Свойство касательной и отрезков касательных. Что такое касательная к окружности? Свойства касательной к окружности. Общая касательная к двум окружностям

Проведем СО и рассотрим треугольники ОAC и OBC1) В ΔОAC и ΔOBC:ОC - общая,ОA = OB, как радиусы,ОA ⊥ CA, OB ⊥ CB (т.к. AC и CB - касательные). Таким образом, ΔОAC = ΔOBC по 1-му признаку равенства треугольников. Откуда AC = CО.2) Пусть через точку C можно провести три касательных к окружности: CA, CB, CM. Тогда следует, что CA = CB = CM, откуда точки A, B, M лежат на одной окружности с центром C. Получилось, что две окружности имеют три общие очки. Противоречие. Теореме об окружности:окружности не могут пересекаться более чем в двух точках. Таким образом, через данную точку нельзя провести более двух касательных к данной окружности. Поэтому СA и СВ касательные к окружности и они равны.

Из точки С проведем отрезок СО. Получим два треугольника:ΔСОА и ΔСОВВ ΔСОА и ΔСОВ:СО - общая, ОА = OВ, как радиусы, ОА ⊥ СА, OВ ⊥ СВ (т.к. СА и СВ - касательные). Таким образом, ΔСОА = ΔСОВ по 1-му признаку равенства треугольников. Откуда СА = СВ.



Похожие задачи:







1. В произвольном треугольнике проведена средняя линия, отсекающая от него меньший треугольник. Найдите отношение площади меньшего треугольника к площади данного треугольника.

2. Вокруг трапеции описана окружность, центр которой находится на ее большем основании. Найдите углы трапеции, если ее меньшее основание в два раза меньше большего основания.

3. Угол между биссектрисой и высотой, проведенной из вершины большего угла треугольника, равен 12*. Найдите углы этого треугольника, если его наибольший угол в четыре раза больше наименьшего угла.

4. О1 и О2 - центры двух касающихся внешним образом окружностей. Прямая О1О2 пересекает первую окружность (с центром в точке О1) в точке А. Найдите диаметр второй окружности, если радиус первой равен 5 см, а касательная, проведенная из точки А ко второй окружности, образует с прямой О1О2 угол в 30*.



Отрезки касательных к окружности, проведенные из одной точки, равны и составляют равные углы с прямой, проходящей через эту точку и центр окружности. ДОКАЗАТЕЛЬСТВО. А. 3. В. 4. 1. 2. С. О. По теореме о свойстве касательной углы 1 и 2 прямые, поэтому треугольники АВО и АСО прямоугольные. Они равны, т.к. имеют общую гипотенузу ОА и равные катеты ОВ и ОС. Следовательно, АВ=АС и угол 3= углу 4, что и требовалось доказать.

Слайд 4 из презентации ««Окружность» геометрия» . Размер архива с презентацией 316 КБ.

Геометрия 8 класс

краткое содержание других презентаций

«Свойства четырёхугольников» - Трапеция. Незнайка исправил двойку. Диагонали делят углы пополам. Определения четырехугольников. Диагонали. Диктант. Квадратом называется прямоугольник, у которого все стороны равны. Все углы прямые. Противоположные углы. Элементы параллелограмма. Конструктор. Ромб. Свойства четырехугольников. Стороны. Четырехугольники и их свойства. Четырехугольник. Помогите Незнайке исправить двойку. Диагональ. Противоположные стороны.

«Векторы 8 класс» - Цели урока. Назовите равные и противоположные векторы. Определите координаты вектора. Равные вектора. Векторы на уроках физики. Продолжите фразу. Найдите и назовите равные векторы на данном рисунке. Координаты вектора. Практическая работа. Абсолютная величина вектора. Абсолютная величина вектора. Самостоятельная работа в парах. Явления природы описываются физическими величинами. Векторы. Координаты вектора.

«Скалярное произведение в координатах» - Математическая разминка. Решение треугольника. Теорема Наполеона. Новый материал. Обменяйтесь карточками. Решим задание. Геометрия. Имя автора теоремы. Следствие. Вектор. Свойства скалярного произведение векторов. Скалярное произведение в координатах и его свойства. Доказательство теоремы Пифагора. Математический тест.

«Осевая симметрия в геометрии» - Фигура называется симметричной относительно прямой a. Фигуры, обладающие двумя осями симметрии. Фигуры, обладающие одной осью симметрии. Постройте треугольники, симметричные данным, относительно прямой С. Содержание. Постройте точки А" и В". Определение. Симметрия в поэзии. Осевая симметрия. Начертите две прямые а и b и отметьте две точки А и В. Как же получить фигуру, симметричную данной. Слова, имеющие ось симметрии.

««Осевая и центральная симметрия» геометрия» - Опишите фигуру. Вейль Герман. Симметрия в мире растений. Науки. Симметрия в мире насекомых. Углы треугольника. Поворотная симметрия. Соразмерность. Алгоритм построения. Осевая и центральная симметрия. Симметричность точек относительно центра. Симметричность точек относительно прямой. Знакомые черты. Что Вас привлекло в этих фотографиях. Точка О. Центральная и осевая симметрия. Симметричность фигуры относительно прямой.

««Теорема Фалеса» 8 класс» - Отрезок. Навыки решения задач. Диагональ. Анализ. Задачи на готовых чертежах. Доказательство. Исследование. Параллельные прямые. Фалес известен как геометр. Фалес Милетский. Середины боковых сторон. Теорема Фалеса. Изречения Фалеса. Задача. Найти углы трапеции. Доказать.

Понятие касательной к окружности

Окружность имеет три возможных взаимных расположений относительно прямой:

    Если расстояние от центра окружности до прямой меньше радиуса, то прямая имеет две точки пересечения с окружностью.

    Если расстояние от центра окружности до прямой равно радиусу, то прямая имеет две точки пересечения с окружностью.

    Если расстояние от центра окружности до прямой больше радиуса, то прямая имеет две точки пересечения с окружностью.

Введем теперь понятие касательной прямой к окружности.

Определение 1

Касательной к окружности называется прямая, которая имеет с ней одну точку пересечения.

Общая точка окружности и касательной называется точкой касания (рис 1).

Рисунок 1. Касательная к окружности

Теоремы, связанные с понятием касательной к окружности

Теорема 1

Теорема о свойстве касательной : касательная к окружности перпендикулярна к радиусу, проведенному в точку касания.

Доказательство.

Рассмотрим окружность с центром $O$. Проведем в точке $A$ касательную $a$. $OA=r$ (Рис. 2).

Докажем, что $a\bot r$

Будем доказывать теорему методом «от противного». Предположим, что касательная $a$ не перпендикулярна радиусу окружности.

Рисунок 2. Иллюстрация теоремы 1

То есть $OA$ - наклонная к касательной. Так как перпендикуляр к прямой $a$ всегда меньше наклонной к этой же прямой, то расстояние от центра окружности до прямой меньше радиуса. Как нам известно, в этом случае прямая имеет две точки пересечения с окружностью. Что противоречит определению касательной.

Следовательно, касательная перпендикулярна к радиусу окружности.

Теорема доказана.

Теорема 2

Обратная теореме о свойстве касательной : Если прямая, проходящая через конец радиуса какой-либо окружности перпендикулярна радиусу, то данная прямая является касательной к этой окружности.

Доказательство.

По условию задачи мы имеем, что радиус -- перпендикуляр, проведенный из центра окружности к данной прямой. Следовательно, расстояние от центра окружности до прямой равняется длине радиуса. Как мы знаем, в этом случае окружность имеет только одну точку пересечения с этой прямой. По определению 1 и получаем, что данная прямая -- касательная к окружности.

Теорема доказана.

Теорема 3

Отрезки касательных к окружности, проведенные из одной точки, равны и составляют равные углы с прямой, проходящей через эту точку и центр окружности.

Доказательство.

Пусть дана окружность с центром в точке $O$. Из точки $A$ (лежащей все окружности) проведены две различные касательные. Из точки касания соответственно $B$ и $C$ (Рис. 3).

Докажем, что $\angle BAO=\angle CAO$ и что $AB=AC$.

Рисунок 3. Иллюстрация теоремы 3

По теореме 1, имеем:

Следовательно, треугольники $ABO$ и $ACO$ -- прямоугольные. Так как$OB=OC=r$, а гипотенуза $OA$ -- общая, то эти треугольники равны по гипотенузе и катету.

Отсюда и получаем, что $\angle BAO=\angle CAO$ и $AB=AC$.

Теорема доказана.

Пример задачи на понятие касательной к окружности

Пример 1

Дана окружность с центром в точке $O$ и радиусом $r=3\ см$. Касательная $AC$ имеет точку касания $C$. $AO=4\ см$. Найти $AC$.

Решение.

Изобразим вначале все на рисунке (Рис. 4).

Рисунок 4.

Так как $AC$ касательная, а $OC$ радиус, то по теореме 1, получаем, что$\angle ACO={90}^{{}^\circ }$. Получили, что треугольник $ACO$ -- прямоугольный, значит, по теореме Пифагора, имеем:

\[{AC}^2={AO}^2+r^2\] \[{AC}^2=16+9\] \[{AC}^2=25\] \

Прямая (MN ), имеющая с окружностью только одну общую точку (A ), называется касательной к окружности .

Общая точка называется в этом случае точкой касания.

Возможность существования касательной , и притом проведенной через любую точку окружности , как точку касания, доказывается следующей теоремой .

Пусть требуется провести к окружности с центром O касательную через точку A . Для этого из точки A, как из центра, описываем дугу радиусом AO , а из точки O , как центра, пересекаем эту дугу в точках B и С раствором циркуля, равным диаметру данного круга.

Проведя затем хорды OB и , соединим точку A с точками D и E , в которых эти хорды пересекаются с данной окружностью. Прямые AD и AE - касательные к окружности O . Действительно, из построения видно, что треугольники AOB и AOС равнобедренные (AO = AB =AС ) с основаниями OB и, равными диаметру круга O .

Так как OD и OE - радиусы, то D - середина OB , а E - середина , значит AD и AE - медианы , проведенные к основаниям равнобедренных треугольников, и потому перпендикулярны к этим основаниям. Если же прямые DA и EA перпендикулярны к радиусам OD и OE , то они - касательные .

Следствие.

Две касательные, проведенные из одной точки к окружности, равны и образуют равные углы с прямой, соединяющей эту точку с центром .

Так AD=AE и ∠OAD = ∠OAE потому, что прямоугольные треугольники AOD и AOE , имеющие общую гипотенузу AO и равные катеты OD и OE (как радиусы), равны. Заметим, что здесь под словом “касательная” подразумевается собственно “отрезок касательной ” от данной точки до точки касания.

Окружностью называется фигура, состоящая из всех точек плоскости, находящихся от данной точки на данном расстоянии. Данная точка называется центром окружности, а отрезок, соединяющий центр с какой-либо точкой окружности, - радиусом окружности.

Часть плоскости, ограниченная окружностью называется кругом.

Круговым сектором или просто сектором называется часть круга, ограниченная дугой и двумя радиусами, соединяющими концы дуги с центром круга.

Сегментом называется часть круга, ограниченная дугой и стягивающей ее хордой.

Основные термины

Касательная

Прямая, имеющая с только одну общую точку, называется касательной к окружности, а их общая точка называется точкой касания прямой и окружности.

Свойства касательной

    Касательная к окружности перпендикулярна к радиусу, проведенному в точку касания.

    Отрезки касательных к окружности, проведенных из одной точки, равны и составляют равные углы с прямой, проходящей через эту точку и центр окружности.

Хорда

Отрезок, соединяющий две точки окружности, называется ее хордой. Хорда, проходящая через центр окружности, называется диаметром.

Свойства хорд

    Диаметр (радиус), перпендикулярный к хорде, делит эту хорду и обе стягиваемые ею дуги пополам. Верна и обратная теорема: если диаметр (радиус) делит пополам хорду, то он перпендикулярен этой хорде.

    Дуги, заключенные между параллельными хордами, равны.

    Если две хорды окружности, AB и CD пересекаются в точке M , то произведение отрезков одной хорды равно произведению отрезков другой хорды: AM MB = CM MD.

Свойства окружности

    Прямая может не иметь с окружностью общих точек; иметь с окружностью одну общую точку (касательная ); иметь с ней две общие точки (секущая ).

    Через три точки, не лежащие на одной прямой, можно провести окружность, и притом только одну.

    Точка касания двух окружностей лежит на линии, соединяющей их центры.

Теорема о касательной и секущей

Если из точки, лежащей вне окружности, проведены касательная и секущая, то квадрат длины касательной равен произведению секущей на ее внешнюю часть: MC 2 = MA MB .

Теорема о секущих

Если из точки, лежащей вне окружности, проведены две секущие, то произведение одной секущей на её внешнюю часть равно произведению другой секущей на её внешнюю часть.MA MB = MC MD.

Углы в окружности

Центральным углом в окружности называется плоский угол с вершиной в ее центре.

Угол, вершина которого лежит на окружности, а стороны пересекают эту окружность, называется вписанным углом.

Любые две точки окружности делят ее на две части. Каждая из этих частей называется дугой окружности. Мерой дуги может служить мера соответствующего ей центрального угла.

Дуга называется полуокружностью, если отрезок, соединяющий её концы, является диаметром.

Свойства углов, связанных с окружностью

    Вписанный угол либо равен половине соответствующего ему центрального угла, либо дополняет половину этого угла до 180°.

    Углы, вписанные в одну окружность и опирающиеся на одну и ту же дугу, равны.

    Вписанный угол, опирающийся на диаметр, равен 90°.

    Угол, образованный касательной к окружности и секущей, проведенной через точку касания, равен половине дуги, заключенной между его сторонами.

Длины и площади

    Длина окружности C радиуса R вычисляется по формуле:

C = 2 R .

    Площадь S круга радиуса R вычисляется по формуле:

S = R 2 .

Вписанные и описанные окружности

Окружность и треугольник

    центр вписанной окружности - точка пересечения биссектрис треугольника, ее радиус r вычисляется по формуле:

r = ,

где S - площадь треугольника, а - полупериметр;

R = ,

R = ;

здесь a, b, c - стороны треугольника, - угол, лежащий против стороны a , S - площадь треугольника;

    центр описанной около прямоугольного треугольника окружности лежит на середине гипотенузы;

    центр описанной и вписанной окружностей треугольника совпадают только в том случае, когда этот треугольник - правильный.

Окружность и четырехугольники

    около выпуклого четырехугольника можно описать окружность тогда и только тогда, когда сумма его внутренних противоположных углов равна 180°:

180°;

    в четырехугольник можно вписать окружность тогда и только тогда, когда у него равны суммы противоположных сторон:

a + c = b + d ;

    около параллелограмма можно описать окружность тогда и только тогда, когда он является прямоугольником;

    около трапеции можно описать окружность тогда и только тогда, когда эта трапеция - равнобедренная; центр окружности лежит на пересечении оси симметрии трапеции c серединным перпендикуляром к боковой стороне;

    в параллелограмм можно вписать окружность тогда и только тогда, когда он является ромбом.



Статьи по теме: