Гидроксид натрия для чего. Гидроксид натрия (Е524)

У скандинавских народов к рождественскому столу традиционно подают лютефиск. Дословно это название переводится как «рыба в щелочи», что, по сути, точно характеризует блюдо. Лютефиск – это предварительно высушенная рыба, которую несколько дней выдерживают в щелочном растворе, затем вымачивают в , обжаривают и подают к столу. В таком виде рыба приобретает необычную желеобразную консистенцию. В чем секрет? В том, что щелочной раствор скандинавы готовят из каустической соды – того самого агрессивного вещества, который в нашей стране больше знают, как средство для эффективного очищения канализационных труб. Наверное, многие сейчас подумали: «О, ужас! Как они могут это кушать?». Но должны вас еще больше ошеломить. Большинство из нас, если не ежедневно, то регулярно употребляет в пищу, содержащую каустическую соду. Просто в пищевой промышленности она прячется под другим именем – добавка Е524.

Общая характеристика

Научное название добавки Е524 – гидроксид натрия или едкий натр. Это очень агрессивное вещество синтетического происхождения не имеет аналогов в природе. В естественных для себя условиях оно принимает вид белых чешуек или небольших гранул мыльных на ощупь.

В наше время широко используется в разных отраслях жизнедеятельности, в том числе медицине, фармакологии, пищевой индустрии. В сельском хозяйстве, например, каустическую соду используют для проверки коровьего на наличие примесей. Это вещество применяют в производстве разных видов бытовой химии (самые популярные – для прочистки водопроводных и канализационных труб). В косметологии едкий натр добавляют в шампуни, мыло, жидкости для снятия лака, кремы, а также в средства для избавления от ороговевшей кожи. Кроме того, гидроксид натрия – незаменимое вещество в нефтеперерабатывающей, целлюлозно-бумажной промышленности и в производстве дизельного топлива.

В пищевой промышленности гидроксид натрия используют для регуляции кислотности, как стабилизатор и эмульгатор. Несмотря на весьма агрессивные свойства и внушительный список побочных эффектов, каустическая сода в качестве пищевой добавки разрешена во всем мире.

Опасные свойства каустической соды

Каустическая сода – довольно опасное вещество. На коже и слизистых оболочках при контакте с ней образуются глубокие и очень болезненные раны. Очень опасен контакт каустической соды с глазами, так как вызывает атрофию зрительного нерва, что ведет к слепоте. Если случайно вдохнуть порошок едкого натра, начнется приступ сильного кашля, одышка, появится боль в горле и даже возможен отек дыхательных легких. И можно только представить себе, что это вещество способно делать с нашими внутренними органами. Если случайно проглотить каустическую соду, очень быстро в животе появится сильная боль и чувство жжения, возможен анафилактический шок. При малейшем подозрении на отравление гидроксидом натрия важно немедленно вызвать скорую помощь. Участки кожи, пораженные едким натром, следует промыть несильным раствором борной или уксусной кислоты, слизистые оболочки – чистой водой, глаза – сначала обработать очень слабым раствором борной кислоты, а затем водой.

Хоть в пищевой промышленности гидроксид натрия используют в микродозах, но при регулярном употреблении пищи, содержащей Е524, возможны побочные эффекты.

В чем может содержаться

Пищевая добавка Е524 может содержаться в самых разных группах продукции, в которых выполняет самые разные функции. Взять хотя бы джемы и мармелады, в составе которых часто содержится гидроксид натрия. В этой группе продуктов добавка играет роль регулятора и стабилизатора уровня кислотности. Если добавить некоторое количество едкого натра в тесто для выпечки, то готовая продукция получит красивую румяную хрустящую корочку.

Самая известная сдоба, приготовленная с использованием каустической соды – это немецкие рогалики. Черные консервированные получают свой темный цвет и характерную консистенцию также благодаря добавке Е524. В изделиях из , или других видов жиров гидроксид натрия ускоряет расщепление . Эта добавка приходит на помощь и тогда, когда необходимо быстро и без труда очистить плоды от кожицы. Для этого фрукты, ягоды или овощи просто обрабатывают каустической содой. Кроме того, регулятор кислотности Е524 используют в производстве кисломолочной продукции, разных видов сладостей.

Гидроксид натрия – опасное химическое соединение. И хоть в пищевой промышленности Е524 используется в небольших дозах, которые обычно не представляют опасности для человека, излишняя осторожность не повредит. Если не желаете или не можете отказаться от Е-содержащей пищи сами, то постарайтесь хотя бы минимизировать количество «ешек» в рационе маленьких детей. А для этого не забывайте перед покупкой продукта проверять, из чего он состоит.

Физические свойства

Гидрат окиси натрия NaOH - белое твердое вещество. Если оставить кусок едкого натра на воздухе, то он вскоре расплывается, так как притягивает влагу из воздуха. Едкий натр хорошо растворяется в воде, при этом выделяется большое количество теплоты. Раствор едкого натра мылок на ощупь.

Термодинамика растворов

ΔH 0 растворения для бесконечно разбавленного водного раствора −44,45 кДж/моль.

Из водных растворов при 12,3-61,8 °C кристаллизуется моногидрат (сингония ромбическая), температура плавления 65,1 °C; плотность 1,829 г/см³; ΔH 0 обр −425,6 кДж/моль), в интервале от −28 до −24 °C - гептагидрат, от −24 до −17,7 °C - пентагидрат, от −17,7 до −5,4 °C - тетрагидрат (α-модификация), от −5,4 до 12,3 °C. Растворимость в метаноле 23,6 г/л (t = 28 °C), в этаноле 14,7 г/л (t = 28 °C). NaOH·3,5Н 2 О (температура плавления 15,5 °C);

Химические свойства

(1) H 2 S + 2NaOH = Na 2 S + 2H 2 O (при избытке NaOH)

(2) H 2 S + NaOH = NaHS + H 2 O (кислая соль, при отношении 1:1)

(в целом такую реакцию можно представить простым ионным уравнением, реакция протекает с выделением тепла (экзотермическая реакция): OH − + H 3 O + → 2H 2 O. )

  • с амфотерными оксидами которые обладают как основными, так и кислотными свойствами, и способностью реагировать с щелочами, как с твёрдыми при сплавлении:

ZnO + 2NaOH → Na 2 ZnO 2 + H 2 O

так и с растворами:

ZnO + 2NaOH (раствор) + H 2 O → Na 2 (раствор)

(Образующийся анион называется тетрагидроксоцинкат-ионом, а соль, которую можно выделить из раствора - тетрагидроксоцинкатом натрия. В аналогичные реакции гидроксид натрия вступает и c другими амфотерными оксидами.)

Al(OH) 3 + 3NaOH = Na 3

2Na + + 2OH − + Cu 2+ + SO 4 2− → Cu(OH) 2 ↓+ Na 2 SO 4

Гидроксид натрия используется для осаждения гидроксидов металлов. К примеру, так получают гелеобразный гидроксид алюминия , действуя гидроксидом натрия на сульфат алюминия в водном растворе, при этом избегая избытка щёлочи и растворения осадка. Его и используют, в частности, для очистки воды от мелких взвесей.

4Р + 3NaOH + 3Н 2 О → РН 3 + 3NaH 2 РО 2 .

3S + 6NaOH → 2Na 2 S + Na 2 SO 3 + 3H 2 O

Гидролиз эфиров

В результате взаимодействия жиров с гидроксидом натрия получают твёрдые мыла (они используются для производства кускового мыла), а с гидроксидом калия либо твёрдые, либо жидкие мыла, в зависимости от состава жира.

HO-CH 2 -CH 2 ОН + 2NaOH → NaO-CH 2 -CH 2 -ONa + 2Н 2 O

Анод : 2Cl − - 2е − → Cl 2 - основной процесс 2H 2 O - 2e - → O 2 +4H + 6СlО - + 3Н 2 О - 6е - → 2СlО 3 - + 4Сl - + 1,5O 2 + 6Н + Катод : 2H 2 O + 2e − → H 2 + 2OH − - основной процесс СlО - + Н 2 О + 2е - → Сl - + 2ОН - СlО 3 - + 3Н 2 O + 6е - → Сl - + 6OН -

В качестве анода в диафрагменных электролизерах может использоваться графитовый или угольный электроды. На сегодня их в основном заменили титановые аноды с окисно-рутениево-титановым покрытием (аноды ОРТА) или другие малорасходуемые.

На следующей стадии электролитический щёлок упаривают и доводят содержание в нём NaOH до товарной концентрации 42-50 % масс. в соответствии со стандартом.

Na + + е = Na 0 nNa + + nHg − = Na + Hg

Амальгама непрерывно перетекает из электролизёра в разлагатель амальгамы. В разлагатель также непрерывно подаётся высоко очищенная вода. В нём амальгама натрия в результате самопроизвольного химического процесса почти полностью разлагается водой с образованием ртути, раствора каустика и водорода:

Na + Hg + Н 2 O = NaOH + 1/2Н 2 + Hg

Полученный таким образом раствор каустика, являющийся товарным продуктом, практически не содержит примесей. Ртуть почти полностью освобождается от натрия и возвращается в электролизер. Водород отводится на очистку.

Однако, полная очистка раствора щелочи от остатков ртути практически не возможна, поэтому этот метод сопряжен с утечками металлической ртути и её паров.

Растущие требования к экологической безопасности производств и дороговизна металлической ртути ведут к постепенному вытеснению ртутного метода методами получения щелочи с твердым катодом, в особенности мембранным методом.

Лабораторные методы получения

В лаборатории гидроксид натрия иногда получают химическими способами, но чаще используется небольшой электролизер диафрагменного или мембранного типа.

Рынок каустической соды

Мировое производство натра едкого, 2005 год
Производитель Объём производства, млн.тонн Доля в мировом производстве
DOW 6.363 11.1
Occidental Chemical Company 2.552 4.4
Formosa Plastics 2.016 3.5
PPG 1.684 2.9
Bayer 1.507 2.6
Solvay 1.252 2.2
Akzo Nobel 1.157 2.0
Tosoh 1.110 1.9
Arkema 1.049 1.8
Olin 0.970 1.7
Россия 1.290 2.24
Китай 9.138 15.88
Другие 27.559 47,87
Всего: 57,541 100
В России согласно ГОСТ 2263-79 производятся следующие марки натра едкого:

ТР - твёрдый ртутный (чешуированный);

ТД - твёрдый диафрагменный (плавленый);

РР - раствор ртутный;

РХ - раствор химический;

РД - раствор диафрагменный.

Наименование показателя ТР ОКП 21 3211 0400 ТД ОКП 21 3212 0200 РР ОКП 21 3211 0100 РХ 1 сорт ОКП 21 3221 0530 РХ 2 сорт ОКП 21 3221 0540 РД Высший сорт ОКП 21 3212 0320 РД Первый сорт ОКП 21 3212 0330
Внешний вид Чешуированная масса белого цвета. Допускается слабая окраска Плавленая масса белого цвета. Допускается слабая окраска Бесцветная прозрачная жидкость Бесцветная или окрашенная жидкость. Допускается выкристаллизованный осадок Бесцветная или окрашенная жидкость. Допускается выкристаллизованный осадок Бесцветная или окрашенная жидкость. Допускается выкристаллизованный осадок
Массовая доля гидроксида натрия, %, не менее 98,5 94,0 42,0 45,5 43,0 46,0 44,0
Показатели российского рынка жидкого натра едкого в 2005-2006 г.
Наименование предприятия 2005 г. тыс.тонн 2006 г. тыс.тонн доля в 2005 г.% доля в 2006 г.%
ОАО «Каустик» , Стерлитамак 239 249 20 20
ОАО «Каустик» , Волгоград 210 216 18 18
ОАО «Саянскхимпласт» 129 111 11 9
ООО «Усольехимпром» 84 99 7 8
ОАО «Сибур-Нефтехим» 87 92 7 8
ОАО «Химпром» , Чебоксары 82 92 7 8
ВОАО «Химпром» , Волгоград 87 90 7 7
ЗАО «Илимхимпром» 70 84 6 7
ОАО «КЧХК» 81 79 7 6
НАК «АЗОТ» 73 61 6 5
ОАО «Химпром», Кемерово 42 44 4 4
Итого: 1184 1217 100 100
Показатели российского рынка твердого натра едкого в 2005-2006 г.
Наименование предприятия 2005 г. тонн 2006 г. тонн доля в 2005 г.% доля в 2006 г.%
ОАО «Каустик» , Волгоград 67504 63510 62 60
ОАО «Каустик» , Стерлитамак 34105 34761 31 33
ОАО «Сибур-Нефтехим» 1279 833 1 1
ВОАО «Химпром» , Волгоград 5768 7115 5 7
Итого: 108565 106219 100 100

Применение

Биодизельное топливо

Получение биодизеля

Едкий натр применяется во множестве отраслей промышленности и для бытовых нужд:

  • Каустик применяется в целлюлозно-бумажной промышленности для делигнификации (сульфатный процесс) целлюлозы, в производстве бумаги , картона , искусственных волокон, древесно-волоконных плит.
  • Для омыления жиров при производстве мыла , шампуня и других моющих средств . В древности во время стирки в воду добавляли золу, и, по-видимому, хозяйки обратили внимание, что если зола содержит жир, попавший в очаг во время приготовления пищи, то посуда хорошо моется. О профессии мыловара (сапонариуса) впервые упоминает примерно в 385 г. н. э. Теодор Присцианус. Арабы варили мыло из масел и соды с VII века, сегодня мыла производятся тем же способом, что и 10 веков назад. В настоящее время продукты на основе гидроксида натрия (с добавлением гидроксида калия, нагретые до 50-60 градусов Цельсия, применяются в сфере промышленной мойки для очистки изделий из нержавеющей стали от жира и других масляных веществ, а также остатков механической обработки.
  • В химических отраслях промышленности - для нейтрализации кислот и кислотных окислов, как реагент или катализатор в химических реакциях, в химическом анализе для титрования , для травления алюминия и в производстве чистых металлов , в нефтепереработке - для производства масел.
  • Для изготовления биодизельного топлива - получаемого из растительных масел и используемого для замены обычного дизельного топлива. Для получения биодизеля к девяти массовым единицам растительного масла добавляется одна массовая единица спирта (то есть соблюдается соотношение 9:1), а также щелочной катализатор (NaOH). Полученный эфир (главным образом линолевой кислоты) отличается хорошей воспламеняемостью, обеспечиваемой высоким цетановым числом. Цетановое число условная количественная характеристика самовоспламеняемости дизельных топлив в цилиндре двигателя (аналог октанового числа для бензинов). Если для минерального дизтоплива характерен показатель в 50-52 %, то метиловый эфир уже изначально соответствует 56-58 % цетана. Сырьем для производства биодизеля могут быть различные растительные масла: рапсовое , соевое и другие, кроме тех, в составе которых высокое содержание пальмитиновой кислоты (пальмовое масло). При его производстве в процессе этерификации также образуется глицерин который используется в пищевой, косметической и бумажной промышленности, либо перерабатывается в эпихлоргидрин по методу Solvay .
  • В качестве агента для растворения засоров канализационных труб , в виде сухих гранул или в составе гелей . Гидроксид натрия дезагрегирует засор и способствует лёгкому продвижению его далее по трубе.
  • В гражданской обороне для дегазации и нейтрализации отравляющих веществ, в том числе зарина , в ребризерах (изолирующих дыхательных аппаратах (ИДА), для очистки выдыхаемого воздуха от углекислого газа.
  • Гидроксид натрия также используется в сочетании с цинком для фокуса . Медную монету кипятят в растворе гидроксида натрия в присутствии гранул металлического цинка, через 45 секунд, цвет копейки станет серебристым. После этого копейку вынимают из раствора и нагревают в пламени горелки, где она, практически моментально становится «золотой». Причины этих изменений заключается в следующем: ионы цинка вступают в реакцию с гидроксидом натрия (в недостатке) с образованием Zn (OH) 4 2− - который при нагревании разлагается до металлического цинка и осаждается на поверхность монеты. А при нагревании цинк и медь образуют золотистый сплав - латунь .
  • Гидроксид натрия также используется для мойки пресс-форм автопокрышек.
  • Гидроксид натрия также используется для нелегального производства метамфетаминов и других наркотических средств.
  • В приготовлении пищи: для мытья и очистки фруктов и овощей от кожицы, в производстве шоколада и какао, напитков, мороженого, окрашивания карамели, для размягчения маслин и придания им чёрной окраски, при производстве хлебобулочных изделий. Зарегистрирован в качестве пищевой добавки E524 .
    Некоторые блюда готовятся с применением каустика:
    • Лютефиск - скандинавское блюдо из рыбы - сушёная треска вымачивается 5-6 дней в едкой щёлочи и приобретает мягкую, желеобразную консистенцию.
    • Брецель - немецкие крендели - перед выпечкой их обрабатывают в растворе едкой щёлочи, которая способствует образованию уникальной хрустящей корочки.
  • В косметологии для удаления ороговевших участков кожи: бородавок, папиллом.

Меры предосторожности при обращении с гидроксидом натрия

Гидроксид натрия - едкое и коррозионноактивное вещество . Оно относится к веществам второго класса опасности . Поэтому при работе с ним требуется соблюдать осторожность. При попадании на кожу, слизистые оболочки и в глаза образуются серьёзные химические ожоги . Попадание в глаза вызывает необратимые изменения зрительного нерва (атрофию), и, как следствие, потерю зрения. При контакте слизистых поверхностей с едкой щёлочью необходимо промыть поражённый участок струей воды, а при попадании на кожу слабым раствором уксусной кислоты . При работе с едким натрием рекомендуется следующие защитные средства : химические брызгозащитные очки для защиты глаз, резиновые перчатки или перчатки с прорезиненной поверхностью для защиты рук, для защиты тела - химически-стойкая одежда пропитанная винилом или прорезиненные костюмы.

ПДК гидроксида натрия в воздухе 0,5 мг/м³.

Литература

  • Общая химическая технология. Под ред. И. П. Мухленова. Учебник для химико-технологических специальностей вузов. - М.: Высшая школа.
  • Основы общей химии, т. 3, Б. В. Некрасов. - М.: Химия, 1970.
  • Общая химическая технология. Фурмер И. Э., Зайцев В. Н. - М.: Высшая школа, 1978.
  • Приказ Минздрава РФ от 28 марта 2003 г. N 126 «Об утверждении Перечня вредных производственных факторов, при воздействии которых в профилактических целях рекомендуется употребление молока или других равноценных пищевых продуктов».
  • Постановление Главного государственного санитарного врача РФ от 4 апреля 2003 г. N 32 «О введении в действие Санитарных правил по организации грузовых перевозок на железнодорожном транспорте. СП 2.5.1250-03».
  • Федеральный закон от 21.07.1997 N 116-ФЗ «О промышленной безопасности опасных производственных объектов » (с изменениями на 18 декабря 2006 года).
  • Приказ МПР РФ от 2 декабря 2002 г. N 786 «Об утверждении федерального классификационного каталога отходов» (с изм. и доп. от 30 июля 2003 г.).
  • Постановление Госкомтруда СССР от 25.10.1974 N 298/П-22 «Об утверждении списка производств, цехов, профессий и должностей с вредными условиями труда, работа в которых дает право на дополнительный отпуск и сокращённый рабочий день» (с изменениями на 29 мая 1991 года).
  • Постановление Минтруда России от 22.07.1999 N 26 «Об утверждении типовых отраслевых норм бесплатной выдачи специальной одежды, специальной обуви и других средств индивидуальной защиты работникам химических производств».
  • Постановление Главного государственного санитарного врача РФ от 30.05.2003 N 116 О введении в действие ГН 2.1.6.1339-03 «Ориентировочные безопасные уровни воздействия (ОБУВ) загрязняющих веществ в атмосферном воздухе населённых мест».(с изменениями на 3 ноября 2005 года).

· Химические свойства · Качественное определение ионов натрия · Методы получения · Рынок каустической соды · Применение · Меры предосторожности при обращении с гидроксидом натрия · Литература ·

Гидроксид натрия (едкая щёлочь) - сильное химическое основание (к сильным основаниям относят гидроксиды, молекулы которых полностью диссоциируют в воде), к ним относят гидроксиды щелочных и щёлочноземельных металлов подгрупп Iа и IIа периодической системы Д. И. Менделеева, KOH (едкое кали), Ba(OH) 2 (едкий барит), LiOH, RbOH, CsOH. Щёлочность (основность) определяется валентностью металла, радиусом внешней электронной оболочки и электрохимической активностью: чем больше радиус электронной оболочки (увеличивается с порядковым номером), тем легче металл отдаёт электроны, и тем выше его электрохимическая активность и тем левее располагается элемент в электрохимическом ряду активности металлов, в котором за ноль принята активность водорода.

Водные растворы NaOH имеют сильную щелочную реакцию (pH 1%-раствора = 13). Основными методами определения щелочей в растворах являются реакции на гидроксид-ион (OH), (c фенолфталеином - малиновое окрашивание и метиловым оранжевым (метилоранжем) - жёлтое окрашивание). Чем больше гидроксид-ионов находится в растворе, тем сильнее щёлочь и тем интенсивнее окраска индикатора.

Гидроксид натрия вступает в реакции:

1.Нейтрализации с различными веществами в любых агрегатных состояниях, от растворов и газов до твёрдых веществ:

  • c кислотами - с образованием солей и воды:

NaOH + HCl → NaCl + H 2 O

(1) H 2 S + 2NaOH = Na 2 S + 2H 2 O (при избытке NaOH)

(2) H 2 S + NaOH = NaHS + H 2 O (кислая соль, при отношении 1:1)

(в целом такую реакцию можно представить простым ионным уравнением, реакция протекает с выделением тепла (экзотермическая реакция): OH + H 3 O + → 2H 2 O. )

  • с амфотерными оксидами которые обладают как основными, так и кислотными свойствами, и способностью реагировать с щелочами, как с твёрдыми при сплавлении:

ZnO + 2NaOH → Na 2 ZnO 2 + H 2 O

так и с растворами:

ZnO + 2NaOH (раствор) + H 2 O → Na 2 (раствор)

(Образующийся анион называется тетрагидроксоцинкат-ионом, а соль, которую можно выделить из раствора - тетрагидроксоцинкатом натрия. В аналогичные реакции гидроксид натрия вступает и c другими амфотерными оксидами.)

  • С амфотерными гидроксидами:

Al(OH) 3 + 3NaOH = Na 3

2. Обмена с солями в растворе :

2NaOH +CuSO 4 → Cu (OH) 2 + Na 2 SO 4 ,

2Na + + 2OH + Cu 2+ + SO 4 2 → Cu(OH) 2 + Na 2 SO 4

Гидроксид натрия используется для осаждения гидроксидов металлов. К примеру, так получают гелеобразный гидроксид алюминия, действуя гидроксидом натрия на сульфат алюминия в водном растворе, помимо этого избегая избытка щёлочи и растворения осадка. Его и используют, в частности, для очистки воды от мелких взвесей.

6NaOH + Al 2 (SO 4) 3 → 2Al(OH) 3 + 3Na 2 SO 4 .

6Na + + 6OH + 2Al 3+ + SO 4 2 → 2Al(OH) 3 + 3Na 2 SO 4 .

3. С неметаллами :

к примеру, с фосфором - с образованием гипофосфита натрия:

4Р + 3NaOH + 3Н 2 О → РН 3 + 3NaH 2 РО 2 .

3S + 6NaOH → 2Na 2 S + Na 2 SO 3 + 3H 2 O

  • с галогенами:

2NaOH + Cl 2 → NaClO + NaCl + H 2 O (дисмутация хлора)

2Na + + 2OH + 2Cl → 2Na + + 2O 2 + 2H + + 2Cl → NaClO + NaCl + H 2 O

6NaOH + 3I 2 → NaIO 3 + 5NaI + 3H 2 O

4. С металлами : Гидроксид натрия вступает в реакцию с алюминием, цинком, титаном. Он не реагирует с железом и медью (металлами, которые имеют низкий электрохимический потенциал). Алюминий легко растворяется в едкой щёлочи с образованием хорошо растворимого комплекса - тетрагидроксиалюмината натрия и водорода:

2Al 0 + 2NaOH + 6H 2 O → 3H 2 + 2Na

2Al 0 + 2Na + + 8OH + 6H + → 3H 2 + 2Na +

5. С эфирами , амидами и алкилгалогенидами (гидролиз):

с жирами (омыление), такая реакция необратима, поскольку получающаяся кислота со щёлочью образует мыло и глицерин. Глицерин впоследствии извлекается из подмыльных щёлоков путём вакуум-выпарки и дополнительной дистилляционной очистки полученных продуктов. Этот способ получения мыла был известен на Ближнем Востоке с VII века:

(C 17 H 35 COO) 3 C 3 H 5 + 3NaOH → C 3 H 5 (OH) 3 + 3C 17 H 35 COONa

В результате взаимодействия жиров с гидроксидом натрия получают твёрдые мыла (они используются для производства кускового мыла), а с гидроксидом калия либо твёрдые, либо жидкие мыла, исходя из состава жира.

6. С многоатомными спиртами - с образованием алкоголятов:

HO-CH 2 -CH 2 ОН + 2NaOH → NaO-CH 2 -CH 2 -ONa + 2Н 2 O

7. Со стеклом : в результате длительного воздействия горячей гидроокиси натрия поверхность стекла становится матовой (выщелачивание силикатов):

SiO 2 + 4NaOH → (2Na 2 O)·SiO 2 + 2H 2 O.

Введение

Вы пришли в магазин, стремясь купить мыло без запаха. Естественно, для того чтобы понять, какие продукты из данного ассортимента имеют запах, а какие - нет, вы берете в руки каждую бутылочку с мылом и читаете его состав и свойства. Наконец выбрали подходящее, но во время просмотра различных составов мыла заметили странную тенденцию - практически на всех бутылочках было написано: "В структуру мыла входит гидроксид натрия". Такова стандартная история знакомства большинства людей с гидроксидом натрия. Какая-то половина людей "плюнет и забудет", а какая-то - захочет узнать о нем побольше. Вот для них я сегодня и расскажу, что это за вещество.

Определение

Гидроксид натрия (формула NaOH) является самой распространенной в мире щелочью. Для справки: щелочь - это хорошо растворимое в воде основание.

Название

В разных источниках его могут обозвать гидратом окиси натрия, каустической содой, каустиком, едким натром или едкой щелочью. Хотя название "едкая щелочь" можно применить ко всем веществам этой группы. Только в XVIII веке им дали отдельные наименования. Также существует "перевернутое" название описываемого сейчас вещества - натрия гидроксид, обычно употребляемое в украинских переводах.

Свойства

Как я уже сказала, гидроксид натрия хорошо растворим в воде. Если положить даже небольшой его кусочек в стакан с водой, через несколько секунд он воспламенится и будет с шипением "носиться" и "прыгать" по ее поверхности (фото). И это будет продолжаться до тех пор, пока он полностью в ней не растворится. Если после завершения реакции вы опустите руку в получившийся раствор, то он будет мылким на ощупь. Чтобы узнать, насколько сильна щелочь, в нее опускают индикаторы - фенолфталеин или метилоранж. Фенолфталеин в ней приобретает малиновую окраску, а метилоранж - желтую. В гидроксиде натрия, как и во всех щелочах, присутствуют гидроксид-ионы. Чем больше их в растворе, тем ярче цвет индикаторов и сильнее щелочь.

Получение

Существует два пути получения гидроксида натрия: химический и электрохимический. Рассмотрим детальнее каждый из них.

Применение

Делигнификация целлюлозы, производство картона, бумаги, древесно-волоконных плит и искусственных волокон не обходятся без гидроксида натрия. А при его реакции с жирами получают мыло, шампуни и другие моющие средства. В химии он используется в качестве реагента или катализатора во многих реакциях. Еще гидроксид натрия известен как пищевая добавка Е524. И это еще не все отрасли его применения.

Заключение

Теперь вы знаете о гидроксиде натрия всё. Как видите, он приносит человеку очень большую пользу - как в промышленности, так и в быту.

Французский учёный А. Л. Дюамель дю Монсо впервые различил эти вещества: гидроксид натрия стали называть каустической содой, карбонат натрия - кальцинированной содой (по растению Salsola Soda, из золы которого её добывали), а карбонат калия - поташем . В настоящее время содой принято называть натриевые соли угольной кислоты. В английском и французском языках слово sodium означает натрий, potassium - калий.

Физические свойства

Гидроксид натрия

Термодинамика растворов

ΔH 0 растворения для бесконечно разбавленного водного раствора -44,45 кДж/моль.

Из водных растворов при 12,3 - 61,8 °C кристаллизуется моногидрат (сингония ромбическая), температура плавления 65,1 °C; плотность 1,829 г/см³; ΔH 0 обр −734,96 кДж/моль), в интервале от -28 до -24°С - гептагидрат, от -24 до -17,7°С - пентагидрат, от -17,7 до -5,4°С -тетрагидрат (α-модификация), от -5,4 до 12,3 °C. Растворимость в метаноле 23,6 г/л (t=28 °C), в этаноле 14,7 г/л (t=28 °C). NaOH·3,5Н 2 О (температура плавления 15,5 °C);

Химические свойства

(в целом такую реакцию можно представить простым ионным уравнением, реакция протекает с выделением тепла (экзотермическая реакция): OH - + H 3 O + → 2H 2 O. )

  • с амфотерными оксидами которые обладают как основными, так и кислотными свойствами, и способностью реагировать с щелочами, как с твердыми при сплавлении:

ZnO + 2NaOH → Na 2 ZnO 2 + H 2 O

так и с растворами:

ZnO + 2NaOH (раствор) + H 2 O → Na 2 (раствор) +H 2

(Образующийся анион называется тетрагидроксоцинкат-ионом, а соль, которую можно выделить из раствора - тетрагидроксоцинкатом натрия. В аналогичные реакции гидроксид натрия вступает и c другими амфотерными оксидами.)

  • с кислотными оксидами - с образованием солей; это свойство используется для очистки промышленных выбросов от кислотных газов (например: CO 2 , SO 2 и H 2 S):

2Na + + 2OH - + Cu 2+ + SO 4 2- → Cu(OH) 2 ↓+ Na 2 SO 4

Гидроксид натрия используется для осаждения гидроксидов металлов. К примеру, так получают гелеобразный гидроксид алюминия , действуя гидроксидом натрия на сульфат алюминия в водном растворе. Его и используют, в частности, для очистки воды от мелких взвесей.

Гидролиз эфиров

  • с жирами (омыление), такая реакция необратима, так как получающаяся кислота со щёлочью образует мыло и глицерин . Глицерин впоследствии извлекается из подмыльных щёлоков путем вакуум-выпарки и дополнительной дистилляционной очистки полученных продуктов. Этот способ получения мыла был известен на Ближнем Востоке с VII века:

Процесс омыления жиров

В результате взаимодействия жиров с гидроксидом натрия получают твёрдые мыла (они используются для производства кускового мыла), а с гидроксидом калия либо твёрдые, либо жидкие мыла, в зависимости от состава жира.

HO-CH 2 -CH 2 ОН + 2NaOH → NaO-CH 2 -CH 2 -ONa + 2Н 2 O

2NaCl + 2H 2 О = H 2 + Cl 2 + 2NaOH,

В настоящее время едкая щёлочь и хлор вырабатываются тремя электрохимическими методами. Два из них - электролиз с твёрдым асбестовым или полимерным катодом (диафрагменный и мембранный методы производства), третий - электролиз с жидким катодом (ртутный метод производства). В ряду электрохимических методов производства самым лёгким и удобным способом является электролиз с ртутным катодом, но этот метод наносит значительный вред окружающей среде в результате испарения и утечек металлической ртути. Мембранный метод производства самый эффективный, наименее энергоёмкий и наиболее экологичный, но и самый капризный, в частности, требует сырьё более высокой чистоты.

Едкие щёлочи, полученные при электролизе с жидким ртутным катодом, значительно чище полученных диафрагменным способом. Для некоторых производств это важно. Так, в производстве искусственных волокон можно применять только каустик, полученный при электролизе с жидким ртутным катодом. В мировой практике используются все три метода получения хлора и каустика, при явной тенденции в сторону увеличения доли мембранного электролиза. В России приблизительно 35 % от всего выпускаемого каустика вырабатывается электролизом с ртутным катодом и 65 % - электролизом с твёрдым катодом (диафрагменный и мембранный методы).

Эффективность процесса производства рассчитывается не только по выходу едкого натра, но и по выходу хлора и водорода, получаемых при электролизе, соотношение хлора и гидроксида натрия на выходе 100/110, реакция протекает в следующих соотношениях:

1,8 NaCl + 0, 5 H 2 O + 2,8 МДж = 1,00 Cl 2 + 1,10 NaOH + 0,03 H 2 ,

Основные показатели различных методов производства даны в таблице:

Показатель на 1 тонну NaOH Ртутный метод Диафрагменный метод Мембранный метод
Выход хлора % 97 96 98,5
Электроэнергия (кВт·ч) 3 150 3 260 2 520
Концентрация NaOH 50 12 35
Чистота хлора 99,2 98 99,3
Чистота водорода 99,9 99,9 99,9
Массовая доля O 2 в хлоре, % 0,1 1-2 0,3
Массовая доля Cl - в NaOH, % 0,003 1-1,2 0,005

Технологическая схема электролиза с твёрдым катодом

Диафрагменный метод - Полость электролизёра с твёрдым катодом разделена пористой перегородкой - диафрагмой - на катодное и анодное пространство, где соответственно размещены катод и анод электролизёра. Поэтому такой электролизёр часто называют диафрагменным, а метод получения - диафрагменным электролизом . В анодное пространство диафрагменного электролизёра непрерывно поступает поток насыщенного анолита. В результате электрохимического процесса на аноде за счет разложения галита выделяется хлор, а на катоде за счет разложения воды - водород. Хлор и водород выводятся из электролизёра раздельно, не смешиваясь:

2Cl - − 2е = Cl 2 0 , H 2 O − 2e − 1/2 О 2 = H 2 .

При этом прикатодная зона обогащается гидроксидом натрия. Раствор из прикатодной зоны, называемый электролитическим щёлоком , содержащий неразложившийся анолит и гидроксид натрия, непрерывно выводится из электролизёра. На следующей стадии электролитический щёлок упаривают и доводят содержание в нём NaOH до 42-50 % в соответствии со стандартом. Галит и сульфат натрия при повышении концентрации гидроксида натрия выпадают в осадок. Раствор едкой щёлочи декантируют от осадка и передают в качестве готового продукта на склад или на стадию упаривания для получения твёрдого продукта, с последующим плавлением, чешуированием или грануляцией. Кристаллический галит (обратную соль) возвращают на электролиз, приготавливая из неё так называемый обратный рассол. Из него во избежание накапливания сульфата в растворах перед приготовлением обратного рассола извлекают сульфат. Убыль анолита возмещают добавкой свежего рассола, получаемого подземным выщелачиванием соляных пластов или растворением твёрдого галита. Свежий рассол перед смешиванием его с обратным рассолом очищают от механических взвесей и значительной части ионов кальция и магния. Полученный хлор отделяется от паров воды, компримируется и подаётся либо на производство хлорсодержащих продуктов, либо на сжижение.

Мембранный метод - аналогичен диафрагменному, но анодное и катодное пространства разделены катионообменной мембраной. Мембранный электролиз обеспечивает получение наиболее чистого каустика.

Технологическая схема электролиза .

Основная технологическая стадия - электролиз, основной аппарат - электролитическая ванна, которая состоит из электролизёра, разлагателя и ртутного насоса, объединенных между собой коммуникациями. В электролитической ванне под действием ртутного насоса циркулирует ртуть, проходя через электролизёр и разлагатель. Катодом электролизёра служит поток ртути. Аноды - графитовые или малоизнашивающиеся. Вместе с ртутью через электролизёр непрерывно течёт поток анолита - раствор галита. В результате электрохимического разложения галита на аноде образуются ионы Cl - и выделяется хлор:

2 Cl - - 2е = Cl 2 0 ,

который отводится из электролизёра, а на ртутном катоде образуется слабый раствор натрия в ртути, так называемая амальгама :

Na + + е = Na 0 nNa + + nHg - = Na + Hg

Амальгама непрерывно перетекает из электролизёра в разлагатель. В разлагатель также непрерывно подаётся хорошо очищенная от примесей вода. В нем амальгама натрия в результате самопроизвольного электрохимического процесса почти полностью разлагается водой с образованием ртути, раствора каустика и водорода:

Na + Hg + Н 2 0 = NaOH + 1/2Н 2 + Hg

Полученный таким образом раствор каустика, являющийся товарным продуктом, не содержит примеси галита, вредной в производстве вискозы. Ртуть почти полностью освобождается от амальгамы натрия и возвращается в электролизер. Водород отводится на очистку. Анолит, выходящий из электролизера, донасыщают свежим галитом, извлекают из него примеси, внесенные с ним, а также вымываемые из анодов и конструкционных материалов, и возвращают на электролиз. Перед донасыщением из анолита извлекают двух- или трёхступенчатым процессом растворённый в нём хлор.

Лабораторные способы получения

В лаборатории гидроксид натрия получают химическими способами, которые имеют больше историческое, чем практическое значение.

Известковый способ получения гидроксида натрия заключается во взаимодействии раствора соды с известковым молоком при температуре около 80 °C . Этот процесс называется каустификацией; он описывается реакцией:

Na 2 C0 3 + Са (ОН) 2 = 2NaOH + CaC0 3

В результате реакции образуется раствор гидроксида натрия и осадок карбоната кальция. Карбонат кальция отделяется от раствора, который упаривается до получения расплавленного продукта, содержащего около 92 % NaOH. Расплавленный NaOH разливают в железные барабаны, где он застывает.

Ферритный способ описывается двумя реакциями:

Na 2 C0 3 + Fe 2 0 3 = Na 2 0 Fe 2 0 3 + C0 2 (1) Na 2 0 Fe 2 0 3 -f H 2 0 = 2 NaOH + Fe 2 O 3 (2)

(1) - процесс спекания кальцинированной соды с окисью железа при температуре 1100-1200°С. При этом образуется спек-феррит натрия и выделяется двуокись углерода. Далее спек обрабатывают (выщелачивают) водой по реакции (2); получается раствор гидроксида натрия и осадок Fe 2 O 3 , который после отделения его от раствора возвращается в процесс. Раствор содержит около 400 г/л NaOH. Его упаривают до получения продукта, содержащего около 92 % NaOH.

Химические методы получения гидроксида натрия имеют существенные недостатки: расходуется большое количество топлива, получаемый едкий натр загрязнен примесями, обслуживание аппаратов трудоемко. В настоящее время эти методы почти полностью вытеснены электрохимическим способом производства.

Рынок каустической соды

Мировое производство натра едкого, 2005 год
Производитель Обьем производства, млн.тонн Доля в мировом производстве
DOW 6.363 11.1
Occidental Chemical Company 2.552 4.4
Formosa Plastics 2.016 3.5
PPG 1.684 2.9
Bayer 1.507 2.6
Akzo Nobel 1.157 2.0
Tosoh 1.110 1.9
Arkema 1.049 1.8
Olin 0.970 1.7
Россия 1.290 2.24
Китай 9.138 15.88
Другие 27.559 47,87
Всего: 57,541 100
В России согласно ГОСТ 2263-79 производятся следующие марки натра едкого:

ТР - твердый ртутный (чешуированный);

ТД - твердый диафрагменный (плавленый);

РР - раствор ртутный;

РХ - раствор химический;

РД - раствор диафрагменный.

Наименование показателя ТР ОКП 21 3211 0400 ТД ОКП 21 3212 0200 РР ОКП 21 3211 0100 РХ 1 сорт ОКП 21 3221 0530 РХ 2 сорт ОКП 21 3221 0540 РД Высший сорт ОКП 21 3212 0320 РД Первый сорт ОКП 21 3212 0330
Внешний вид Чешуирова- нная масса белого цвета. Допускается слабая окраска Плавленая масса белого цвета. Допускается слабая окраска Бесцветная прозрачная жидкость Бесцветная или окрашенная жидкость. Допускается выкристалли- зованный осадок Бесцветная или окрашенная жидкость. Допускается выкристалли- зованный осадок Бесцветная или окрашенная жидкость. Допускается выкристалли- зованный осадок
Массовая доля гидроксида натрия, %, не менее 98,5 94,0 42,0 45,5 43,0 46,0 44,0
Показатели российского рынка жидкого натра едкого в 2005-2006 г.
Наименование предприятия 2005 г. тыс.тонн 2006 г. тыс.тонн доля в 2005 г.% доля в 2006 г.%
ОАО «Каустик» , Стерлитамак 239 249 20 20
ОАО «Каустик» , Волгоград 210 216 18 18
ОАО «Саянскхимпласт» 129 111 11 9
ООО «Усольехимпром» 84 99 7 8
ОАО «Сибур-Нефтехим» 87 92 7 8
ОАО «Химпром» , Чебоксары 82 92 7 8
ВОАО «Химпром» , Волгоград 87 90 7 7
ЗАО «Илимхимпром» 70 84 6 7
ОАО «КЧХК» 81 79 7 6
НАК «АЗОТ» 73 61 6 5
ОАО «Химпром», Кемерово 42 44 4 4
Итого: 1184 1217 100 100
Показатели российского рынка твердого натра едкого в 2005-2006 г.
Наименование предприятия 2005 г. тонн 2006 г. тонн доля в 2005 г.% доля в 2006 г.%
ОАО «Каустик» , Волгоград 67504 63510 62 60
ОАО «Каустик» , Стерлитамак 34105 34761 31 33
ОАО «Сибур-Нефтехим» 1279 833 1 1
ВОАО «Химпром» , Волгоград 5768 7115 5 7
Итого: 108565 106219 100 100

Применение

Биодизельное топливо

Треска Lutefisk на праздновании Дня Конституции Норвегии



Статьи по теме: