Направления линий магнитного поля тока в проводнике. Направление тока и направление линий его магнитного поля (Зарицкий А.Н.)

Вопросы.

1. Как на опыте можно показать связь между направлением тока в проводнике и направлением линии его магнитного поля?

Если поменять направление тока в проводнике на противоположное все магнитные стрелки, расположенные в магнитном поле, созданном этим проводником, тоже повернутся на 180°.

2. Сформулируйте правило буравчика.

Если направление поступательного движения буравчика совпадает с направлением тока в проводнике, то направление вращения ручки буравчика совпадает с направлением линий магнитного поля, созданного этим током.

3. Что можно определить, используя правило буравчика?


Используя правило буравчика можно определить направление линий магнитного поля, зная направление тока или наоборот.

4. Сформулируйте правило правой руки для соленоида.

Если представить, что правая рука это соляноид, и расположить её так, чтобы ток выходил из кончиков пальцев, то большой палец укажет направление линий магнитной индукции.

5. Что можно определить с помощью правила правой руки?

С помощью правила правой руки можно определить направление магнитных линий, зная направление тока и наоборот.

Упражнения.

1. На рисунке 99 изображен проволочный прямоугольник, направление тока в нем показано стрелками. Перечертите рисунок в тетрадь и, пользуясь правилом буравчика, начертите вокруг каждой из его четырех сторон по одной магнитной линии, указав стрелкой ее направление.

2. На рисунке 100 показаны линии магнитного поля вокруг проводников с током. Проводники изображены кружочками. Перечертите рисунок в тетрадь и условными знаками обозначьте направления токов в проводниках, используя для этого правило буравчика.

3. Через катушку, внутри которой находится стальной стержень (рис. 101), пропускают ток указанного направления. Определите полюсы у полученного электромагнита. Как можно изменить положение полюсов у этого электромагнита?

По правилу правой руки получаем, что у изображенного на рисунке 101 электромагнита слева южный полюс S, а справа северный N. Чтобы изменить положение полюсов на противоположное нужно сделать так, чтобы ток шел в обратном направлении.

4. Определите направление тока в катушке и полюсы у источника тока (рис. 102), если при прохождении тока в катушке возникают указанные на рисунке магнитные полюсы.

В катушке ток идет справа налево, от плюса к минусу.

5. Направление тока в витках обмотки подковообразного электромагнита показано стрелками (рис. 103). Определите полюсы электромагнита.

Если подковообразный магнит расположен разрезом к нам, то слева будет S, справа N, если разрезом от нас, то наоборот.

6. Параллельные провода, по которым текут токи одного направления, притягиваются, а параллельные пучки электронов, движущихся в одном направлении, отталкиваются. В каком из этих случаев взаимодействие обусловлено электрическими силами, а в каком — магнитными? Почему вы так считаете?

Так как заряды одного знака всегда отталкиваются, то отталкивание пучков электронов обусловлено электрическими (кулоновскими) силами, а притяжение проводников обусловлено магнитными силами.

Продолжительное время электрические и магнитные поля изучались раздельно. Но в 1820 году датский учёный Ханс Кристиан Эрстед во время лекции по физике обнаружил, что магнитная стрелка поворачивается возле проводника с током (см. Рис. 1). Это доказало магнитное действие тока. После проведения нескольких экспериментов Эрстед обнаружил, что поворот магнитной стрелки зависел от направления тока в проводнике.

Рис. 1. Опыт Эрстеда

Для того чтобы представить, по какому принципу происходит поворот магнитной стрелки вблизи проводника с током, рассмотрим вид с торца проводника (см. Рис. 2, ток направлен в рисунок, - из рисунка), возле которого установлены магнитные стрелки. После пропускания тока стрелки выстроятся определённым образом, противоположными полюсами друг к другу. Так как магнитные стрелки выстраиваются по касательным к магнитным линиям, то магнитные линии прямого проводника с током представляют собой окружности, а их направление зависит от направления тока в проводнике.

Рис. 2. Расположение магнитных стрелок возле прямого проводника с током

Для более наглядной демонстрации магнитных линий проводника с током можно провести следующий опыт. Если вокруг проводника с током высыпать железные опилки, то через некоторое время опилки, попав в магнитное поле проводника, намагнитятся и расположатся по окружностям, которые охватывают проводник (см. Рис. 3).

Рис. 3. Расположение железных опилок вокруг проводника с током ()

Для определения направления магнитных линий возле проводника с током существует правило буравчика (правило правого винта) - если вкручивать буравчик по направлению тока в проводнике, то направление вращения ручки буравчика укажет направление линий магнитного поля тока (см. Рис. 4).

Рис. 4. Правило буравчика ()

Также можно использовать правило правой руки - если направить большой палец правой руки по направлению тока в проводнике, то четыре согнутых пальца укажут направление линий магнитного поля тока (см. Рис. 5).

Рис. 5. Правило правой руки ()

Оба указанных правила дают один и тот же результат и могут быть использованы для определения направления тока по направлению магнитных линий поля.

После открытия явления возникновения магнитного поля вблизи проводника с током Эрстед разослал результаты своих исследований большинству ведущих учёных Европы. Получив эти данные, французский математик и физик Ампер приступил к своей серии экспериментов и через некоторое время продемонстрировал публике опыт по взаимодействию двух параллельных проводников с током. Ампер установил, что если по двум расположенным параллельно проводникам течёт электрический ток в одну сторону, то такие проводники притягиваются (см. Рис. 6 б) если ток течёт в противоположные стороны - проводники отталкиваются (см. Рис. 6 а).

Рис. 6. Опыт Ампера ()

Из своих опытов Ампер сделал следующие выводы:

1. Вокруг магнита, или проводника, или электрически заряженной движущейся частицы существует магнитное поле.

2. Магнитное поле действует с некоторой силой на заряженную частицу, движущуюся в этом поле.

3. Электрический ток представляет собой направленное движение заряженных частиц, поэтому магнитное поле действует на проводник с током.

На рисунке 7 изображён проволочный прямоугольник, направление тока в котором показано стрелками. Используя правило буравчика, начертить возле сторон прямоугольника по одной магнитной линии, указав стрелкой её направление.

Рис. 7. Иллюстрация к задаче

Решение

Вдоль сторон прямоугольника (проводящей рамки) вкручиваем мнимый буравчик по направлению тока.

Вблизи правой боковой стороны рамки магнитные линии будут выходить из рисунка слева от проводника и входить в плоскость рисунка справа от него. Это обозначается с помощью правила стрелы в виде точки слева от проводника и крестика справа от него (см. Рис. 8).

Аналогично определяем направление магнитных линий возле других сторон рамки.

Рис. 8. Иллюстрация к задаче

Опыт Ампера, в котором вокруг катушки устанавливались магнитные стрелки, показал, что при протекании по катушке тока стрелки к торцам соленоида устанавливались разными полюсами вдоль мнимых линий (см. Рис. 9). Это явление показало, что вблизи катушки с током есть магнитное поле, а также что у соленоида есть магнитные полюса. Если изменить направление тока в катушке, магнитные стрелки развернутся.

Рис. 9. Опыт Ампера. Образование магнитного поля вблизи катушки с током

Для определения магнитных полюсов катушки с током используется правило правой руки для соленоида (см. Рис. 10) - если обхватить соленоид ладонью правой руки, направив четыре пальца по направлению тока в витках, то большой палец покажет направление линий магнитного поля внутри соленоида, то есть на его северный полюс. Это правило позволяет определять направление тока в витках катушки по расположению её магнитных полюсов.

Рис. 10. Правило правой руки для соленоида с током

Определите направление тока в катушке и полюсы у источника тока, если при прохождении тока в катушке возникают указанные на рисунке 11 магнитные полюсы.

Рис. 11. Иллюстрация к задаче

Решение

Согласно правилу правой руки для соленоида, обхватим катушку таким образом, чтобы большой палец показывал на её северный полюс. Четыре согнутых пальца укажут на направление тока вниз по проводнику, следовательно, правый полюс источника тока положительный (см. Рис. 12).

Рис. 12. Иллюстрация к задаче

На данном уроке мы рассмотрели явление возникновения магнитного поля вблизи прямого проводника с током и катушки с током (соленоида). Также были изучены правила нахождения магнитных линий данных полей.

Список литературы

  1. А.В. Перышкин, Е.М. Гутник. Физика 9. - Дрофа, 2006.
  2. Г.Н. Степанова. Сборник задач по физике. - М.: Просвещение, 2001.
  3. А.Фадеева. Тесты физика (7 - 11 классы). - М., 2002.
  4. В. Григорьев, Г. Мякишев Силы в природе. - М.: Наука, 1997.

Домашнее задание

  1. Интернет-портал Clck.ru ().
  2. Интернет-портал Class-fizika.narod.ru ().
  3. Интернет-портал Festival.1september.ru ().

1779. На рисунке 240 изображен проводник, который приблизили к магниту. Направление тока в проводнике показано стрелками. В какую сторону будет двигаться проводник?

1780*. На рисунке 241 изображены четыре проводника с током, расположенные между полюсами магнитов. Как движется каждый из них?

1781*. Четыре проводника с током находятся в магнитном поле (рис. 242). Как движется каждый из них? Взаимодействую ли они между собой?

1782. Обозначьте стрелками, как взаимодействуют параллельные точки в случаях а, б, в на рисунке 243.

1783. Взаимодействуют ли два провода троллейбусной линии? Если да, то как именно?

1784. На рисунке 244 показано, как взаимодействуют проводники с током. Покажите стрелками направления токов в проводниках.

1785*. Струя расплавленного алюминия при пропускании по ней тока сужается. Чем объяснить это явление?

1786. На рисунке 245 изображена электрическая цепь с проводником в форме пружины. Нижний конец пружины погружен в ртуть. Что происходит с пружиной в электрической цепи после замыкания ключа? Как при этом изменяется сила тока в цепи?

1787. Какое действие оказывает однородное магнитное поле на рамку с током (рис. 246) ? Как магнитное поле действует на каждую сторону рамки? Что нужно сделать, чтобы магнитное поле сжимало рамку?

1788*. Как будет поворачиваться рамка с током в однородном магнитном поле (рис. 247)? Как магнитное поле действует на каждую сторону рамки? Что нужно сделать, чтобы рамка повернулась в противоположную сторону?

1789. Рамка с током подвешена между полюсами магнита. Направление тока в ней указано стрелками (рис. 248). Как будет двигаться рамка в случае а и в случае б? Как магнитное поле действует на каждую сторону рамки в случае а? в случае б?

1790. Если рукой остановить лопасть работающего настольного вентилятора, его корпус начинает нагреваться. Почему?

1791. На рисунке 249 изображен провод длиной 50 см в однородном магнитном поле с индукцией 0,4 Тл. Провод расположен перпендикулярно линиям магнитной индукции, и по нему течет ток силой 0,5 А. Найдите модуль и направление силы, действующей на проводник.

1792. Двухметровый прямолинейный проводник, по которому течет ток силой 0,4 А, находится в однородном магнитном поле. На проводние со стороны поля действует сила, по модулю равная 0,4 Н (рис. 250), а вектор индукции магнитного поля перпендикулярен проводнику. Найдите модуль и направление вектора индукции магнитного поля.

1793. На прямолинейный проводник длиной 80 см, помещенный в однородное магнитное поле, сто стороны магнитного поля действует сила, равная 0,2 Н (рис. 251). Определите силу тока и направление тока в проводнике, если индукция магнитного поля равна 0,04 Тл.

Конспект урока
Тема: «Направление тока и направление линий его магнитного поля.»
Цель: Раскрыть сущность изучаемых явлений.
Задачи:
а) образовательная проконтролировать знания учащихся, полученные на предыдущем уроке, сформировать представления о структуре и содержании изучаемой физической теории, организовать усвоение основных определений по данной теме, познакомить с основными физическими величинами, сформулировать основные законы по данной теме.
б) развивающая формировать мотивацию постановкой познавательных задач, раскрытием связи теории и опыта, формировать умение анализировать факты при наблюдении или объяснении явлений, при работе с текстом учебника, развивать внимание, память, логическое и творческое мышления.
в) воспитательная формирование интереса к физике при анализе физических явлений, при демонстрации опытов, при решении задач, стимуляция работы учащихся, формирование научного мировоззрения учащихся.
Методы: объяснительно – иллюстративный, проблемный, репродуктивный, эвристический.
Оборудование: учебник, демонстрационное оборудование.
План урока:
1. Организационный момент (1 – 2 минуты).
2. Домашнее задание (2 – 3 минуты).
3. Проверка домашнего задания (10-15 минут).
4. Изложение нового материала (15 – 22 минуты).
5. Закрепление нового материала (5 – 10 минут).
Ход урока:
1. Организационный момент
2. Домашнее задание § 45, упр. 33(1, 2).
3. Проверка домашнего задания
Каковы свойства магнитного поля? (Порождается движущимися зарядами, обнаруживается по действию на движущиеся заряды или магнитную стрелку, оно материально, т. к. действует на тела, а значит, обладает энергией).
Дайте определение магнитных линий.
Какое магнитное поле образуется вокруг плоского магнита?
Какое магнитное поле образуется вокруг прямолинейного проводника с током?
Какое магнитное поле образуется внутри соленоида, длина которого значительно больше диаметра?
Что можно сказать о модуле и направлении силы, действующей на магнитную стрелку в различных точках неоднородного магнитного поля? Однородного магнитного поля?
Как изображают линии магнитного поля, направленные перпендикулярно в плоскости чертежа?
Как изменится период колебаний математического маятника с железным шариком, если под ним поместить сильный магнит? (Уменьшится).
4. Изложение нового материала
Связь направления линий магнитного поля тока с направлением тока в проводнике.
Правило буравчика: если направление поступательного движения буравчика совпадает с направлением тока в проводнике, то направление вращения ручки буравчика совпадает с направлением линий магнитного поля тока.
Правило правой руки для соленоида: если обхватить соленоид ладонью правой руки, направив четыре пальца по направлению тока в витках, то отставленный большой палец покажет направление линий магнитного поля внутри соленоида.
5. Закрепление нового материала
Вопросы.
Через соленоид протекал ток. Посредством реостата его сильно уменьшили, вследствие чего магнитное поле соленоида практически исчезло. Куда исчезла энергия?
Когда нет перемещения тела, то нет и механической работы. На что же расходуется энергия, подводимая к электромагниту, когда он «держит» груз?
Задачи.
Упражнение 35 (№ 1 – 5).
№ 1465.
Неизолированный провод нельзя наматывать на железный сердечник, так как при пропускании тока по проводу произойдет короткое замыкание и катушка сгорит.
№ 1466.
Так как железо является ферромагнетиком, то оно увеличивает действие магнитного поля катушки.
№ 1467.
Груз не оторвался, так как сердечник электромагнита обладает остаточной намагниченностью. При пропускании малого тока обратного направления катушка размагничивается, и груз отпадает.
№ 1468.
При нажатии рычага Р вниз замыкается цепь электромагнита М. Если ток превысит допустимое значение, то магнитное поле катушки усилится и притянет якорь Я, который освободит расцепитель. В результате под действием пружины рычаг разомкнет цепь катушки.
№ 1469.
Ток малой силы следует подключать к катушке электромагнитного реле, а рабочую цепь к верхним зажимам контактам реле (рис 361).
№ 1472.
Потому что на свободных концах гвоздей создаются одноименные магнитные полюса, которые отталкиваются друг от друга.
№ 1473.
Южный.
№ 1474.
При поднесении гвоздя к магниту на его концах создаются противоположные магнитные полюса. Поэтому он притягивается своими концами к разноименным полюсам магнита.

№ 1475.
Нет. Можно утверждать, что игла намагнитилась в поле магнитной стрелки и притянула противоположный полюс стрелки.
№ 1476.
Так как перечисленные материалы не являются ферромагнетиками (не обладают остаточной намагниченностью и не влияют на магнитное поле стрелки).
№ 1477.
Конец одного из стержней поднести к середине другого. Ненамагниченный стержень не будет притягивать намагниченный.

Рисунок 1Рисунок 315


Приложенные файлы

На рисунке 94 показано расположение магнитных стрелок вокруг проводника с током, расположенного перпендикулярно плоскости чертежа. Из рисунка видно, что изменение направления тока приводит к повороту всех магнитных стрелок на 180°. Причём в обоих случаях оси стрелок располагаются по касательным к магнитным линиям.

Рис. 94. Направление линий магнитного поля, созданного проводником с током, зависит от направления тока в проводнике

Следовательно, направление линий магнитного поля тока зависит от направления тока в проводнике.

Эта связь может быть выражена правилом буравчика (или правилом правого винта), которое заключается в следующем: если направление поступательного движения буравчика совпадает с направлением тока в проводнике, то направление вращения ручки буравчика совпадает с направлением линий магнитного поля тока (рис. 95, 96).

Рис. 95. Применение правила буравчика: проводник с током расположен перпендикулярно плоскости чертежа

Рис. 96. Применение правила буравчика: проводник с током расположен в плоскости чертежа

С помощью правила буравчика по направлению тока можно определить направление линий магнитного поля, создаваемого этим током, а по направлению линий магнитного поля - направление тока, создающего это поле.

Для определения направления линий магнитного поля соленоида удобнее пользоваться другим правилом, которое иногда называют правилом правой руки. Это правило формулируется так: если обхватить соленоид ладонью правой руки, направив четыре пальца по направлению тока в витках, то отставленный большой палец покажет направление линий магнитного поля внутри соленоида (рис. 97).

Рис. 97. Определение направления линий магнитного поля внутри соленоида

Вы уже знаете, что магнитное поле соленоида (см. рис. 90) подобно полю постоянного полосового магнита (см. рис. 88). Соленоид, как и магнит, имеет полюсы: тот конец соленоида, из которого магнитные линии выходят, является северным полюсом, а тот, в который входят, - южным.

Зная направление тока в соленоиде, по правилу правой руки можно определить направление магнитных линий поля внутри него, а значит, и его магнитные полюсы.

И наоборот, по направлению магнитных линий поля внутри соленоида или расположению его полюсов можно определить направление тока в витках соленоида.

Правило правой руки можно применять и для определения направления линий магнитного поля в центре витка с током.

Вопросы

  1. Опишите опыт, подтверждающий связь между направлением тока в проводнике и направлением линий магнитного поля, созданного проводником.
  2. Сформулируйте правило буравчика.
  3. Что можно определить, используя правило буравчика?
  4. Сформулируйте правило правой руки.
  5. Что можно определить с помощью правила правой руки?

Упражнение 32



Статьи по теме: