Неравенства и их свойства. Числовые неравенства

§ 1 Универсальный способ сравнения чисел

Познакомимся с основными свойствами числовых неравенств, а также рассмотрим универсальный способ сравнения чисел.

Результат сравнения чисел можно записать с помощью равенства или неравенства. Неравенство может быть строгим и нестрогим. Например, а>3 - это строгое неравенство; а≥3 - это нестрогое неравенство. Способ сравнения чисел зависит от вида сравниваемых чисел. Например, если надо сравнить десятичные дроби, то мы сравниваем их поразрядно; если необходимо сравнить обыкновенные дроби с разными знаменателями, то надо привести их к общему знаменателю и сравнить числители. Но существует универсальный способ сравнения чисел. Он состоит в следующем: находят разность чисел a и b; если a - b > 0, то есть положительное число, то a > b; если a - b < 0, то есть отрицательное число, то a < b; если a - b = 0, то a = b. Этот способ удобно использовать для доказательства неравенств. Например, доказать неравенство:

2b2 - 6b + 1 > 2b(b- 3)

Воспользуемся универсальным способом сравнения. Найдем разность выражений 2b2 - 6b + 1и 2b(b - 3);

2b2 - 6b + 1- 2b(b-3)= 2b2 - 6b + 1 - 2b2 + 6b; приведем подобные слагаемые и получим 1. Так как 1 больше нуля, положительное число, то 2b2 - 6b+1 > 2b(b-3).

§ 2 Cвойства числовых неравенств

Свойство 1. Если a> b, b > c, то a> c.

Доказательство. Если a > b, то значит, разность a - b > 0, то есть положительное число. Если b >c, значит, разность b - c > 0, положительное число. Сложим положительные числа a - b и b - c, раскроем скобки и приведем подобные слагаемые, получим (a - b) +(b - c) = a- b +b - c= a - c. Так как сумма положительных чисел - число положительное, значит, a - c положительное число. Следовательно, a > c, что и требовалось доказать.

Свойство 2. Если a < b, c- любое число, то a + с < b+ с. Это свойство можно трактовать так: «К обеим частям верного неравенства можно прибавить одно и то же число, при этом знак неравенства не изменится».

Доказательство. Найдем разность выражений a + с и b+ с, раскроем скобки и приведем подобные слагаемые, получим (a + с) - (b+ с) = a + с - b - с = a - b. По условию a < b, тогда разность a - b- отрицательное число. Значит, и разность (a + с) -(b+ с) отрицательна. Следовательно, a + с < b+ с, что и требовалось доказать.

Свойство 3. Если a < b, c - положительное число, то aс < bс.

Если a < b, c- отрицательное число, то aс > bс.

Доказательство. Найдем разность выражений aс и bс, вынесем за скобки с, тогда имеем aс-bс = с(a-b). Но так как a

Если отрицательное число a-b умножим на положительное число с, то произведение с(a-b) отрицательно, следовательно, разность aс-bс отрицательна, а значит, aс

Если же отрицательное число a-b умножить на отрицательное число с, то произведение с(a-b) будет положительно, следовательно, и разность aс-bс будет положительна, значит, aс>bс. Что и требовалось доказать.

Например, a-7b.

Так как деление можно заменить умножением на число обратное, = n∙, то доказанное свойство можно применить и для деления. Таким образом, смысл этого свойства в следующем: «Обе части неравенства можно умножить или разделить на одно и то же положительное число, при этом знак неравенства не изменится. Обе части неравенства можно умножить или разделить на отрицательное число, при этом необходимо поменять знак неравенства на противоположный знак».

Рассмотрим следствие к свойству 3.

Следствие. Если a

Доказательство. Разделим обе части неравенства a

сократим дроби и получим

Утверждение доказано.

Действительно, например, 2 < 3, но

Свойство 4. Если a > b и c > d, то a + c > b+ d.

Доказательство. Так как a>b и c >d, то разности a-b и c-d - положительные числа. Тогда сумма этих чисел также положительное число (a-b)+(c-d). Раскроем скобки и сгруппируем (a-b)+(c-d) = a-b+ c-d= (a+с)-(b+ d). В виду этого равенства полученное выражение (a+с)-(b+ d) будет положительным числом. Следовательно, a+ c> b+ d.

Неравенства вида a>b, c >d или a < b, c< d называют неравенствами одинакового смысла, а неравенства a>b , c

Свойство 5. Если a > b, c > d, то ac> bd, где a, b, c , d- положительные числа.

Доказательство. Так как a>b и с - положительное число, то, используя свойство 3, получим aс > bс. Так как c >d и b- положительное число, то bc > bd. Следовательно, по первому свойству ac > bd. Смысл доказанного свойства в следующем: «Если умножить почленно неравенства одинакового смысла, у которых левая и правая части - положительные числа, то получим неравенство того же смысла»

Например, 6 < a < 7, 4 < b< 5 тогда, 24 < ab < 35.

Свойство 6. Если a < b, a и b - положительные числа, то an< bn, где n- натуральное число.

Доказательство. Если почленно перемножить n данных неравенств a < b, то, согласно утверждению свойства 5, получим an< bn. Прочесть доказанное утверждение можно так: «Если обе части неравенства - положительные числа, то их можно возвести в одну и ту же натуральную степень, сохранив знак неравенства».

§ 3 Применение свойств

Рассмотрим пример на применение рассмотренных нами свойств.

Пусть 33 < a < 34, 3 < b< 4. Оценить сумму a + b, разность a - b, произведение a ∙ b и частное a: b.

1) Оценим сумму a + b. Используя свойство 4, получим 33 + 3< a + b < 34 + 4 или

36 < a+ b <38.

2) Оценим разность a - b. Так как нет свойства на вычитание, то разность a - b заменим суммой a +(-b). Сначала оценим (- b). Для этого, используя свойство 3, обе части неравенства 3 < b< 4 умножим на -1, при этом меняем знак неравенства на противоположный знак 3 ∙ (-1) > b∙ (-1) > 4 ∙ (-1). Получим -4< -b< -3. Теперь можно сложить два неравенства одного знака 33< a < 34 и -4< -b< -3. Имеем 2 9< a - b <31.

3) Оценим произведение a ∙ b. По свойству 5 перемножим неравенства одного знака

Числовые неравенства и их свойства

В презентации подробно изложены содержание тем ЧИСЛОВЫЕ НЕРАВЕНСТВА и СВОЙСТВА ЧИСЛОВЫХ НЕРАВЕНСТВ, приведены примеры на доказательство числовых неравенств. (Алгебра 8 класс, автор Макарычев Ю.Н.)

Просмотр содержимого документа
«Числовые неравенства и их свойства»

Числовые неравенства

и их свойства

учитель математики МОУ «Упшинская ООШ»

Оршанского района Республики Марий Эл

(К учебнику Ю.А.Макарычева Алгебра 8


Числовые неравенства

Результат сравнения двух и более чисел записывают в виде неравенств, используя знаки , , =

Сравнение чисел мы осуществляем, пользуясь различными правилами (способами). Удобно иметь обобщенный способ сравнения, который охватывает все случаи.


Определение:

Число а больше числа b, если разность ( a – b) – положительное число.

Число а меньше числа b, если разность ( a – b) – отрицательное число.

Число а равно числу b, если разность ( a – b) – равна нулю


Обобщенный способ сравнения чисел

Пример 1.


Применение обобщенного способа сравнения чисел для доказательства неравенств

Пример 2. Доказать, что среднее арифметическое двух положительных чисел не меньше среднего геометрического этих чисел.





Если обе части верного неравенства умножить или разделить на одно и то же положительное число, то получится верное неравенство.

Если обе части верного неравенства умножить или разделить на одно и то же отрицательное число и изменить знак неравенства на противоположный, то получится верное неравенство.





Р = 3а

Умножим на 3 обе части каждого из неравенств

54,2 ∙ 3 а ∙ 3

162,6

Применение свойств числовых неравенств

Множество всех действительных чисел можно представить, как объединение трех множеств: множество положительных чисел, множество отрицательных чисел и множество состоящее из одного числа - число нуль. Для того чтобы указать, что число а положительно, пользуются записью а > 0 , для указания отрицательного числа используют другую запиь a < 0 .

Сумма и произведение положительных чисел также являются положительными числами. Если число а отрицательно, то число положительно (и наоборот). Для любого положительного числа а найдется такое положительное рациональное число r , что r < а . Эти факты и лежат в основе теории неравенств.

По определению неравенство а > b (или, что то же самое, b < a) имеет место в том и только в том случае, если а - b > 0, т. е. если число а - b положительно.

Рассмотрим, в частности, неравенство а < 0 . Что означает это неравенство? Согласно приведенному выше определению оно означает, что 0 - а > 0 , т. е. -а > 0 или, иначе, что число положительно. Но это имеет место в том и только в том случае, если число а отрицательно. Итак, неравенство а < 0 означает, что число а отрицательно.

Часто используется также запись аb (или, что то же самое, ).
Запись аb , по определению, означает, что либо а > b , либо а = b . Если рассматривать запись аb как неопределенное высказывание, то в обозначениях математической логики можно записать

(a b) [(a > b) V (a = b)]

Пример 1. Верны ли неравенства 5 0, 0 0?

Неравенство 5 0 - это сложное высказывание состоящее из двух простых высказываний связанных логической связкой "или" (дизъюнкция). Либо 5 > 0 либо 5 = 0. Первое высказывание 5 > 0 - истинно, второе высказывание 5 = 0 - ложно. По определению дизъюнкции такое сложное высказывание истинно.

Аналогично обсуждается запись 00.

Неравенства вида а > b, а < b будем называть строгими, а неравенства вида ab, ab - нестрогими.

Неравенства а > b и с > d (или а < b и с < d ) будем называть неравенствами одинакового смысла, а неравенства а > b и c < d - неравенствами противоположного смысла. Отметим, что эти два термина (неравенства одинакового и противоположного смысла) относятся лишь к форме записи неравенств, а не к самим фактам, выражаемым этими неравенствами. Так, по отношению к неравенству а < b неравенство с < d является неравенством того же смысла, а в записи d > c (означающей то же самое) - неравенством противоположного смысла.

Наряду с неравенствами вида a > b , ab употребляются так называемые двойные неравенства, т. е. неравенства вида а < с < b , ас < b , a < cb ,
a
cb . По определению запись

а < с < b (1)
означает, что имеют место оба неравенства:

а < с и с < b.

Аналогичный смысл имеют неравенства асb, ас < b, а < сb.

Двойное неравенство (1) можно записать так:

(a < c < b) [(a < c) & (c < b)]

а двойное неравенство a ≤ c ≤ b можно записать в следующем виде:

(a c b) [(a < c)V(a = c) & (c < b)V(c = b)]

Перейдем теперь к изложению основных свойств и правил действий над неравенствами, договорившись, что в данной статье буквы a, b, с обозначают действительные числа, а n означает натуральное число.

1) Если а > b и b > с, то a > с (транзитивность).

Д о к а з а т е л ь с т в о.

Так как по условию а > b и b > c , то числа а - b и b - с положительны, и, следовательно, число а - с = (а - b) + (b - с) , как сумма положительных чисел, также является положительным. Это означает, по определению, что а > с .

2) Если а > b, то при любом с имеет место неравенство а + с > b + c.

Д о к а з а т е л ь с т в о.

Так как а > b , то число а - b положительно. Следовательно, число (а + с) - (b + с) = a + c - b - c = а - b также является положительным, т. е.
a + с > b + с.

3) Если a + b > c, то a > b - c , т. е. любое слагаемое можно перенести из одной части неравенства в другую, изменив знак этого слагаемого на противоположный.

Доказательство вытекает из свойства 2) достаточно к обеим частям неравенства а + b > с прибавить число - b.

4) Если а > b и с > d, то а + с > b + d, т. е. при сложении двух неравенств одного и того же смысла получается неравенство того же смысла.

Д о к а з а т е л ь с т в о.

В силу определения неравенства достаточно показать, что разность
(а + с} - (b + c) положительна. Эту разность можно записать следующим образом:
(a + c) - (b + d) = {а - b) + (с - d) .
Так как по условию числа а - b и с - d положительны, то (a + с) - (b + d) также есть число положительное.

Следствие. Из правил 2) и 4) вытекает следующее Правило вычитания неравенств: если а > b, с > d , то a - d > b - с (для доказательства достаточно к обеим частям неравенства а + с > b + d прибавить число - c - d ).

5) Если а > b, то при с > 0 имеем ас > bc, а при с < 0 имеем ас < bc.

Иначе говоря, при умножении обеих частей неравенства ни положительное число знак неравенства сохраняется (т. е. получается неравенство, того же смысла), а при умножении на отрицательное число знак неравенства меняется на противоположный (т. е. получается неравенство противоположного смысла.

Д о к а з а т е л ь с т в о.

Если а > b , то а - b есть число положительное. Следовательно, знак разности ас-bс = с(а - b) совпадает со знаком числа с : если с - положительное число, то и разность ас - bc положительна и потому ас > bс , а если с < 0 , то эта разность отрицательна и потому bc - ас положительно, т. е. bc > ас .

6) Если а > b > 0 и с > d > 0, то ас > bd, т. е. если все члены двух неравенств одинакового смысла положительны, то при почленном умножении этих неравенств получается неравенство того же смысла.

Д о к а з а т е л ь с т в о.

Имеем ас - bd = ac - bc + bc - bd = c(a - b) + b{c - d) . Так как с > 0, b > 0, a - b > 0, с - d > 0, то ас - bd > 0, т. е. ас > bd.

Замечание. Из доказательства видно, что условие d > 0 в формулировке свойства 6) несущественно: для справедливости этого свойства достаточно, чтобы были выполнены условия a > b > 0, с > d, с > 0 . Если же (при выполнении неравенств a > b, с > d ) числа а, b, с не будут все положительными, то неравенство ас > bd может не выполняться. Например, при а = 2, b =1, c = -2, d = -3 имеем a > b, с > d , но неравенство ас > bd (т. е. -4 > -3) не выполнено. Таким образом, требование положительности чисел а, b, с в формулировке свойства 6) существенно.

7) Если a ≥ b > 0 и c > d > 0, то(деление неравенств).

Д о к а з а т е л ь с т в о.

ИмеемЧислитель дроби, стоящей в правой части, положителен (см. свойства 5), 6)), знаменатель также положителен. Следовательно,. Этим свойство 7) доказано.

Замечание. Отметим важный частный случай правила 7), получающийся при а = b = 1: если с > d > 0, то. Таким образом, если члены неравенства положительны, то при переходе к обратным величинам получаем неравенство противоположного смысла. Предлагаем читателям проверить, что это правило сохраняется и в7) Если ab > 0 и c > d > 0, то(деление неравенств).

Д о к а з а т е л ь с т в о. то.

Мы доказали выше несколько свойств неравенств, записанных с помощью знака > (больше). Однако все эти свойства можно было бы формулировать с помощью знака < (меньше), так как неравенство b < а означает, по определению, то же самое, что и неравенство а > b . Кроме того, как это нетрудно проверить, доказанные выше свойства сохраняются и для нестрогих неравенств. Например, свойство 1) для нестрогих неравенств будет иметь следующий вид: если аb и bс , то ас .

Разумеется, сказанным выше не ограничиваются общие свойства неравенств. Существует еще целый ряд неравенств общего вида, связанных с рассмотрением степенной, показательной, логарифмической и тригонометрических функций. Общий подход для написания такого рода неравенств заключается в следующем. Если некоторая функция у = f(х) монотонно возрастает на отрезке [а, b] , то при x 1 > x 2 (где x 1 и x 2 принадлежат этому отрезку) мы имеем f(x 1) > f(x 2). Аналогично, если функция y = f{x) монотонно убывает на отрезке [а, b] , то при х 1 > х 2 (где х 1 и х 2 принадлежат этому отрезку) мы имеем f(x 1) < f(x 2 ). Разумеется, сказанное не отличается от определения монотонности, но для запоминания и написания неравенств этот прием очень удобен.

Так, например, для любого натурального n функция у = х n является монотонно возрастающей на луче }

Статьи по теме: