Период и частота гармонических колебаний. Гармонические колебания

При колебаниях движения тела периодически повторяются. Промежуток времени Т, за который система совершает один полный цикл колебаний, называется периодом колебаний .

Зная период, можно определить частоту колебаний , т.е. Число колебаний в единицу времени, например за секунду. Если одно колебание совершается за время Т, то число колебаний за секунду

Единица частоты называется Герцем (Гц) в честь немецкого физика Г. Герца.

Величина - циклическая, или круговая частота колебаний. Циклическую частоту свободных колебаний называют собственной частотой колебательной системы.

Период колебаний равен:

Собственная частота колебаний математического маятника при малых углах отклонения нити от вертикали зависит от длины маятника и ускорения свободного падения:

Период же этих колебаний равен:

Билет 10.

1) Превращение энергии при гармонических колебаниях.

Полная механическая энергия при колебаниях тела, прикрепленного к пружине, равна сумме кинетической потенциальной энергии колебательной системы:

Кинетическая и потенциальная энергии периодически изменяются. Но полная механическая энергия изолированной системы, в которой отсутствуют силы сопротивления, сохраняется (согласно закону сохранения механической энергии) неизменной. Она равна либа потенциальной энергии в момент максимального отклонения от положения равновесия, либо же кинетической энергии в момент, когда тело проходит положение равновесия:

Энергия колеблющегося тела при отсутствии сил трения сохраняется неизменной. Если на тела системы действуют силы сопротивления, то колебания являются затухающими .

Билет 11.

1) Электромагнитные колебания. Свободные и вынужденные колебания. Колебательный контур. Превращение энергии при электромагнитном колебании.

Электромагнитные колебания - периодические или почти периодические изменения заряда, силы тока и напряжения. Обычно они происходят с очень большой частотой, значительно превышающей частоту механических колебаний. Поэтому для их наблюдения и исследования очень удобен электронный осциллограф.

Свободными колебаниями называют колебания, которые возникают в системе после выведения ее из положения равновесия. В нашем случае колебательная система (конденсатор и катушка) выводится из равновесия при сообщении конденсатору заряда. Зарядка конденсатора эквивалентна отклонению маятника от положения равновесия.

Вынужденные колебания - колебания в цепи под действием внешней периодически изменяющейся электродвижущей силы.

Колебательный контур - простейшая система, в которой могут происходить свободные электромагнитные колебания, состоящая из конденсатора и катушки, присоединенной к его обкладкам.

Зарядим конденсатор, присоединив его на некоторое время к батарее с помощью переключателя. При этом конденсатор получит энергию

где - заряд конденсатора, а C – его электроемкость. Между обкладками конденсатора возникает разность потенциалов .

По мере разрядки конденсатора энергия электрического поля уменьшается, но одновременно возрастает энергия магнитного поля тока, которая определяется формулой:

где I – сила переменного тока; L – индуктивность катушки.

Полная энергия W электромагнитного контура равна сумме энергий его магнитного и электрического полей:

В момент, когда конденсатор полностью разрядится (q=0), энергия электрического поля станет равной нулю. Энергия же магнитного поля тока, согласно закону сохранения энергии, будет максимальной. В этот момент сила тока также достигнет максимального значения .

Допустим, что колебания незатухающие. Через промежутки времени, равные периоду колебаний, состояние системы в точности повторялось бы. Полная энергия при этому сохранялась бы неизменной, и ее значение в любой момент времени было бы равно максимальной энергии электрического поля или максимальной энергии магнитного поля:

Но в действительности потери энергии неизбежны.

В колебательном контуре энергия электрического поля заряженного конденсатора периодически переходит в энергию магнитного поля тока. При отсутствии сопротивления в контуре полная энергия электромагнитного поля остается неизменной.

Билет 12.

1) Аналогия между механическими и электромагнитными колебаниями.

Электромагнитные колебания в контуре имеют сходство со свободными механическими колебаниями, например с колебаниями тела, закрепленного на пружине. Сходство относится не к природе самих величин, которые периодически изменяются, а к процессам периодического изменения различных величин.

Одинаковый характер изменения величин (механических и электрических) объясняется тем, что имеется аналогия в условиях, при которых возникают механические и электромагнитные колебания.

Электромагнитные и механические колебания имеют разную природу, но описываются одинаковыми уравнениями.

Билет 13.

1) Переменный электрический ток.

Свободные электромагнитные колебания в контуре быстро затухают, и поэтому они практически не используются. Напротив, незатухающие вынужденные колебания имеют огромное практическое значение. Переменный ток в осветительной сети квартиры, применяемый на заводах и фабриках и т. д., представляет собой не что иное, как вынужденные электромагнитные колебания. Сила тока и напряжение меняются со временем по гармоническому закону.

Если напряжение на концах цепи меняется по гармоническому закону, то и напряженность электрического поля внутри проводников будет меняться гармонически. Эти гармонические изменения напряженности поля, в свою очередь, вызывают гармонические колебания скорости упорядоченного движения заряженных частиц и, следовательно, гармонические колебания силы тока.

Но при изменении напряжения на концах цепи электрическое поле не меняется мгновенно во всей цепи. Изменения поля распространяются хотя и с очень большой, но не с бесконечно большой скоростью.

Билет 14.

1) Сила тока в цепи с резистором.

Пусть цепь состоит из соединительных проводов и нагрузки с малой индуктивностью и большим сопротивлением R. Эту величину, которую мы до сих пор называли электрическим сопротивлением или просто сопротивлением, теперь будем называть активным сопротивлением .

Сопротивление R называется активным, потому что при наличии нагрузки, обладающей этим сопротивлением, цепь поглощает энергию, поступающую от генератора. Эта энергия превращается во внутреннюю энергию проводников - они нагреваются. Будем считать, что напряжение на зажимах цепи меняется по гармоническому закону:

Как и в случае постоянного тока, мгновенное значение силы тока прямо пропорционально мгновенному значению напряжения. Поэтому для нахождения мгновенного значения силы тока можно применить закон Ома:

В проводнике с активным сопротивлением колебания силы тока совпадают по фазе с колебаниями напряжения, а амплитуда силы тока определяется равенством:

Билет 15.

1) Конденсатор в цепи переменного тока.

Постоянный ток не может идти по цепи, содержащей конденсатор. Ведь фактически при это цепь оказывается разомкнутой, так как обкладки конденсатора разделены диэлектриком. Переменный же ток может идти по цепи, содержащей конденсатор.

Гармонические колебания – колебания, совершаемые по законам синуса и косинуса. На следующем рисунке представлен график изменения координаты точки с течением времени по закону косинуса.

картинка

Амплитуда колебаний

Амплитудой гармонического колебания называется наибольшее значение смещения тела от положения равновесия. Амплитуда может принимать различные значения. Она будет зависеть от того, насколько мы сместим тело в начальный момент времени от положения равновесия.

Амплитуда определяется начальными условиями, то есть энергией сообщаемой телу в начальный момент времени. Так как синус и косинус могут принимать значения в диапазоне от -1 до 1, то в уравнении должен присутствовать множитель Xm, выражающий амплитуду колебаний. Уравнение движения при гармонических колебаниях:

x = Xm*cos(ω0*t).

Период колебаний

Период колебаний – это время совершения одного полного колебания. Период колебания обозначается буквой Т. Единицы измерения периода соответствуют единицам времени. То есть в СИ - это секунды.

Частота колебаний – количество колебаний совершенных в единицу времени. Частота колебаний обозначается буквой ν. Частоту колебаний можно выразить через период колебания.

ν = 1/Т.

Единицы измерения частоты в СИ 1/сек. Эта единица измерения получила название Герца. Число колебаний за время 2*pi секунд будет равняться:

ω0 = 2*pi* ν = 2*pi/T.

Частота колебаний

Данная величина называется циклической частотой колебаний. В некоторой литературе встречается название круговая частота. Собственная частота колебательной системы – частота свободных колебаний.

Частота собственных колебаний рассчитывается по формуле:

Частота собственных колебаний зависит от свойств материала и массы груза. Чем больше жесткость пружины, тем больше частота собственных колебаний. Чем больше масса груза, тем меньше частота собственных колебаний.

Эти два вывода очевидны. Чем более жесткая пружина, тем большее ускорение она сообщит телу, при выведении системы из равновесия. Чем больше масса тела, тем медленнее будет изменяться это скорость этого тела.

Период свободных колебаний :

T = 2*pi/ ω0 = 2*pi*√(m/k)

Примечателен тот факт, что при малых углах отклонения период колебания тела на пружине и период колебания маятника не будут зависеть от амплитуды колебаний.

Запишем формулы периода и частоты свободных колебаний для математического маятника.

тогда период будет равен

T = 2*pi*√(l/g).

Данная формула будет справедлива лишь для малых углов отклонения. Из формулы видим, что период колебаний возрастает с увеличением длины нити маятника. Чем больше будет длина, тем медленнее тело будет колебаться.

От массы груза период колебаний совершенно не зависит. Зато зависит от ускорения свободного падения. При уменьшении g, период колебаний будет увеличиваться. Данное свойство широко используют на практике. Например, для измерения точного значения свободного ускорения.

Колебательным называется любое периодически повторяющееся движение. Поэтому зависимости координаты и скорости тела от времени при колебаниях описываются периодическими функциями времени. В школьном курсе физики рассматриваются такие колебания, в которых зависимости и скорости тела представляют собой тригонометрические функции , или их комбинацию, где - некоторое число. Такие колебания на-зываются гармоническими (функции и часто называют гармоническими функциями). Для решения задач на колебания, входящих в программу единого государственного экзамена по физике, нужно знать определения основных характеристик колебательного движения: амплитуды, периода, частоты, круговой (или циклической) частоты и фазы колебаний. Дадим эти определения и свяжем перечисленные величины с параметрами зависимости координаты тела от времени , которая в случае гармонических колебаний всегда может быть представлена в виде

где , и - некоторые числа.

Амплитудой колебаний называется максимальное отклонение колеблющегося тела от положения равновесия. Поскольку максимальное и минимальное значение косинуса в (11.1) равно ±1, то амплитуда колебаний тела, совершающего колебания (11.1), равна величине . Период колебаний - это минимальное время, через которое движение тела повторяется. Для зависимости (11.1) период можно установить из следующих соображений. Косинус - периодическая функция с периодом . Поэтому движение полностью повторяется через такое значение , что . Отсюда получаем

Круговой (или циклической) частотой колебаний называется число колебаний, совершаемых за единиц времени. Из формулы (11.3) заключаем, что круговой частотой является величина из формулы (11.1).

Фазой колебаний называется аргумент тригонометрической функции, описывающей зависимость координаты от времени. Из формулы (11.1) видим, что фаза колебаний тела, движение которого описывается зависимостью (11.1), равна . Значение фазы колебаний в момент времени = 0 называется начальной фазой. Для зависимости (11.1) начальная фаза колебаний равна величине . Очевидно, начальная фаза колебаний зависит от выбора начала отсчета времени (момента = 0), которое всегда является условным. Изменением начала отсчета времени начальная фаза колебаний всегда может быть «сделана» равной нулю, а синус в формуле (11.1) «превращен» в косинус или наоборот.

В программу единого государственного экзамена входит также знание формул для частоты колебаний пружинного и математического маятников. Пружинным маятником принято называть тело, которое может совершать колебания на гладкой горизонтальной поверхности под действием пружины, второй конец которой закреплен (левый рисунок). Математическим маятником называется массивное тело, размерами которого можно пренебречь, совершающее колебания на длинной, невесомой и нерастяжимой нити (правый рисунок). Название этой системы – «математический маятник» связано с тем, что она представляет собой абстрактную математическую модель реального (физического ) маятника. Необходимо помнить формулы для периода (или частоты) колебаний пружинного и математического маятников. Для пружинного маятника

где - длина нити, - ускорение свободного падения. Рассмотрим применение этих определений и законов на примере решения задач.

Чтобы найти циклическую частоту колебаний груза в задаче 11.1.1 найдем сначала период колебаний, а затем воспользуемся формулой (11.2). Поскольку 10 м 28 с - это 628 с, и за это время груз совершает 100 колебаний, период колебаний груза равен 6,28 с. Поэтому циклическая частота колебаний равна 1 c -1 (ответ 2 ). В задаче 11.1.2 груз за 600 с совершил 60 колебаний, поэтому частота колебаний - 0,1 с -1 (ответ 1 ).

Чтобы понять, какой путь пройдет груз за 2,5 периода (задача 11.1.3 ), проследим за его движением. Через период груз вернется назад в точку максимального отклонения, совершив полное колебание. Поэтому за это время груз пройдет расстояние, равное четырем амплитудам: до положения равновесия - одна амплитуда, от положения равновесия до точки максимального отклонения в другую сторону - вторая, назад в положение равновесия - третья, из положения равновесия в начальную точку - четвертая. За второй период груз снова пройдет четыре амплитуды, а за оставшиеся половину периода - две амплитуды. Поэтому пройденный путь равен десяти амплитудам (ответ 4 ).

Величина перемещения тела - расстояние от начальной точки до конечной. За 2,5 периода в задаче 11.1.4 тело успеет совершить два полных и половину полного колебания, т.е. окажется на максимальном отклонении, но с другой стороны от положения равновесия. Поэтому величина перемещения равна двум амплитудам (ответ 3 ).

По определению фаза колебаний - это аргумент тригонометрической функции, которой описывается зависимость координаты колеблющегося тела от времени. Поэтому правильный ответ в задаче 11.1.5 - 3 .

Период - это время полного колебания. Это значит, что возвращение тела назад в ту же точку, из которой тело начало движение, еще не означает, что прошел период: тело должно вернуться в ту же точку с той же скоростью. Например, тело, начав колебания из положения равновесия, за период успеет отклониться на максимальную величину в одну сторону, вернуться назад, отклонится на максимум в другую сторону и снова вернуться назад. Поэтому за период тело успеет два раза отклониться на максимальную величину от положения равновесия и вернуться обратно. Следовательно, на прохождение от положения равновесия до точки максимального отклонения (задача 11.1.6 ) тело затрачивает четвертую часть периода (ответ 3 ).

Гармоническими называются такие колебания, при которых зависимость координаты колеблющегося тела от времени описывается тригонометрической (синус или косинус) функцией времени. В задаче 11.1.7 таковыми являются функции и , несмотря на то, что входящие в них параметры обозначены как 2 и 2 . Функция же - тригонометрическая функция квадрата времени. Поэтому гармоническими являются колебания только величин и (ответ 4 ).

При гармонических колебаниях скорость тела изменяется по закону , где - амплитуда колебаний скорости (начало отсчета времени выбрано так, чтобы начальная фаза колебаний равнялась бы нулю). Отсюда находим зависимость кинетической энергии тела от времени
(задача 11.1.8 ). Используя далее известную тригонометрическую формулу, получаем

Из этой формулы следует, что кинетическая энергия тела изменяется при гармонических колебаниях также по гармоническому закону, но с удвоенной частотой (ответ 2 ).

За соотношением между кинетической энергий груза и потенциальной энергией пружины (задача 11.1.9 ) легко проследить из следующих соображений. Когда тело отклонено на максимальную величину от положения равновесия, скорость тела равна нулю, и, следовательно, потенциальная энергия пружины больше кинетической энергии груза. Напротив, когда тело проходит положение равновесия, потенциальная энергия пружины равна нулю, и, следовательно, кинетическая энергия больше потенциальной. Поэтому между прохождением положения равновесия и максимальным отклонением кинетическая и потенциальная энергия один раз сравниваются. А поскольку за период тело четыре раза проходит от положения равновесия до максимального отклонения или обратно, то за период кинетическая энергия груза и потенциальная энергия пружины сравниваются друг с другом четыре раза (ответ 2 ).

Амплитуду колебаний скорости (задача 11.1.10 ) проще всего найти по закону сохранения энергии. В точке максимального отклонения энергия колебательной системы равна потенциальной энергии пружины , где - коэффициент жесткости пружины, - амплитуда колебаний. При прохождении положения равновесия энергия тела равна кинетической энергии , где - масса тела, - скорость тела при прохождении положения равновесия, которая является максимальной скоростью тела в процессе колебаний и, следовательно, представляет собой амплитуду колебаний скорости. Приравнивая эти энергии, находим

(ответ 4 ).

Из формулы (11.5) заключаем (задача 11.2.2 ), что от массы математического маятника его период не зависит, а при увеличении длины в 4 раза период колебаний увеличивается в 2 раза (ответ 1 ).

Часы - это колебательный процесс, который используется для измерения интервалов времени (задача 11.2.3 ). Слова часы «спешат» означают, что период этого процесса меньше того, каким он должен быть. Поэтому для уточнения хода этих часов необходимо увеличить период процесса. Согласно формуле (11.5) для увеличения периода колебаний математического маятника необходимо увеличить его длину (ответ 3 ).

Чтобы найти амплитуду колебаний в задаче 11.2.4 , необходимо представить зависимость координаты тела от времени в виде одной тригонометрической функции. Для данной в условии функции это можно сделать с помощью введения дополнительного угла. Умножая и деля эту функцию на и используя формулу сложения тригонометрических функций, получим

где - такой угол, что . Из этой формулы следует, что амплитуда колебаний тела - (ответ 4 ).

Важнейшим параметром, характеризующим механические, звуковые, электрические, электромагнитные и все другие виды колебаний, является период - время, в течение которого совершается одно полное колебание. Если, например, маятник часов-ходиков делает за 1 с два полных колебания, период каждого колебания равен 0,5с. Период колебаний больших качелей около 2 с, а период колебаний струны может составлять от десятых до десятитысячных долей секунды.

Рисунок 2.4 - Колебание

где: φ – фаза колебания, I – сила тока, Ia – амплитудное значение силы тока (амплитуда)

Т – период колебания силы тока (период)

Другим параметром, характеризующим колебания, является частота (от слова «часто») - число, показывающее, сколько полных колебаний в секунду совершают маятник часов, звучащее тело, ток в проводнике и т.п. Частоту колебаний оценивают единицей, носящей название герц (сокращенно пишут Гц): 1 Гц-это одно колебание в секунду. Если, например, звучащая струна совершает 440 полных колебаний в 1 с (при этом она создает тон «ля» третьей октавы), говорят, что частота ее колебаний 440 Гц. Частота переменного тока электроосветительной сети 50 Гц. При этом токе электроны в проводах сети в течение секунды текут попеременно 50 раз в одном направлении и столько же раз в обратном, т.е. совершают за 1 с 50 полных колебаний.

Более крупные единицы частоты - килогерц (пишут кГц), равный 1000 Гц и мегагерц (пишут МГц), равный 1000 кГц или 1 000 000 Гц.

Амплитуда - максимальное значение смещения или изменения переменной величины при колебательном или волновом движении. Неотрицательная скалярная величина, измеряется в единицах, зависящих от типа волны или колебания.

Рисунок 2.5 - Синусоидальное колебание.

где, y - амплитуда волны, λ - длина волны.

Например:

    амплитуда для механического колебания тела (вибрация), для волн на струне или пружине - это расстояние и записывается в единицах длины;

    амплитуда звуковых волн и аудио-сигналов обычно относится к амплитуде давления воздуха в волне, но иногда описывается как амплитуда смещения относительно равновесия (воздуха или диафрагмы говорящего). Её логарифм обычно измеряется в децибелах (дБ);

    для электромагнитного излучения амплитуда соответствует величине электрического и магнитного поля.

Форма изменения амплитуды называется огибающей волной .

Звуковые колебания

Как возникают звуковые волны в воздухе? Воздух состоит из невидимых глазам частиц. При ветре они могут переноситься на большие расстояния. Но они, кроме того, могут и колебаться. Например, если в воздухе сделать резкое движение палкой, то мы почувствуем легкий порыв ветра и одновременно услышим слабый звук. Звук это - результат колебаний частиц воздуха, возбужденных колебаниями палки.

Проведем такой опыт. Оттянем струну, например, гитары, а потом отпустим ее. Струна начнет дрожать - колебаться около своего первоначального положения покоя. Достаточно сильные колебания струны заметны на глаз. Слабые колебания струны можно только почувствовать как легкое щекотание, если прикоснуться к ней пальцем. Пока струна колеблется, мы слышим звук. Как только струна успокоится, звук затихнет. Рождение звука здесь - результат сгущения и разрежения частиц воздуха. Колеблясь из стороны в сторону, струна теснит, как бы прессует перед собой частицы воздуха, образуя в некотором его объеме области повышенного давления, а сзади, наоборот, области пониженного давления. Это и есть звуковые волны . Распространяясь в воздухе со скоростью около 340 м/с , они несут в себе некоторый запас энергии. В тот момент, когда до уха доходит область повышенного давления звуковой волны, она надавливает на барабанную перепонку, несколько прогибая ее внутрь. Когда же до уха доходит разреженная область звуковой волны, барабанная перепонка выгибается несколько наружу. Барабанная перепонка все время колеблется в такт с чередующимися областями повышенного и пониженного давления воздуха. Эти колебания передаются по слуховому нерву в мозг, и мы воспринимаем их как звук. Чем больше амплитуды звуковых волн, тем больше энергии несут они в себе, тем громче воспринимаемый нами звук.

Звуковые волны, как и водяные или электрические колебания, изображают волнистой линией - синусоидой. Ее горбы соответствуют областям повышенного давления, а впадины-областям пониженного давления воздуха. Область повышенного давления и следующая за нею область пониженного давления образуют звуковую волну.

По частоте колебаний звучащего тела можно судить о тоне или высоте звука. Чем больше частота, тем выше тон звука, и наоборот, чем меньше частота, тем ниже тон звука. Наше ухо способно реагировать на сравнительно небольшую полосу (участок) частот звуковых колебаний - примерно от 20 Гц до 20 кГц . Тем не менее эта полоса частот вмещает всю обширнейшую гамму звуков, создаваемых голосом человека, симфоническим оркестром: от очень низких тонов, похожих на звук жужжания жука, до еле уловимого высокого писка комара. Колебания частотой до 20 Гц, называемые инфразвуковыми , и свыше 20 кГц, называемые ультразвуковыми , мы не слышим. А если бы барабанная перепонка нашего уха оказалась способной реагировать и на ультразвуковые колебания, мы могли бы тогда услышать писк летучих мышей, голос дельфина. Дельфины издают и слышат ультразвуковые колебания с частотами до 180 кГц.

Но нельзя путать высоту, т.е. тон звука с его силой. Высота звука зависит не от амплитуды, а от частоты колебаний. Толстая и длинная струна музыкального инструмента, например, создает низкий тон звука, т.е. колеблется медленнее, чем тонкая и короткая струна, создающая высокий тон звука (рис. 1).

Рисунок 2.6 - Звуковые волны

Чем больше частота колебаний струны, тем короче звуковые волны и выше тон звука.

В электро - и радиотехнике используют переменные токи частотой от нескольких герц до тысяч гигагерц. Антенны широковещательных радиостанций, например, питаются токами частотой примерно от 150 кГц до 100 МГц.

Эти быстропеременные колебания, называемые колебаниями радиочастоты, и являются тем средством, с помощью которого осуществляется передача звуков на большие расстояния без проводов.

Весь огромный диапазон переменных токов принято подразделять на несколько участков - поддиапазонов.

Токи частотой от 20 Гц до 20 кГц, соответствующие колебаниям, воспринимаемым нами как звуки разной тональности, называют токами (или колебаниями) звуковой частоты , а токи частотой выше 20 кГц - токами ультразвуковой частоты .

Токи частотой от 100 кГц до 30 МГц называют токами высокой частоты ,

Токи частотой выше 30 МГц - токами ультравысокой и сверхвысокой частоты.

В котором он находился в первоначальный момент, выбранный произвольно).

В принципе совпадает с математическим понятием периода функции , но имея в виду под функцией зависимость физической величины, совершающей колебания, от времени.

Это понятие в таком виде применимо как к гармоническим , так и к ангармоническим строго периодическими колебаниям (а приближенно - с тем или иным успехом - и непериодическим колебаниям, по крайней мере к близким к периодичности).

В случае, когда речь идет о колебаниях гармонического осциллятора с затуханием , под периодом понимается период его осциллирующей составляющей (игнорируя затухание), который совпадает с удвоенным временным промежутком между ближайшими прохождениями колеблющейся величины через ноль. В принципе, это определение может быть с большей или меньшей точностью и пользой распространено в некотором обобщении и на затухающие колебания с другими свойствами.

Обозначения: обычное стандартное обозначение периода колебаний: T (хотя могут применяться и другие, наиболее часто это \tau, иногда \Theta и т. д.).

T = \frac{1}{\nu},\ \ \ \nu = \frac{1}{T}.

Для волновых процессов период связан кроме того очевидным образом с длиной волны \lambda

v = \lambda \nu, \ \ \ T = \frac{\lambda}{v},

где v - скорость распространения волны (точнее - фазовая скорость).

В квантовой физике период колебаний прямо связан с энергией (поскольку в квантовой физике энергия объекта - например, частицы - есть частота колебаний его волновой функции).

Теоретическое нахождение периода колебаний той или иной физической системы сводится, как правило, к нахождению решения динамических уравнений (уравнения), описывающего эту систему. Для категории линейных систем (а приближенно - и для линеаризуемых систем в линейном приближении, которое зачастую является очень хорошим) существуют стандартные сравнительно простые математические методы, позволяющие это сделать (если известны сами физические уравнения, описывающие систему).

Для экспериментального определения периода используются часы , секундомеры , частотомеры , стробоскопы , строботахометры , осциллографы . Также применяются биения , метод гетеродинирования в разных видах, используется принцип резонанса . Для волн можно померить период косвенно - через длину волны, для чего применяются интерферометры , дифракционные решетки итп. Иногда требуются и изощренные методы, специально разработанные для конкретного трудного случая (трудность могут представлять как само измерение времени, особенно если речь идет о предельно малых или наоборот очень больших временах, так и трудности наблюдения колеблющейся величины).

Периоды колебаний в природе

Представление о периодах колебаний различных физических процессов дает статья Частотные интервалы (учитывая то, что период в секундах есть обратная величина частоты в герцах).

Некоторое представление о величинах периодов различных физических процессов также может дать шкала частот элетромагнитных колебаний (см. Электромагнитный спектр) .

Периоды колебаний слышимого человеком звука находятся в диапазоне

От 5·10 −5 до 0,2

(четкие границы его несколько условны).

Периоды электромагнитных колебаний, соответствующих разным цветам видимого света - в диапазоне

От 1,1·10 −15 до 2,3·10 −15 .

Поскольку при экстремально больших и экстремально маленьких периодах колебаний методы измерения имеют тенденцию становятся всё более косвенными (вплоть до плавного перетекания в теоретические экстраполяции), трудно назвать четкую верхнюю и нижнюю границы для периода колебаний, измеренного непосредственно. Какую-то оценку для верхней границы может дать время существования современной науки (сотни лет), а для нижней - период колебаний волновой функции самой тяжелой из известных сейчас частиц ().

В любом случае границей снизу может служить планковское время , которое столь мало, что по современным представлениям не только вряд ли может быть вообще как-то физически измерено , но и вряд ли в более-менее обозримом будущем представляется возможность приблизиться к измерению величин даже намного порядков больших, а границей сверху - время существования Вселенной - более десяти миллиардов лет.

Периоды колебаний простейших физических систем

Пружинный маятник

Математический маятник

T=2\pi \sqrt{\frac{l}{g}}

где l - длина подвеса (к примеру, нити), g - ускорение свободного падения .

Период малых колебаний (на Земле) математического маятника длиной 1 метр с хорошей точностью равен 2 секундам.

Физический маятник

T=2\pi \sqrt{\frac{J}{mgl}}

Крутильный маятник

T = 2 \pi \sqrt{\frac{I}{K}}

Эту формулу вывел в 1853 году английский физик У. Томсон .

Напишите отзыв о статье "Период колебаний"

Примечания

Ссылки

  • - статья из Большой советской энциклопедии

Отрывок, характеризующий Период колебаний

Ростов молчал.
– А вы что ж? тоже позавтракать? Порядочно кормят, – продолжал Телянин. – Давайте же.
Он протянул руку и взялся за кошелек. Ростов выпустил его. Телянин взял кошелек и стал опускать его в карман рейтуз, и брови его небрежно поднялись, а рот слегка раскрылся, как будто он говорил: «да, да, кладу в карман свой кошелек, и это очень просто, и никому до этого дела нет».
– Ну, что, юноша? – сказал он, вздохнув и из под приподнятых бровей взглянув в глаза Ростова. Какой то свет глаз с быстротою электрической искры перебежал из глаз Телянина в глаза Ростова и обратно, обратно и обратно, всё в одно мгновение.
– Подите сюда, – проговорил Ростов, хватая Телянина за руку. Он почти притащил его к окну. – Это деньги Денисова, вы их взяли… – прошептал он ему над ухом.
– Что?… Что?… Как вы смеете? Что?… – проговорил Телянин.
Но эти слова звучали жалобным, отчаянным криком и мольбой о прощении. Как только Ростов услыхал этот звук голоса, с души его свалился огромный камень сомнения. Он почувствовал радость и в то же мгновение ему стало жалко несчастного, стоявшего перед ним человека; но надо было до конца довести начатое дело.
– Здесь люди Бог знает что могут подумать, – бормотал Телянин, схватывая фуражку и направляясь в небольшую пустую комнату, – надо объясниться…
– Я это знаю, и я это докажу, – сказал Ростов.
– Я…
Испуганное, бледное лицо Телянина начало дрожать всеми мускулами; глаза всё так же бегали, но где то внизу, не поднимаясь до лица Ростова, и послышались всхлипыванья.
– Граф!… не губите молодого человека… вот эти несчастные деньги, возьмите их… – Он бросил их на стол. – У меня отец старик, мать!…
Ростов взял деньги, избегая взгляда Телянина, и, не говоря ни слова, пошел из комнаты. Но у двери он остановился и вернулся назад. – Боже мой, – сказал он со слезами на глазах, – как вы могли это сделать?
– Граф, – сказал Телянин, приближаясь к юнкеру.
– Не трогайте меня, – проговорил Ростов, отстраняясь. – Ежели вам нужда, возьмите эти деньги. – Он швырнул ему кошелек и выбежал из трактира.

Вечером того же дня на квартире Денисова шел оживленный разговор офицеров эскадрона.
– А я говорю вам, Ростов, что вам надо извиниться перед полковым командиром, – говорил, обращаясь к пунцово красному, взволнованному Ростову, высокий штаб ротмистр, с седеющими волосами, огромными усами и крупными чертами морщинистого лица.
Штаб ротмистр Кирстен был два раза разжалован в солдаты зa дела чести и два раза выслуживался.
– Я никому не позволю себе говорить, что я лгу! – вскрикнул Ростов. – Он сказал мне, что я лгу, а я сказал ему, что он лжет. Так с тем и останется. На дежурство может меня назначать хоть каждый день и под арест сажать, а извиняться меня никто не заставит, потому что ежели он, как полковой командир, считает недостойным себя дать мне удовлетворение, так…
– Да вы постойте, батюшка; вы послушайте меня, – перебил штаб ротмистр своим басистым голосом, спокойно разглаживая свои длинные усы. – Вы при других офицерах говорите полковому командиру, что офицер украл…
– Я не виноват, что разговор зашел при других офицерах. Может быть, не надо было говорить при них, да я не дипломат. Я затем в гусары и пошел, думал, что здесь не нужно тонкостей, а он мне говорит, что я лгу… так пусть даст мне удовлетворение…
– Это всё хорошо, никто не думает, что вы трус, да не в том дело. Спросите у Денисова, похоже это на что нибудь, чтобы юнкер требовал удовлетворения у полкового командира?
Денисов, закусив ус, с мрачным видом слушал разговор, видимо не желая вступаться в него. На вопрос штаб ротмистра он отрицательно покачал головой.
– Вы при офицерах говорите полковому командиру про эту пакость, – продолжал штаб ротмистр. – Богданыч (Богданычем называли полкового командира) вас осадил.
– Не осадил, а сказал, что я неправду говорю.
– Ну да, и вы наговорили ему глупостей, и надо извиниться.
– Ни за что! – крикнул Ростов.
– Не думал я этого от вас, – серьезно и строго сказал штаб ротмистр. – Вы не хотите извиниться, а вы, батюшка, не только перед ним, а перед всем полком, перед всеми нами, вы кругом виноваты. А вот как: кабы вы подумали да посоветовались, как обойтись с этим делом, а то вы прямо, да при офицерах, и бухнули. Что теперь делать полковому командиру? Надо отдать под суд офицера и замарать весь полк? Из за одного негодяя весь полк осрамить? Так, что ли, по вашему? А по нашему, не так. И Богданыч молодец, он вам сказал, что вы неправду говорите. Неприятно, да что делать, батюшка, сами наскочили. А теперь, как дело хотят замять, так вы из за фанаберии какой то не хотите извиниться, а хотите всё рассказать. Вам обидно, что вы подежурите, да что вам извиниться перед старым и честным офицером! Какой бы там ни был Богданыч, а всё честный и храбрый, старый полковник, так вам обидно; а замарать полк вам ничего? – Голос штаб ротмистра начинал дрожать. – Вы, батюшка, в полку без году неделя; нынче здесь, завтра перешли куда в адъютантики; вам наплевать, что говорить будут: «между павлоградскими офицерами воры!» А нам не всё равно. Так, что ли, Денисов? Не всё равно?
Денисов всё молчал и не шевелился, изредка взглядывая своими блестящими, черными глазами на Ростова.
– Вам своя фанаберия дорога, извиниться не хочется, – продолжал штаб ротмистр, – а нам, старикам, как мы выросли, да и умереть, Бог даст, приведется в полку, так нам честь полка дорога, и Богданыч это знает. Ох, как дорога, батюшка! А это нехорошо, нехорошо! Там обижайтесь или нет, а я всегда правду матку скажу. Нехорошо!
И штаб ротмистр встал и отвернулся от Ростова.
– Пг"авда, чог"т возьми! – закричал, вскакивая, Денисов. – Ну, Г"остов! Ну!
Ростов, краснея и бледнея, смотрел то на одного, то на другого офицера.
– Нет, господа, нет… вы не думайте… я очень понимаю, вы напрасно обо мне думаете так… я… для меня… я за честь полка.да что? это на деле я покажу, и для меня честь знамени…ну, всё равно, правда, я виноват!.. – Слезы стояли у него в глазах. – Я виноват, кругом виноват!… Ну, что вам еще?…
– Вот это так, граф, – поворачиваясь, крикнул штаб ротмистр, ударяя его большою рукою по плечу.
– Я тебе говог"ю, – закричал Денисов, – он малый славный.
– Так то лучше, граф, – повторил штаб ротмистр, как будто за его признание начиная величать его титулом. – Подите и извинитесь, ваше сиятельство, да с.
– Господа, всё сделаю, никто от меня слова не услышит, – умоляющим голосом проговорил Ростов, – но извиняться не могу, ей Богу, не могу, как хотите! Как я буду извиняться, точно маленький, прощенья просить?
Денисов засмеялся.
– Вам же хуже. Богданыч злопамятен, поплатитесь за упрямство, – сказал Кирстен.
– Ей Богу, не упрямство! Я не могу вам описать, какое чувство, не могу…
– Ну, ваша воля, – сказал штаб ротмистр. – Что ж, мерзавец то этот куда делся? – спросил он у Денисова.
– Сказался больным, завтг"а велено пг"иказом исключить, – проговорил Денисов.
– Это болезнь, иначе нельзя объяснить, – сказал штаб ротмистр.
– Уж там болезнь не болезнь, а не попадайся он мне на глаза – убью! – кровожадно прокричал Денисов.
В комнату вошел Жерков.
– Ты как? – обратились вдруг офицеры к вошедшему.
– Поход, господа. Мак в плен сдался и с армией, совсем.
– Врешь!
– Сам видел.
– Как? Мака живого видел? с руками, с ногами?
– Поход! Поход! Дать ему бутылку за такую новость. Ты как же сюда попал?
– Опять в полк выслали, за чорта, за Мака. Австрийской генерал пожаловался. Я его поздравил с приездом Мака…Ты что, Ростов, точно из бани?
– Тут, брат, у нас, такая каша второй день.
Вошел полковой адъютант и подтвердил известие, привезенное Жерковым. На завтра велено было выступать.
– Поход, господа!
– Ну, и слава Богу, засиделись.

Кутузов отступил к Вене, уничтожая за собой мосты на реках Инне (в Браунау) и Трауне (в Линце). 23 го октября.русские войска переходили реку Энс. Русские обозы, артиллерия и колонны войск в середине дня тянулись через город Энс, по сю и по ту сторону моста.



Статьи по теме: