Почему нельзя делить на ноль? Можно ли делить на ноль? Отвечает математик

У математиков специфический юмор и некоторые вопросы, связанные с вычислениями, уже давно не воспринимаются серьезно. Не всегда понятно, пытаются тебе на полном серьезе объяснить, почему нельзя делить на ноль или это очередная шутка. А ведь сам вопрос не такой уж очевидный, если в элементарной математике до его решения можно дойти чисто логически, то вот в высшей вполне могут быть другие исходные условия.

Когда появился ноль?

Цифра ноль таит в себе множество загадок:

  • В Древнем Риме этого числа не знали, система отсчета начиналась с I.
  • За право называться прародителями ноля долгое время спорили арабы и индийцы.
  • Исследования культуры Майя показали, что эта древняя цивилизация вполне могла быть первой, в плане употребления ноля.
  • Ноль не обладает никаким числовым значением, даже минимальным.
  • Он буквально означает ничто, отсутствие предметов для счета.

В первобытном строе не было особой нужды для такой цифры, отсутствие чего-либо можно было объяснить при помощи слов. Но с зарождением цивилизаций повысились и потребности человека, в плане архитектуры и инженерии.

Для осуществления более сложных расчетов и выведения новых функций понадобилось число, которое обозначало бы полное отсутствие чего-либо .

Можно ли делить на ноль?

На этот счет существуют два диаметрально противоположных мнения :

В школе, еще в младших классах учат тому, что на ноль делить нельзя ни в коем случае. Объясняется это предельно просто:

  1. Представим, что у вас есть 20 долек мандарина.
  2. Поделив их на 5, вы раздадите пятерым друзьям по 4 дольки.
  3. Разделить на ноль не получится, ведь самого процесса деления между кем-то не будет.

Конечно же, это образное объяснение, во многом упрощенное и не совсем соответствующее действительности. Но оно предельно доступно поясняет бессмысленность деления чего-либо на ноль.

Ведь, по сути, таким образом можно обозначать факт отсутствия деления. А зачем усложнять математические вычисления и записывать еще и отсутствие деления?

Можно ли ноль делить на число?

С точки зрения прикладной математики, любое деление, в котором принимает участие ноль, имеет не так уж много смысла. Но школьные учебники однозначны в своем мнении:

  • Ноль можно делить.
  • Для деления следует использовать любое число.
  • Нельзя делить ноль на ноль.

Третий пункт может вызвать легкое недоумение, ведь всего несколькими абзацами выше указывалось, что такое деление вполне возможно. На самом деле, все зависит от дисциплины, в рамках которой вы проводите вычисления.

Школьникам в таком случае действительно лучше писать, что выражение невозможно определить , а, следовательно, оно и не имеет смысла. Но в некоторых ответвлениях алгебраической науки допускается запись такого выражения, с делением ноля на ноль. Особенно когда речь идет о вычислительных машинах и языках программирования.

Потребность делить ноль на число может возникнуть во время решения каких-либо равенств и поиска исходных значений. Но в таком случае, в ответе всегда будет ноль . Здесь, как и с умножением, на какое число вы бы не делили ноль, больше ноля в итоге не получите. Поэтому если в огромной формуле заметили это заветное число, постарайтесь быстро «прикинуть», а не сведутся ли все вычисления к очень простому решению.

Если бесконечность делить на ноль

О бесконечно больших и бесконечно малых значениях необходимо было упомянуть чуть раньше, ведь это тоже открывает некоторые лазейки для деления, в том числе и с использованием ноля. Вот правда и тут есть небольшая загвоздка, ведь бесконечно малое значение и полное отсутствие значения - понятия разные .

Но этой небольшой разницей в наших условиях можно пренебречь, в конечном счете, вычисления проходят с использованием абстрактных величин:

  • В числители должен быть знак бесконечности.
  • В знаменатели символическое изображение стремящегося к нулю значения.
  • В ответе выйдет бесконечность, отображающая бесконечно большую функцию.

Следует обратить внимание на то, что речь все же идет о символическом отображении бесконечно малой функции, а не об использовании ноля. С этим знаком ничего не поменялось, на него все так же нельзя делить, только в качестве очень и очень редких исключений.

В большинстве своем ноль используется для решения задач, которые находятся в чисто теоретической плоскости . Возможно, по прошествии десятилетий или даже столетий, всем современным вычислениям найдется практическое применение, и они обеспечат какой-то грандиозный прорыв в науке.

А пока что большинство гениев от математики о всемирном признании лишь мечтают. Исключение из этих правил - наш соотечественник, Перельман . Но его знают благодаря решению действительно эпохальной задачи с доказательством гипотезы Пуанкере и экстравагантному поведению.

Парадоксы и бессмысленность деления на ноль

Деление на ноль, в большинстве своем, не имеет никакого смысла:

  • Деление представляют как функцию, обратную умножению .
  • Мы можем умножить на ноль любое число и получить в ответе ноль.
  • По той же логике, можно было бы делить любое число на ноль.
  • В таких условиях несложно было бы прийти к выводу, что любое число, умноженное или деленное на ноль, равно любому другому числу, над которым провели эту операцию.
  • Откидываем математическое действие и получаем интереснейшее заключение - любое число равно любому числу.

Помимо создания таких вот казусов, деление на ноль не имеет практического значения , от слова вообще. Даже при возможности выполнения этого действия, не выйдет получить никакой новой информации.

С точки зрения элементарной математики, во время деления на ноль происходит разделение целого предмета ноль раз, то есть ни одного раза. Проще говоря - процесса деления не происходит , следовательно, и результата этого события быть не может.

Находясь в одном обществе с математиком, всегда можно задать пару банальных вопросов, по примеру, почему нельзя делить на ноль и получить интересный и доступный для понимания ответ. Или раздраженность, ведь у человека наверняка это спрашивают не в первый раз. И даже не в десятый. Так что берегите своих друзей-математиков, не заставляйте их повторять по сотне раз одно объяснение.

Видео: делим на ноль

В этом видео математик Анна Ломакова расскажет, что произойдет, если поделить какое-либо число на ноль и почему этого делать нельзя, с точки зрения математики:

Очень часто многие задаются вопросом, почему же нельзя использовать деление на ноль? В этой статье мы очень подробно расскажем о том, откуда появилось это правило, а также о том, какие действия можно выполнять с нолем.

Вконтакте

Ноль можно назвать одной из самых интересных цифр. У этой цифры нет значения , она означает пустоту в прямом смысле слова. Однако, если ноль поставить рядом с какой-либо цифрой, то значение этой цифры станет больше в несколько раз.

Число очень загадочно само по себе. Его использовал еще древний народ майя. У майя ноль означал «начало», а отсчет календарных дней также начинался с нуля.

Очень интересным фактом является то, что знак ноля и знак неопределенности у них были похожи. Этим майя хотели показать, что ноль является таким же тождественным знаком, как и неопределенность. В Европе же обозначение нуля появилось сравнительно недавно.

Также многим известен запрет, связанный с нолем. Любой человек скажет, что на ноль нельзя делить . Это говорят учителя в школе, а дети обычно верят им на слово. Обычно детям либо просто не интересно это знать, либо они знают, что будет, если, услышав важный запрет, сразу же спросить «А почему нельзя делить на ноль?». Но когда становишься старше, то просыпается интерес, и хочется побольше узнать о причинах такого запрета. Однако существует разумное доказательство.

Действия с нулем

Для начала необходимо определить, какие действия с нулем можно выполнять. Существует несколько видов действий :

  • Сложение;
  • Умножение;
  • Вычитание;
  • Деление (ноля на число);
  • Возведение в степень.

Важно! Если при сложении к любому числу прибавить ноль, то это число останется прежним и не поменяет своего числового значения. То же произойдет, если от любого числа отнять ноль.

При умножении и делении все обстоит немного иначе. Если умножить любое число на ноль , то и произведение тоже станет нулевым.

Рассмотрим пример:

Запишем это как сложение:

Всего складываемых нолей пять, вот и получается, что


Попробуем один умножить на ноль
. Результат также будет нулевым.

Ноль также можно разделить на любое другое число, не равное ему. В этом случае получится , значение которой также будет нулевым. Это же правило действует и для отрицательных чисел. Если ноль делить на отрицательное число, то получится ноль.

Также можно возвести любое число в нулевую степень . В таком случае получится 1. При этом важно помнить, что выражение «ноль в нулевой степени» абсолютно бессмысленно. Если попытаться возвести ноль в любую степень, то получится ноль. Пример:

Пользуемся правилом умножения, получаем 0.

Так можно ли делить на ноль

Итак, вот мы и подошли к главному вопросу. Можно ли делить на ноль вообще? И почему же нельзя разделить число на ноль при том, что все остальные действия с нулем вполне существуют и применяются? Для ответа на этот вопрос необходимо обратиться к высшей математике.

Начнем вообще с определения понятия, что же такое ноль? Школьные учителя утверждают, что ноль-это ничто. Пустота. То есть когда ты говоришь, что у тебя 0 ручек, это значит, что у тебя совсем нет ручек.

В высшей математике понятие «ноль» более широкое. Оно вовсе не означает пустоту. Здесь ноль называют неопределенностью, так как если провести небольшое исследование, то получается, что при делении ноля на ноль мы можем в результате получить любое другое число, которое не обязательно может быть нолем.

Знаете ли вы, что те простые арифметические действия, которые вы изучали в школе не так равноправны между собой? Самыми базовыми действиями являются сложение и умножение .

Для математиков не существует понятий « » и «вычитание». Допустим: если от пяти отнять три, то останется два. Так выглядит вычитание. Однако, математики запишут это таким образом:

Таким образом, получается, что неизвестной разностью является некое число, которое нужно прибавить к 3, чтобы получить 5. То есть, не нужно ничего вычитать, нужно просто найти подходящее число. Это правило действует для сложения.

Немного иначе дела обстоят с правилами умножения и деления. Известно, что умножение на ноль приводит к нулевому результату. Например, если 3:0=х, тогда, если перевернуть запись, получится 3*х=0. А число, которое умножалось на 0 даст ноль и в произведении. Получается, что числа, которое бы давало в произведении с нолем какую-либо величину, отличную от ноля, не существует. А значит, деление на ноль бессмысленно, то есть оно подходит к нашему правилу.

Но что будет, если попытаться разделить сам ноль на себя же? Возьмем как х некое неопределенное число. Получается уравнение 0*х=0. Его можно решить.

Если мы попробуем взять вместо х ноль, то мы получим 0:0=0. Казалось бы, логично? Но если мы попробуем вместо х взять любое другое число, например, 1, то в конечном итоге получится 0:0=1. Та же ситуация будет, если взять любое другое число и подставить его в уравнение .

В этом случае получится, что мы можем как множитель взять любое другое число. Итогом будет бесконечное множество разных чисел. Порой все же деление на 0 в высшей математике имеет смысл, но тогда обычно появляется некое условие, благодаря которому мы сможем все-таки выбрать одно подходящее число. Это действие называется «раскрытием неопределенности». В обычной же арифметике деление на ноль снова потеряет свой смысл, так как мы не сможем выбрать из множества какое-то одно число.

Важно! На ноль нельзя разделить ноль.

Ноль и бесконечность

Бесконечность очень часто можно встретить в высшей математике. Так как школьникам просто не важно знать о том, что существуют еще математические действия с бесконечностью, то и объяснить детям, почему делить на ноль нельзя, учителя как следует не могут.

Основные математические секреты ученики начинают узнавать лишь на первом курсе института. Высшая математика предоставляет большой комплекс задач, которые не имеют решения. Самыми известными задачами являются задачи с бесконечностью. Их можно решить при помощи математического анализа.

К бесконечности также можно применить элементарные математические действия: сложение, умножение на число. Обычно еще применяют вычитание и деление, но в конечном итоге они все равно сводятся к двум простейшим операциям.

В курсе школьной арифметики все математические операции проводятся с вещественными числами. Множество этих чисел (или непрерывное упорядоченное поле) имеет ряд свойств (аксиом): коммутативность и ассоциативность умножения и сложения, существование нуля, единицы, противоположного и обратного элементов. Также аксиомы порядка и непрерывности, применяемые для сравнительного анализа, позволяют определить все свойства вещественных чисел.

Поскольку деление является операцией, обратной умножению, при делении на ноль вещественных чисел неизбежно возникновение двух неразрешимых проблем. Во-первых, проверка результата деления на ноль при помощи умножения не имеет числового выражения. Каким бы числом не было частное, если его умножить на ноль, делимое получить невозможно. Во-вторых, в примере 0:0 ответом может служить абсолютно любое число, которое при перемножении с делителем всегда обращается в ноль.

Деление на ноль в высшей математике

Перечисленные трудности деления на ноль привели к наложению табу на эту операцию, по крайней мере, в рамках школьного курса. Однако в высшей математике находят возможности обойти этот запрет.

Например, за счет построения другой алгебраической структуры, отличной от знакомой всем числовой прямой. Примером такой структуры является колесо. Здесь существуют свои законы и правила. В частности, деление не привязано к умножению и превращается из бинарной операции (с двумя аргументами) в унарную (с одним аргументом), обозначается символом /х.

Расширение поля вещественных чисел происходит за счет введения гиперреальных чисел, которое охватывает бесконечно большие и бесконечно малые величины. Такой подход позволяет рассматривать термин «бесконечность» как некое число. Причем это число при расширении числовой прямой теряет свой знак, превращаясь в идеализированную точку, соединяющую два конца этой прямой. Такой подход можно сравнить с линией смены дат, когда при переходе между двумя часовыми поясами UTC+12 и UTC-12 можно оказаться в следующем дне или же в предыдущем. При этом становится верным утверждение х/0=∞ для любых х≠0.

Чтобы устранить неопределенность 0/0, для колеса вводится новый элемент ⏊=0/0. При этом в данной алгебраической структуре есть свои нюансы: 0·х≠0; х-х≠0 в общем случае. Также х·/х≠1, поскольку деление и умножение больше не считаются обратными операциями. Но данные особенности колеса хорошо объясняются с помощью тождеств дистрибутивного закона, действующего в такой алгебраической структуре несколько иначе. Более подробные разъяснения можно найти в специализированной литературе.

Алгебра, к которой все привыкли, является, по сути, частным случаем более сложных систем, например, того же колеса. Как видим, делить на ноль в высшей математике можно. Для этого требуется выйти за границы привычных представлений о числах, алгебраических операциях и законах, которым они подчиняются. Хотя это вполне естественный процесс, сопровождающий любой поиск новых знаний.

Говорят, можно поделить на ноль если определить результат деления на ноль. Просто нужно расширить алгебру. По странному стечению обстоятельств найти хоть какой-то, а лучше понятный и простой, пример такого расширения не удается. Чтобы исправить интернет нужна либо демонстрация одного из способов такого расширения, либо описание почему это не возможно.


Статья написана в продолжение тренда:

Disclaimer

Цель данной статьи - объяснить «человеческим языком», как работают фундаментальные основы математики, структурировать знания и восстановить упущенные причинно-следственные связи между разделами математики. Все рассуждения являются философскими, в части суждений расходятся с общепринятыми (следовательно, не претендует на математическую строгость). Статья рассчитана на уровень читателя «сдал вышку много лет назад».

Понимание принципов арифметики, элементарной, общей и линейной алгебры, математического и нестандартного анализа, теории множеств, общей топологии, проективной и аффинной геометрии - желательно, но не обязательно.

В ходе экспериментов ни одна бесконечность не пострадала.

Пролог

Выход «за рамки» - это естественный процесс поиска новых знаний. Но не всякий поиск приносит новое знание и следовательно пользу.

1. Вобще-то уже все поделили до нас!

1.1 Аффинное расширение числовой прямой

Начнем с того, с чего начинают, наверное, все искатели приключений при делении на ноль. Вспомним график функции .


Слева и справа от нуля функция уходит в разные стороны «небытия». В самом нуле вообще “омут” и ничего не видно.

Вместо того, чтобы бросаться в «омут» с головой, посмотрим что туда втекает и что оттуда вытекает. Для этого воспользуемся пределом - основным инструментом математического анализа . Основная “фишка” в том, что предел позволяет идти к заданной точке так близко, как это возможно, но не “наступить на нее”. Такая себе “оградка” перед “омутом”.


Оригинал

Хорошо, «оградку» поставили. Уже не так страшно. У нас есть два пути к «омуту». Зайдем слева - крутой спуск, справа - крутой подъем. Сколько к “оградке” не иди, ближе она не становится. Пересечь нижнее и верхнее «небытие» никак не выходит. Возникают подозрения, может мы идем по кругу? Хотя нет, числа-то меняются, значит не по кругу. Пороемся в сундучке с инструментами математического анализа еще. Кроме пределов с «оградкой» в комплекте идет положительная и отрицательная бесконечности . Величины совершенно абстрактные (не являются числами), хорошо формализованы и готовы к употреблению! Это нам подходит. Дополним наше «бытие» (множество вещественных чисел) двумя бесконечностями со знаком.


Математическим языком:
Именно это расширение позволяет брать предел при аргументе стремящемся к бесконечности и получить бесконечность в качестве результата взятия предела.

Есть два раздела математики которые описывают одно и тоже используя разную терминологию.

Подытожим:

В сухом остатке. Старые подходы перестали работать. Сложность системы, в виде кучи “если”, “для всех, кроме” и т.п., возросла. У нас было только две неопределенности 1/0 и 0/0 (мы не рассматривали степенные операции), стало пять. Раскрытие одной неопределенности породило еще больше неопределенностей.

1.2 Колесо

На введении беззнаковой бесконечности все не остановилось. Для того чтобы выбраться из неопределенностей нужно второе дыхание.

Итак, у нас есть множество вещественных чисел и две неопределенности 1/0 и 0/0. Для устранения первой мы выполнили проективное расширение числовой прямой (то есть ввели беззнаковую бесконечность). Попробуем разобраться со второй неопределенностью вида 0/0. Сделаем аналогично. Дополним множество чисел новым элементом, представляющим вторую неопределенность.


Определение операции деления основано на умножении. Это нам не подходит. Отвяжем операции друг от друга, но сохраним привычное поведение для вещественных чисел. Определим унарную операцию деления, обозначаемую знаком "/".


Доопределим операции.


Данная структура называется «Колесом» (Wheel). Термин был взят из-за схожести с топологической картинкой проективного расширения числовой прямой и точки 0/0.


Вроде все неплохо выглядит, но дьявол кроется в деталях:

Чтобы устаканить все особенности, дополнительно к расширению множества элементов прилагается бонус в виде не одного, а двух тождеств, описывающих дистрибутивный закон.


Математическим языком:
С точки зрения общей алгебры мы оперировали полем . А в поле, как известно, определены всего две операции (сложение и умножение). Понятие деления выводится через обратные, а если еще глубже, то единичные элементы. Внесенные изменения превращают нашу алгебраическую систему в моноид как по операции сложения (с нулем в качестве нейтрального элемента), так и по операции умножения (с единицей в качестве нейтрального элемента).

В трудах первооткрывателей не всегда используются символы ∞ и ⊥. Вместо этого можно встретить запись в виде /0 и 0/0.


Мир уже не так прекрасен, не правда ли? Все же не стоит спешить. Проверим, справятся ли новые тождества дистрибутивного закона с нашим расширенным множеством .


На этот раз результат намного лучше.

Подытожим:

В сухом остатке. Алгебра работает отлично. Однако за основу было взято понятие «не определено» которое стали считать чем-то существующим и оперировать им. Однажды кто-нибудь скажет, что все плохо и нужно разбить данное «не определено» еще на несколько “не определено", но помельче. Общая алгебра скажет: “Без проблем, Бро!".
Примерно так постулированы дополнительные (j и k) мнимые единицы в кватернионах Добавить метки

Говорят, можно поделить на ноль если определить результат деления на ноль. Просто нужно расширить алгебру. По странному стечению обстоятельств найти хоть какой-то, а лучше понятный и простой, пример такого расширения не удается. Чтобы исправить интернет нужна либо демонстрация одного из способов такого расширения, либо описание почему это не возможно.


Статья написана в продолжение тренда:

Disclaimer

Цель данной статьи - объяснить «человеческим языком», как работают фундаментальные основы математики, структурировать знания и восстановить упущенные причинно-следственные связи между разделами математики. Все рассуждения являются философскими, в части суждений расходятся с общепринятыми (следовательно, не претендует на математическую строгость). Статья рассчитана на уровень читателя «сдал вышку много лет назад».

Понимание принципов арифметики, элементарной, общей и линейной алгебры, математического и нестандартного анализа, теории множеств, общей топологии, проективной и аффинной геометрии - желательно, но не обязательно.

В ходе экспериментов ни одна бесконечность не пострадала.

Пролог

Выход «за рамки» - это естественный процесс поиска новых знаний. Но не всякий поиск приносит новое знание и следовательно пользу.

1. Вобще-то уже все поделили до нас!

1.1 Аффинное расширение числовой прямой

Начнем с того, с чего начинают, наверное, все искатели приключений при делении на ноль. Вспомним график функции .


Слева и справа от нуля функция уходит в разные стороны «небытия». В самом нуле вообще “омут” и ничего не видно.

Вместо того, чтобы бросаться в «омут» с головой, посмотрим что туда втекает и что оттуда вытекает. Для этого воспользуемся пределом - основным инструментом математического анализа . Основная “фишка” в том, что предел позволяет идти к заданной точке так близко, как это возможно, но не “наступить на нее”. Такая себе “оградка” перед “омутом”.


Оригинал

Хорошо, «оградку» поставили. Уже не так страшно. У нас есть два пути к «омуту». Зайдем слева - крутой спуск, справа - крутой подъем. Сколько к “оградке” не иди, ближе она не становится. Пересечь нижнее и верхнее «небытие» никак не выходит. Возникают подозрения, может мы идем по кругу? Хотя нет, числа-то меняются, значит не по кругу. Пороемся в сундучке с инструментами математического анализа еще. Кроме пределов с «оградкой» в комплекте идет положительная и отрицательная бесконечности . Величины совершенно абстрактные (не являются числами), хорошо формализованы и готовы к употреблению! Это нам подходит. Дополним наше «бытие» (множество вещественных чисел) двумя бесконечностями со знаком.


Математическим языком:
Именно это расширение позволяет брать предел при аргументе стремящемся к бесконечности и получить бесконечность в качестве результата взятия предела.

Есть два раздела математики которые описывают одно и тоже используя разную терминологию.

Подытожим:

В сухом остатке. Старые подходы перестали работать. Сложность системы, в виде кучи “если”, “для всех, кроме” и т.п., возросла. У нас было только две неопределенности 1/0 и 0/0 (мы не рассматривали степенные операции), стало пять. Раскрытие одной неопределенности породило еще больше неопределенностей.

1.2 Колесо

На введении беззнаковой бесконечности все не остановилось. Для того чтобы выбраться из неопределенностей нужно второе дыхание.

Итак, у нас есть множество вещественных чисел и две неопределенности 1/0 и 0/0. Для устранения первой мы выполнили проективное расширение числовой прямой (то есть ввели беззнаковую бесконечность). Попробуем разобраться со второй неопределенностью вида 0/0. Сделаем аналогично. Дополним множество чисел новым элементом, представляющим вторую неопределенность.


Определение операции деления основано на умножении. Это нам не подходит. Отвяжем операции друг от друга, но сохраним привычное поведение для вещественных чисел. Определим унарную операцию деления, обозначаемую знаком "/".


Доопределим операции.


Данная структура называется «Колесом» (Wheel). Термин был взят из-за схожести с топологической картинкой проективного расширения числовой прямой и точки 0/0.


Вроде все неплохо выглядит, но дьявол кроется в деталях:

Чтобы устаканить все особенности, дополнительно к расширению множества элементов прилагается бонус в виде не одного, а двух тождеств, описывающих дистрибутивный закон.


Математическим языком:
С точки зрения общей алгебры мы оперировали полем . А в поле, как известно, определены всего две операции (сложение и умножение). Понятие деления выводится через обратные, а если еще глубже, то единичные элементы. Внесенные изменения превращают нашу алгебраическую систему в моноид как по операции сложения (с нулем в качестве нейтрального элемента), так и по операции умножения (с единицей в качестве нейтрального элемента).

В трудах первооткрывателей не всегда используются символы ∞ и ⊥. Вместо этого можно встретить запись в виде /0 и 0/0.


Мир уже не так прекрасен, не правда ли? Все же не стоит спешить. Проверим, справятся ли новые тождества дистрибутивного закона с нашим расширенным множеством .


На этот раз результат намного лучше.

Подытожим:

В сухом остатке. Алгебра работает отлично. Однако за основу было взято понятие «не определено» которое стали считать чем-то существующим и оперировать им. Однажды кто-нибудь скажет, что все плохо и нужно разбить данное «не определено» еще на несколько “не определено", но помельче. Общая алгебра скажет: “Без проблем, Бро!".
Примерно так постулированы дополнительные (j и k) мнимые единицы в кватернионах Добавить метки



Статьи по теме: