову, именно исходя из этого, было выведено одно из основных свойств данного инструмента – самоподобие. Но есть и еще одно свойство – дробность, которое становится математическим отображением меры неправильности фрактала.

По своей сути этот инструмент представляет собой противоположность хаоса.

К сожалению, точной математической системы теории Хаоса для изучения рыночных цен не существует. Следовательно, применять теорию Хаоса на практике не стоит торопиться. С другой стороны данное направление является одним из наиболее популярных и достойно внимания.

Хаотичность рынков

Как показывает практика, большинство современных рынков подвержено определенным тенденциям. Что это значит? Если рассматривать кривую на большом временном промежутке, то всегда можно увидеть причину того или иного движения. Но не все так гладко. На рынке всегда присутствует некий элемент непредсказуемости, который может внести какая-либо катастрофа, политические события или же действия инсайдеров. При этом современная теория Хаоса пытается спрогнозировать изменения на рынке с учетом каких-то нейросетевых подходов.

Возможность моделирования систем

Опытные участники прекрасно знают, что функционирует на основании какой-то сложной системы. Это не удивительно, ведь в нем присутствует множество участников (инвесторы, продавцы, спекулянты, покупатели, арбитражеры, хеджеры и так далее), каждый из которых выполняет какие-то свои задачи. При этом некоторые модели описывают данную систему, к примеру, волны Эллиота .

Отличие распределения Мандельбротта от нормального распределения

На практике распределение цены имеет гораздо больший разброс, чем ожидает большинство участников рынка. Мандельброт считал, что колебания цены имеет бесконечную дисперсию. Именно поэтому любые методы анализа являются неэффективными. Им было предложено проводить анализ распределения цены исключительно на основе фрактального анализа , который показал себя с лучшей стороны.

Выводы

Билл Вильяс (автор книги «Торговый хаос») уверен, что характеризующими звеньями хаоса являются системность и случайность. По его мнению, хаос является постоянным, в сравнению с той же стабильностью, которая временна. В свою очередь – это порождение хаоса. По сути, теория Хаоса ставит под сомнение саму основу технического анализа.

По мнению Вильямса, тот участник рынка, который в своем анализе отталкивается только от линейной перспективы, никогда не добьется больших результатов.

Более того, трейдеры проигрывают потому, что полагаются на различные виды анализа, которые зачастую абсолютно бесполезны.

Будьте в курсе всех важных событий United Traders - подписывайтесь на наш

Содержание статьи

ХАОСА ТЕОРИЯ, раздел математики, изучающий кажущееся случайным или очень сложное поведение детерминированных динамических систем. Динамическая система – это такая система, состояние которой меняется во времени в соответствии с фиксированными математическими правилами; последние обычно задаются уравнениями, связывающими будущее состояние системы с текущим. Такая система детерминирована, если эти правила не включают явным образом элемента случайности.

Вплоть до 1960-х годов многим казалось естественным полагать, что динамическая система, описываемая простыми детерминистическими уравнениями, должна вести себя относительно просто, хотя уже более столетия было известно, что это верно лишь в некоторых весьма специальных случаях, таких, как Солнечная система . Однако к 1980 математики и естествоиспытатели обнаружили, что хаос вездесущ.

Пример хаотического поведения из повседневной жизни – движение жидкости в миксере. Это устройство подчиняется простым механическим законам: его нож-смеситель вращается с постоянной скоростью, и взаимодействие жидкости с ножом внутри миксера можно описать простыми детерминистическими уравнениями. Однако возникающее при этом движение жидкости весьма сложно. Ее соседние области рассекаются ножом и разделяются, а отдаленные области могут сближаться. Короче говоря, жидкость перемешивается – для этого миксеры и предназначены.

Выражение «теория хаоса» используется преимущественно в популярной литературе. Специалисты же рассматривают эту дисциплину как раздел теории динамических систем.

Основные принципы.

Для изучения хаоса используют общие математические принципы и компьютерное моделирование. Фундаментальной характеристикой всякой динамической системы является итерация, т.е. результат повторного (многократного) применения одного и того же математического правила к некоторому выбранному состоянию. Состояние обычно описывается числом или набором чисел, но это может быть также геометрическая фигура или конфигурация. Например, пусть правилом будет «разделить на два». Начав с исходного состояния, задаваемого числом 1, это правило дает итерации 1/2, 1/4, 1/8,..., образующие очевидную закономерную последовательность. Правило «возвести в квадрат и вычесть единицу», примененное к 0, дает последовательность –1, 0, –1, 0,..., которая циклически и неограниченно скачет между числами 0 и -1. Однако правило «возвести в квадрат, удвоить и затем вычесть единицу», если начать применять его, скажем, к значению 0,1, порождает последовательность чисел -0,98, 0,92, 0,69, -0,03,..., в которой не удается заметить никакой очевидной закономерности.

Основным понятием теории хаоса является аттрактор, т.е. то поведение, к которому в конце концов приходит или в пределе стремится система. Аттракторами для трех описанных выше систем являются: единственное число 0; пара чисел (0, -1); весь интервал чисел между –1 и 1. Динамика в этих трех случаях соответственно стационарная, периодическая и хаотическая. Хаотический аттрактор обладает скрытой структурой, которая часто становится явной после графического представления итераций. Состояние динамической системы – это набор чисел, которые можно интерпретировать как координаты изображающей его точки в некотором фазовом пространстве. Когда состояние системы меняется, эта точка движется. Для стационарного аттрактора движущаяся точка стремится к фиксированному положению, а для периодического аттрактора она циклически проходит через фиксированную последовательность положений. В случае хаотического аттрактора движущаяся точка образует более сложную конфигурацию с очень хитроумной, многослойной структурой. Такие конфигурации называют фракталами; этот термин был введен в 1970 Б.Мандельбротом. Его работы впоследствии стимулировали огромное количество исследований по фрактальной геометрии.

Важной чертой хаотической динамики является ее непредсказуемость. Представим себе две частички порошка, находящиеся рядом друг с другом в жидкости внутри миксера. После включения миксера эти две частички недолго останутся рядом; они быстро разойдутся в разные стороны и вскоре начнут двигаться независимо. Подобным же образом, если дважды запустить хаотическую систему из очень близких начальных состояний, ее поведение в этих двух случаях быстро станет совершенно непохожим. Это означает, что на больших временных интервалах хаотические системы непредсказуемы. Малейшая погрешность измерения начального состояния быстро растет, и предсказание будущего состояния становится все более неточным. Однако, в отличие от случайной системы, краткосрочное прогнозирование здесь возможно.

История вопроса.

В 1926–1927 голландский инженер Б.Ван-дер-Пол сконструировал электронную схему, соответствующую математической модели сердечных сокращений. Он обнаружил, что при определенных условиях возникающие в схеме колебания были не периодическими, как при нормальном сердцебиении, а нерегулярными. Его работа получила серьезное математическое обоснование в годы Второй мировой войны , когда Дж.Литтлвуд и М.Картрайт исследовали принципы радиолокации. В начале 1960-х годов американский математик С.Смейл попытался построить исчерпывающую классификацию типичных разновидностей поведения динамических систем. Поначалу он предполагал, что можно обойтись различными комбинациями периодических движений, но вскоре понял, что возможно значительно более сложное поведение. В частности, он подробнее исследовал открытое Пуанкаре сложное движение в ограниченной задаче трех тел, упростив геометрию и получив при этом систему, известную ныне как «подкова Смейла». Он доказал, что такая система, несмотря на ее детерминированность, проявляет некоторые черты случайного поведения. Другие примеры подобных явлений были разработаны американской и российской школами в теории динамических систем, причем особенно важным оказался вклад В.И.Арнольда. Так начала возникать общая теория хаоса. Сам термин «хаос» ввели Дж.Йорке и Т.Ли в 1975 в краткой статье, посвященной обсуждению некоторых результатов исследований российской школы.

Исследования хаотических систем время от времени появлялись и в литературе по прикладным вопросам. Наиболее известная из таких моделей была введена метеорологом Э.Лоренцем в 1963. Лоренц построил модель конвекции в атмосфере, создав приближения очень сложных уравнений, описывающих это явление, значительно более простыми уравнениями с тремя неизвестными. Численно решая их на компьютере, он обнаружил, что решения колеблются нерегулярным, почти случайным образом. Лоренц также установил, что если слегка изменять начальные значения переменных, то отклонения будут усиливаться, пока новое решение не окажется совершенно непохожим на исходное. Описание им этого явления в последующих лекциях привело к популярному ныне выражению «эффект бабочки»: взмах крыла бабочки может изменить погоду.

Примеры приложений.

Ранняя работа Э.Лоренца в области метеорологии получила дальнейшее развитие, и теперь известно, что полные уравнения поведения атмосферы, используемые при прогнозировании погоды, могут вести себя хаотически. Это означает, что долгосрочные прогнозы погоды на основе данных о ее прошлом состоянии подвержены «эффекту бабочки», так что погода обычно не может быть предсказана более чем на четыре или пять дней вперед – независимо от мощности используемых компьютеров.

Движение в Солнечной системе тоже, как известно, хаотично, но здесь требуются десятки миллионов лет, прежде чем какое-то изменение станет непредсказуемым. Хаос проявляет себя многообразными способами. Например, спутник Сатурна Гиперион обращается по регулярной, предсказуемой орбите вокруг своей планеты, но при этом он хаотически кувыркается, изменяя направление оси собственного вращения. Теория хаоса объясняет это кувыркание как побочное действие приливных сил, создаваемых Сатурном. Теория хаоса объясняет также распределение тел в поясе астероидов между Марсом и Юпитером. Оно неравномерно: на одних расстояниях от Солнца существуют сгущения, на других – пустые промежутки. И сгущения, и пустые промежутки их гелиоцентрических орбит находятся на расстояниях, образующих «резонансы» с Юпитером, т.е. период обращения каждого астероида составляет некую простую дробь с периодом обращения Юпитера. Например, в резонансе 2:3 период обращения астероида равен 2/3 периода обращения Юпитера. Теория хаоса показывает, что одни резонансы порождают устойчивое поведение (сгущения), тогда как другие – неустойчивое (пустые промежутки). В частности, астероиды в резонансе 1:3 с Юпитером имеют неустойчивые орбиты и могут испытать возмущения, заставляющие их пересечь орбиту Марса, после чего они могут испытать дальнейшие возмущения и пересечь орбиту Земли. В 1995 Ж.Ласкар установил, что на временных масштабах десятков миллионов лет вся Солнечная система хаотична. Однако хаос не делает все черты движения в Солнечной системе непредсказуемыми. Например, форма планетной орбиты может быть предсказуемой, однако точное положение планеты на орбите остается непредсказуемым. Ласкар предсказал вероятное будущее Солнечной системы в целом на следующие несколько миллиардов лет. Согласно его вычислениям, ничего существенного не случится с орбитами внешних планет – Юпитера, Сатурна, Урана, Нептуна и Плутона. Орбиты Земли и Венеры тоже не претерпели бы существенных изменений, если бы не Марс, орбита которого изменится настолько, что он едва не столкнется с Землей. Меркурий тоже приблизится к Венере и будет либо выброшен из Солнечной системы, либо поменяется местами с Венерой.

Хаос имеет место также в биологии и экологии. В конце 19 в. было установлено, что популяции животных редко бывают стабильными; им свойственны нерегулярно чередующиеся периоды быстрого роста и почти полного вымирания. Теория хаоса показывает, что простые законы изменения численности популяций могут объяснить эти флуктуации без введения случайных внешних воздействий. Теория хаоса также объясняет динамику эпидемий, т.е. флуктуирующих популяций микроорганизмов в организмах людей.

Может создаться впечатление, что теория хаоса не должна иметь каких-либо полезных применений, поскольку хаотические системы непредсказуемы. Однако это неверно, во-первых, потому, что лишь некоторые аспекты хаотических систем непредсказуемы, и, во-вторых, потому, что полезность теории не ограничивается способностью прямого прогнозирования. В частности, теория хаоса предлагает новые методы анализа данных и обнаружения скрытых закономерностей там, где прежде систему считали случайной и никаких закономерностей в ее поведении не искали, полагая, что их просто не существует. Одним из приложений этого подхода служит машина FRACMAT, обеспечивающая дешевую и быструю процедуру контроля качества пружинной проволоки.

К числу наиболее перспективных применений теории хаоса принадлежит «хаотическое управление». В 1950 Дж.фон Нейман предположил, что неустойчивость погоды может в один прекрасный день обернуться благом, поскольку неустойчивость означает, что желаемый эффект может быть достигнут очень малым возмущением. В 1990 С.Гребоджи, Э.Отт и Дж.Йорке опубликовали теоретическую схему использования этого вида неустойчивости для управления хаотическими системами. Их схема представляет собой общую форму того метода, с помощью которого в 1985 инженеры НАСА послали космический зонд на встречу с кометой Джакобини – Циннера. Зонд пять раз облетел Луну, используя хаотичность взаимодействия трех тел, позволяющую совершать большие изменения траектории с малыми затратами топлива. Тот же метод был применен для синхронизации батареи лазеров; для управления нерегулярностями сердцебиения, что открывает возможность создать «интеллектуальный» стимулятор сердечного ритма; для управления биотоками мозга, что, в частности, может помочь контролировать эпилептические припадки; наконец, для ламинаризации турбулентного течения жидкости – метод, который способен уменьшить расход топлива самолетами.



Статьи по теме: