Виды и функции пластид. Пластиды. Строение и функции лейкопластов

Пластиды - органоиды, специфичные для клеток растений (они имеются в клетках всех растений, за исключением большинства бактерий, грибов и некоторых водорослей).

В клетках высших растений находится обычно от 10 до 200 пластид размером 3-10мкм, чаще всего имеющих форму двояковыпуклой линзы. У водорослей зеленые пластиды, называемые хроматофорами, очень разнообразны по форме и величине. Они могут иметь звездчатую, лентовидную, сетчатую и другие формы.

Различают 3 вида пластид:

  • Бесцветные пластиды - лейкопласты ;
  • окрашенные - хлоропласты (зеленого цвета);
  • окрашенные - хромопласты (желтого, красного и других цветов).

Эти виды пластид до известной степени способны превращаться друг в друга - лейкопласты при накоплении хлорофилла переходят в хлоропласты, а последние при появлении красных, бурых и других пигментов - в хромопласты.

Строение и функции хлоропластов

Хлоропласты - зеленые пластиды, содержащие зеленый пигмент - хлорофилл.

Основная функция хлоропласт - фотосинтез.

В хлоропластах есть свои рибосомы, ДНК, РНК, включения жира, зерна крахмала. Снаружи хлоропласта покрыты двумя белково-липидными мембранами, а в их полужидкую строму (основное вещество) погружены мелкие тельца - граны и мембранные каналы.


Граны (размером около 1мкм) - пакеты круглых плоских мешочков (тилакоидов), сложенных подобно столбику монет. Располагаются они перпендикулярно поверхности хлоропласта. Тилакоиды соседних гран соединены между собой мембранными каналами, образуя единую систему. Число гран в хлоропластах различно. Например, в клетках шпината каждый хлоропласт содержит 40-60 гран.

Хлоропласты внутри клетки могут двигаться пассивно, увлекаемые током цитоплазмы, либо активно перемещаться с места на место.

  • Если свет очень интенсивен, они поворачиваются ребром к ярким лучам солнца и выстраиваются вдоль стенок, параллельных свету.
  • При слабом освещении, хлоропласты перемещаются на стенки клетки, обращенные к свету, и поворачиваются к нему своей большой поверхностью.
  • При средней освещенности они занимают среднее положение.

Этим достигаются наиболее благоприятные для процесса фотосинтеза условия освещения.

Хлорофилл

В гранах пластид растительной клетки содержится хлорофилл, упакованный с белковыми и фосфолипидными молекулами так, чтобы обеспечить способность улавливать световую энергию.

Молекула хлорофилла очень сходна с молекулой гемоглобина и отличается главным образом тем, что расположенный в центре молекулы гемоглобина атом железа заменен в хлорофилле на атом магния.


В природе встречается четыре типа хлорофилла: a, b, c, d.

Хлорофиллы a и b содержат высшие растения и зеленые водоросли, диатомовые водоросли содержат a и c, красные - a и d.

Лучше других изучены хлорофиллы a и b (их впервые разделил русский ученый М.С.Цвет в начале XXв.). Кроме них существуют четыре вида бактериохлорофиллов - зеленых пигментов пурпурных и зеленых бактерий: a, b, c, d.

Большинство фотосинтезирующих бактерий содержат бактериохлорофилл a, некоторые - бактериохлорофилл b, зеленые бактерии - c и d.

Хлорофилл обладает способностью очень эффективно поглощать солнечную энергию и передавать ее другим молекулам, что является его главной функцией. Благодаря этой способности хлорофилл - единственная структура на Земле, которая обеспечивает процесс фотосинтеза.

Главная функция хлорофилла в растениях - поглощение энергии света и передача ее другим клеткам.

Пластидам, так же, как и митохондриям, свойственна до некоторой степени автономность внутри клетки. Они размножаются путем деления.

Наряду с фотосинтезом, в пластидах происходит процесс биосинтеза белка. Благодаря содержанию ДНК пластиды играют определенную роль в передаче признаков по наследству (цитоплазматическая наследственность).

Строение и функции хромопластов

Хромопласты относятся к одному из трех видов пластид высших растений. Это небольших размеров, внутриклеточные органеллы.

Хромопласты имеют различный окрас: желтый, красный, коричневый. Они придают характерный цвет созревшим плодам, цветкам, осенней листве. Это необходимо для привлечения насекомых-опылителей и животных, которые питаются плодами и разносят семена на дальние расстояния.


Структура хромопласта похожа на другие пластиды. Их двух оболочек внутренняя развита слабо, иногда вовсе отсутствует. В ограниченном пространстве расположена белковая строма, ДНК и пигментные вещества (каротиноиды).

Каротиноиды – это жирорастворимые пигменты, которые накапливаются в виде кристаллов.

Форма хромопластов очень разнообразна: овальная, многоугольная, игольчатая, серповидная.

Роль хромопластов в жизни растительной клетки до конца не выяснена. Исследователи предполагают, что пигментные вещества играют важную роль в окислительно-восстановительных процессах, необходимы для размножения и физиологичного развития клетки.

Строение и функции лейкопластов

Лейкопласты - это органоиды клетки, в которых накапливаются питательные вещества. Органеллы имеют две оболочки: гладкую наружную и внутреннюю с несколькими выступами.

Лейкопласты на свету превращаются в хлоропласты (к примеру зеленые клубни картофеля), в обычном состоянии они бесцветны.

Форма лейкопластов шаровидная, правильная. Они находятся в запасающей ткани растений, которая заполняет мягкие части: сердцевину стебля, корня, луковиц, листьев.


Функции лейкопластов зависят от их вида (в зависимости от накапливаемого питательного вещества).

Разновидности лейкопластов:

  1. Амилопласты накапливают крахмал, встречаются во всех растениях, так как углеводы основной продукт питания растительной клетки. Некоторые лейкопласты полностью наполнены крахмалом, их называют крахмальными зернами.
  2. Элайопласты продуцируют и запасают жиры.
  3. Протеинопласты содержат белковые вещества.

Лейкопласты также служат ферментной субстанцией. Под действием ферментов быстрее протекают химические реакции. А в неблагоприятный жизненный период, когда процессы фотосинтеза не осуществляются, они расщепляют полисахариды до простых углеводов, которые необходимы растениям для выживания.

В лейкопластах не может происходить фотосинтез, потому что они не содержат гран и пигментов.

Луковицы растений, в которых содержится много лейкопластов, могут переносить длительные периоды засухи, низкую температуру, жару. Это связано с большими запасами воды и питательных веществ в органеллах.

Предшественниками всех пластид является пропластиды, небольшие органоиды. Допускают, что лейко — и хлоропласты способны трансформироваться в другие виды. В конечном итоге после выполнения своих функций хлоропласты и лейкопласты становятся хромопластами — это последняя стадия развития пластид.

Важно знать! Одновременно в клетке растения может находиться только один вид пластид.

Сводная таблица строения и функций пластид

Свойства Хлоропласты Хромопласты Лейкопласты
Строение Двухмембранная органелла, с гранами и мембранными канальцами Органелла с не развитой внутренней мембранной системой Мелкие органеллы, находятся в частях растения, скрытых от света
Окрас Зеленые Разноцветные Бесцветные
Пигмент Хлорофилл Каротиноид Отсутствует
Форма Округлая Многоугольная Шаровидная
Функции Фотосинтез Привлечение потенциальных распространителей растений Запас питательных веществ
Заменимость Переходят в хромопласты Не изменяются, это последняя стадия развития пластид Превращаются в хлоропласты и хромопласты

Со школьной скамьи. В курсе ботаники говорится, что в растительных клетках пластиды могут быть разных форм, размеров и выполняют в клетке различные функции. Эта статья напомнит о структуре пластид, их видах и функциях тем, кто давно окончил школу, и будет полезна всем, кто интересуется биологией.

Строение

На картинке внизу схематически представлено строение пластидов в клетке. Независимо от ее вида, у нее есть внешняя и внутренняя мембрана, выполняющие защитную функцию, строма - аналог цитоплазмы, рибосомы, молекула ДНК, ферменты.

В хлоропластах присутствуют особые структуры - граны. Граны формируются из тилакоидов - структур, похожих на диски. Тилакоиды принимают участие в и кислорода.

В хлоропластах в результате фотосинтеза формируются крахмальные зерна.

Лейкопласты не пигментированы. В них не присутствуют тилакоиды, они не принимают участия в фотосинтезе. Большая часть лейкопластов сконцентрирована в стебле и корне растения.

Хромопласты имеют в своем составе липидные капли - структуры, содержащие липиды, необходимые для снабжения структуры пластид дополнительной энергией.

Пластиды могут быть разных цветов, размеров и форм. Размеры их колеблются в пределах 5-10 мкм. Форма обычно овальная или круглая, но может быть и любой другой.

Виды пластид

Пластиды могут быть бесцветными (лейкопласты), зелеными (хлоропласты), желтыми или оранжевыми (хромопласты). Именно хлоропласты придают листьям растений зеленую окраску.

Другая разновидность отвечает за желтую, красную или оранжевую окраску.

Бесцветные пластиды в клетке выполняют функцию хранилища питательных веществ. В лейкопластах содержатся жиры, крахмал, белки и ферменты. Когда растение нуждается в дополнительной энергии, крахмал расщепляется на мономеры - глюкозу.

Лейкопласты при определенных условиях (под действием солнечного света или при добавлении химических веществ) могут превращаться в хлоропласты, хлоропласты преобразуются в хромопласты, когда хлорофилл разрушается, и в окраске начинают преобладать красящие пигменты хромопластов - каротин, антоциан или ксантофилл. Это превращение заметно осенью, когда листья и многие плоды меняют цвет из-за разрушения хлорофилла и проявления пигментов хромопластов.

Функции

Как говорилось выше, пластиды могут быть разными, и их функции в растительной клетке зависят от разновидности.

Лейкопласты служат в основном для хранилища питательных веществ и поддержания жизнедеятельности растения за счет способности запасать и синтезировать белки, липиды, ферменты.

Хлоропласты играют ключевую роль в процессе фотосинтеза. При участии сконцентрированного в пластидах пигмента хлорофилла происходит преобразование углекислого газа и молекул воды в молекулы глюкозы и кислорода.

Хромопласты благодаря яркой окраске привлекают насекомых для опыления растений. Исследование функций этих пластид до сих пор продолжается.

В данной статье мы подробно рассмотрим, что такое пластиды. Все автотрофные растения имеют основные цитоплазматические органеллы, именуемые пластидами. Свое название они получили от греческого - plastos, что в переводе на русский язык означает "вылепленный".

Итак, что такое пластиды? Каковы их функции? На эти вопросы вы сможете найти ответ, прочитав статью до конца. Для начала выделим основную функцию этих органелл - синтез органических веществ. Все пластиды содержат свой некий пигмент, который и определяет их цвет. Если делить их по этому качеству, то можно назвать следующие три группы:

  • хлоропласты;
  • хромопласты;
  • лейкопласты.

Значение

Давайте теперь выясним, какое же имеют значение для жизни растений пластиды. Значения их в фотосинтезе отрицать нельзя, однако кроме этого, есть и другие важные аспекты. Так, среди них выделяют:

  • восстановление нитрита и сульфата;
  • синтез метаболитов (сюда можно отнести такие, как - пурины, аминокислоты, жирные кислоты и так далее);
  • синтез АБК, гиббереллинов и так далее (то есть регуляторных молекул);
  • запасающая функция (железо, липиды, крахмал).

Все пластиды, которые имеются у высших растений, разнообразны и каждая их них выполняет свою определенную функцию. А их набор напрямую зависит от типа клетки.

Пропластиды

Мы разобрали, что такое пластиды. Теперь перейдем к характеристике каждого отдельного вида. Первыми в нашем списке оказались пропластиды.

По сравнению с дифференцированными пластидами, пропластиды имеют меньшие размеры (до 1 мкм), их мембранная система слабо развита (меньше рибосом). Они имеют отложения фитоферритина, функция которых заключается в хранении железа.

Лейкопласты

Пластиды данного вида не имеют цвета. Лейкопласты выполняют одну очень важную функцию - запасающую. Они имеют небольшие размеры и содержатся во всех клетках растений. Благодаря лейкопластам, воспроизводятся следующие сложные соединения:

  • крахмал;
  • жиры;
  • белки.

Все они запасаются в различных частях растения (клубнях, плодах, семенах). Названные пластиды подразделяются на три вида по признаку накапливания вещества:

  • амилопласты;
  • протеинопласты;
  • элеопласты.

Рассказывая, что такое пластиды, мы остановимся на первом виде лейкопластов.

Амилопласты

Все пластиды в биологии имеют большое значение. Они способны переходить из одного вида в другой. Ярким примером является перевоплощение лейкопластов в хлоропласты. Последние имеют зеленый цвет. Многие замечали, что клубни картофеля на свету зеленеют, это как раз и происходит из-за перехода лейкопластов в хлоропласты. А почему осенью желтеют листья? Все просто, хлоропласты переходят в хромопласты из-за разрушения в первых хлорофилла.

Внешне амилопласты похожи на пропластиды. Они способны переходить в следующие формы:

  • хлоропласты;
  • хромопласты.

Их можно обнаружить в запасающих органах растений.

Этиопласты

Эти пластиды принято называть темновыми. Они являются хлоропластами, которые лишены солнечного цвета. Многие замечали, что цветы, растущие в тени, имеют желтоватый оттенок листьев. Это говорит о том, что у растения высока концентрация этиопластов.

Если растение, росшее при солнечном свете переставить в тень, то хлоропласты начнут постепенно превращаться в этиопласты. Чем последних больше, тем мутнее и болезненнее выглядит растение.

Хлоропласты

Эти пластиды наиболее популярны в мире растений. Их цвет - зеленый, а размеры достигают 10 мкм. Основная функция хлоропластов - это фотосинтез. Внешне данный вид пластид похож на мешочки или тельца округлой формы. В их состав входят:

  • белки;
  • жиры;
  • пигменты;

Здесь еще важно отметить и то, что в различных организмах количество, строение и размеры данных пластид отличаются.

Хромопласты

Окраска хромопластов немного разнообразнее. Они могут быть желтыми, оранжевыми, красными.

Такое разнообразие цвета объясняется накоплением каротиноидов. Благодаря наличию этих органелл у растений, мы видим роскошную палитру красок у осенних деревьев, можем отличить созревший плод (яблоки, томаты) от недозревшего. Оттенки у цветочных лепестков также зависят от данных органелл.

Хромопласты могут принимать разнообразное строение - круга, многоугольника, иметь игольчатую форму.

Хлоропласт

Пластиды – это мембранные органоиды, встречающиеся у фотосинтезирующих эукариотических организмов (высшие растения, низшие водоросли, некоторые одноклеточные организмы). Пластиды окружены двумя мембранами, в их матриксе имеется собственная геномная система, функции пластид связаны с энергообеспечением клетки, идущим на нужды фотосинтеза.
У высших растений найден целый набор различных пластид (хлоропласт, лейкопласт, амилопласт, хромопласт), представляющих собой ряд взаимных превращений одного вида пластиды в другой. Основной структурой, которая осуществляет фотосинтетические процессы, является хлоропласт.
У высших растений также встречается деление зрелых хлоропластов, но очень редко. Увеличение числа хлоропластов и образование других форм пластид (лейкопластов и хромопластов) следует рассматривать как путь превращения структур-предшественников, пропластид. Весь же процесс развития различных пластид можно представить в виде монотропного (идущего в одном направлении) ряда смены форм:

Многими исследованиями был установлен необратимый характер онтогенетических переходов пластид. У высших растений возникновение и развитие хлоропластов происходят через изменения пропластид. Пропластиды представляют собой мелкие (0,4-1 мкм) двумембранные пузырьки, не имеющие отличительных черт их внутреннего строения. Они отличаются от вакуолей цитоплазмы более плотным содержимым и наличием двух отграничивающих мембран, внешней и внутренней. Внутренняя мембрана может давать небольшие складки или образовывать мелкие вакуоли. Пропластиды чаще всего встречаются в делящихся тканях растений (клетки меристемы корня, листьев, в точки роста стеблей и др.). По всей вероятности, увеличение их числа происходит путем деления или почкования, отделения от тела пропластиды мелких двумембранных пузырьков.

Хлоропласты

Хлоропласты – это структуры, в которых происходят фотосинтетические процессы, приводящие в конечном итоге к связыванию углекислоты, к выделению кислорода и синтезу сахаров. структуры удлиненной формы с шириной 2-4 мкм и протяженностью 5-10 мкм. У зеленых водорослей встречаются гигантские хлоропласты (хроматофоры), достигающие длины 50 мкм.
у зеленых водорослей может быть по одному хлоропласту на клетку. Обычно на клетку высших растений приходится в среднем 10-30 хлоропластов. Встречаются клетки с огромным количеством хлоропластов. Например, в гигантских клетках палисадной ткани махорки обнаружено около 1000 хлоропластов.
Хлоропласты представляют собой структуры, ограниченные двумя мембранами – внутренней и внешней. Внешняя мембрана, как и внутренняя, имеет толщину около 7 мкм, они отделены друг от друга межмембранным пространством около 20-30 нм. Внутренняя мембрана хлоропластов отделяет строму пластиды, аналогичную матриксу митохондрий. В строме зрелого хлоропласта высших растений видны два типа внутренних мембран. Это – мембраны, образующие плоские, протяженные ламеллы стромы, и мембраны тилакоидов, плоских дисковидных вакуолей или мешков.
Ламеллы стромы (толщиной около 20 мкм) представляют собой плоские полые мешки или же имеют вид сети из разветвленных и связанных друг с другом каналов, располагающихся в одной плоскости. Обычно ламеллы стромы внутри хлоропласта лежат параллельно друг другу и не образуют связей между собой.
Кроме мембран стромы в хлоропластах обнаруживаются мембранные тилакоиды. Это плоские замкнутые мембранные мешки, имеющие форму диска. Величина межмембранного пространства у них также около 20-30 нм. Такие тилакоиды образуют стопки наподобие столбика монет, называемые гранами.
Число тилакоидов на одну грану очень варьирует: от нескольких штук до 50 и более. Размер таких стопок может достигать 0,5 мкм, поэтому граны видны в некоторых объектах в световом микроскопе. Количество гран в хлоропластах высших растений может достигать 40-60. Тилакоиды в гране сближены друг с другом так, что внешние слои их мембран тесно соединяются; в месте соединения мембран тилакоидов образуется плотный слой толщиной около 2 нм. В состав граны кроме замкнутых камер тилакоидов обычно входят и участки ламелл, которые в местах контакта их мембран с мембранами тилакоидов тоже образуют плотные 2-нм слои. Ламеллы стромы, таким образом, как бы связывают между собой отдельные граны хлоропласта. Однако полости камер тилакоидов всезда замкнуты и не переходят в камеры межмембранного пространства ламелл стромы. Ламеллы стромы и мембраны тилакоидов образуются путем отделения от внутренней мембраны при начальных этапах развития пластид.
В матриксе (строме) хлоропластов обнаруживаются молекулы ДНК, рибосомы; там же происходит первичное отложение запасного полисахарида, крахмала, в виде крахмальных зерен.
Характерным для хлоропластов является наличие в них пигментов, хлорофиллов, которые и придают окраску зеленым растениям. При помощи хлорофилла зеленые растения поглощают энергию солнечного света и превращают ее в химическую.

Функции хлоропластов

Геном пластид

Подобно митохондриям, хлоропласты имеют собственную генетическую систему, обеспечивающую синтез ряда белков внутри самих пластид. В матриксе хлоропластов обнаруживаются ДНК, разные РНК и рибосомы. Оказалось, что ДНК хлоропластов резко отличается от ДНК ядра. Она представлена циклическими молекулами длиной до 40-60 мкм, имеющими молекулярный вес 0,8-1,3х108 дальтон. В одном хлоропласте может быть множество копий ДНК. Так, в индивидуальном хлоропласте кукурузы присутствует 20-40 копий молекул ДНК. Длительность цикла и скорость репликации ядерной и хлоропластной ДНК, как было показано на клетках зеленых водорослей, не совпадают. ДНК хлоропластов не состоит в комплексе с гистонами. Все эти характеристики ДНК хлоропластов близки к характеристикам ДНК прокариотических клеток. Более того, сходство ДНК хлоропластов и бактерий подкрепляется еще и тем, что основные регуляторные последовательности транскрипции (промоторы, терминаторы) у них одинаковы. На ДНК хлоропластов синтезируются все виды РНК (информационная, трансферная, рибосомная). ДНК хлоропластов кодирует рРНК, входящую в состав рибосом этих пластид, которые относятся к прокариотическому 70S типу (содержат 16S и 23S рРНК). Рибосомы хлоропластов чувствительны к антибиотику хлорамфениколу, подавляющему синтез белка у прокариотических клеток.
Так же как в случае хлоропластов мы вновь сталкиваемся с существованием особой системы синтеза белка, отличной от таковой в клетке.
Эти открытия вновь пробудили интерес к теории симбиотического происхождения хлоропластов. Идея о том, что хлоропласты возникли за счет объединения клеток-гетеротрофов с прокариотическими синезелеными водорослями, высказанная на рубеже XIX и XX вв. (А.С. Фоминцин, К.С.Мережковский) вновь находит свое подтверждение. В пользу этой теории говорит удивительное сходство в строении хлоропластов и синезеленых водорослей, сходство с основными их функциональными особенностями, и в первую очередь со способностью к фотосинтетическим процессам.
Известны многочисленные факты истинного эндосимбиоза синезеленых водорослей с клетками низших растений и простейших, где они функционируют и снабжают клетку-хозяина продуктами фотосинтеза. Оказалось, что выделенные хлоропласты могут также отбираться некоторыми клетками и использоваться ими как эндосимбионты. У многих беспозвоночных (коловратки, моллюски), питающихся высшими водорослями, которые они переваривают, интактные хлоропласты оказываются внутри клеток пищеварительных желез. Так, у некоторых растительноядных моллюсков в клетках найдены интактные хлоропласты с функционирующими фотосинтетическими системами, за активностью которых следили по включению С14О2.
Как оказалось, хлоропласты могут быть введены в цитоплазму клеток культуры фибробластов мыши путем пиноцитоза. Однако они не подвергались атаке гидролаз. Такие клетки, включившие зеленые хлоропласты, могли делиться в течение пяти генераций, а хлоропласты при этом оставались интактными и проводили фотосинтетические реакции. Были предприняты попытки культивировать хлоропласты в искусственных средах: хлоропласты могли фотосинтезировать, в них шел синтез РНК, они оставались интактными 100 ч, у них даже в течение 24 ч наблюдались деления. Но затем происходило падение активности хлоропластов, и они погибали.
Эти наблюдения и целый ряд биохимических работ показали, что те черты автономии, которыми обладают хлоропласты, еще недостаточны для длительного поддержания их функций и тем более для их воспроизведения.
В последнее время удалось полностью расшифровать всю последовательность нуклеотидов в составе циклической молекулы ДНК хлоропластов высших растений. Эта ДНК может кодировать до 120 генов, среди них: гены 4 рибосомных РНК, 20 рибосомных белков хлоропластов, гены некоторых субъединиц РНК-полимеразы хлоропластов, несколько белков I и II фотосистем, 9 из 12 субъединиц АТФ-синтетазы, части белков комплексов цепи переноса электронов, одной из субъединиц рибулозодифосфат-карбоксилазы (ключевой фермент связывания СО2), 30 молекул тРНК и еще 40 пока неизвестных белков. Интересно, что сходный набор генов в ДНК хлоропластов обнаружен у таких далеко отстоящих представителей высших растений как табак и печеночный мох.
Основная же масса белков хлоропластов контролируется ядерным геномом. Оказалось, что ряд важнейших белков, ферментов, а соответственно и метаболические процессы хлоропластов находятся под генетическим контролем ядра. Так, клеточное ядро контролирует отдельные этапы синтеза хлорофилла, каротиноидов, липидов, крахмала. Под ядерным контролем находятся многие энзимы темновой стадии фотосинтеза и другие ферменты, в том числе некоторые компоненты цепи транспорта электронов. Ядерные гены кодируют ДНК-полимеразу и аминоацил-тРНК-синтетазу хлоропластов. Под контролем ядерных генов находится большая часть рибосомных белков. Все эти данные заставляют говорить о хлоропластах, так же как и о митохондриях, как о структурах с ограниченной автономией.
Транспорт белков из цитоплазмы в пластиды происходит в принципе сходно с таковым у митохондрий. Здесь также в местах сближения внешней и внутренней мембран хлоропласта располагаются каналообразующие интегральные белки, которые узнают сигнальные последовательности хлоропластных белков, синтезированных в цитоплазме, и транспортируют их в матрикс-строму. Из стромы импортируемые белки согласно дополнительным сигнальным последовательностям могут включаться в мембраны пластиды (тилакоиды, ламеллы стромы, внешняя и внутренняя мембраны) или локализоваться в строме, входя в состав рибосом, ферментных комплексов цикла Кальвина и др.
Удивительное сходство структуры и энергетических процессов у бактерий и митохондрий, с одной стороны, и у синезеленых водорослей и хлоропластов – с другой, служит веским аргументом в пользу теории симбиотического происхождения этих органелл. Согласно этой теории, возникновение эукариотической клетки прошло через несколько этапов симбиоза с другими клетками. На первой стадии клетки типа анаэробных гетеротрофных бактерий включили в себя аэробные бактерии, превратившиеся в митохондрии. Параллельно этому в клетке-хозяине прокариотический генофор формируется в обособленное от цитоплазмы ядро. Так могли возникнуть гетеротрофные эукариотические клетки. Повторные эндосимбиотические взаимоотношения между первичными эукариотическими клетками и синезелеными водорослями привели к появлению в них структур типа хлоропластов, позволяющих клеткам осуществлять автосинтетические процессы и не зависеть от наличия органических субстратов (рис. 236). В процессе становления такой составной живой системы часть генетической информации митохондрий и пластид могла изменяться, перенестись в ядро. Так, например две трети из 60 рибосомных белков хлоропластов кодируется в ядре и синтезируются в цитоплазме, а потом встраивается в рибосомы хлоропластов, имеющие все свойства прокариотических рибосом. Такое перемещение большой части прокариотических генов в ядро привело к тому, что эти клеточные органеллы, сохранив часть былой автономии, попали под контроль клеточного ядра, определяющего в большей степени все главные клеточные функции.
Пропластиды
При нормальном освещении пропластиды превращаются в хлоропласты. Сначала они растут, при этом происходит образование продольно расположенных мембранных складок от внутренней мембраны. Одни из них простираются по всей длине пластиды и формируют ламеллы стромы; другие образуют ламеллы тилакоидов, которые выстраиваются в виде стопки и образуют граны зрелых хлоропластов. Несколько иначе развитие пластид происходит в темноте. У этиолированных проростков происходит в начале увеличение объема пластид, этиопластов, но система внутренних мембран не строит ламеллярные структуры, а образует массу мелких пузырьков, которые скапливаютсяя в отдельные зоны и даже могут формировать сложные решетчатые структуры (проламеллярные тела). В мембранах этиопластов содержится протохлорофилл, предшественник хлорофилла желтого цвета. Под действие света из этиопластов образуются хлоропласты, протохлорофилл превращается в хлорофилл, происходит синтез новых мембран, фотосинтетических ферментов и компонентов цепи переноса электронов.
При освещении клеток мембранные пузырьки и трубочки быстро реорганизуются, из них развивается полная система ламелл и тилакоидов, характерная для нормального хлоропласта.
Лейкопласты отличаются от хлоропластов отсутствием развитой ламеллярной системы (рис. 226 б). Встречаются они в клетках запасающих тканей. Из-за их неопределенной морфологии лейкопласты трудно отличить от пропластид, а иногда и от митохондрий. Они, как и пропластиды, бедны ламеллами, но тем не менее способны к образованию под влиянием света нормальных тилакоидных структур и к приобретению зеленой окраски. В темноте лейкопласты могут накапливать в проламеллярных телах различные запасные вещества, а в строме лейкопластов откладываются зерна вторичного крахмала. Если в хлоропластах происходит отложение так называемого транзиторного крахмала, который присутствует здесь лишь во время ассимиляции СО2, то в лейкопластах может происходить истинное запасание крахмала. В некоторых тканях (эндосперм злаков, корневища и клубни) накопление крахмала в лейкопластах приводит к образованию амилопластов, сплошь заполненных гранулами запасного крахмала, расположенных в строме пластиды (рис. 226в).
Другой формой пластид у высших растений является хромопласт, окрашивающийся обычно в желтый свет в результате накопления в нем каротиноидов (рис. 226г). Хромопласты образуются из хлоропластов и значительно реже их лейкопластов (например, в корне моркови). Процесс обесцвечивания и изменения хлоропластов легко наблюдать при развитии лепестков или при созревании плодов. При этом в пластидах могут накапливаться окрашенные в желтый цвет капельки (глобулы) или в них появляются тела в форме кристаллов. Эти процессы сопряжены с постепенным уменьшением числа мембран в пластиде, с исчезновением хлорофилла и крахмала. Процесс образования окрашенных глобул объясняется тем, что при разрушении ламелл хлоропластов выделяются липидные капли, в которых хорошо растворяются различные пигменты (например, каротиноиды). Таким образом, хромопласты представляют собой дегенерирующие формы пластид, подвернутые липофанерозу – распаду липопротедных комплексов.

, бурые , жёлто-зелёные , диатомовые водоросли) мембран считается результатом двух- и трёхкратного эндосимбиоза соответственно.

Общие черты строения пластид высших растений

Типичные пластиды высших растений окружены оболочкой из двух мембран - внешней и внутренней. Внутренняя и внешняя мембраны пластид бедны фосфолипидами и обогащены галактолипидами . Внешняя мембрана не имеет складок, никогда не сливается с внутренней мембраной и содержит поровый белок, обеспечивающий свободный транспорт воды, ионов и метаболитов с массой до 10 кДа. Внешняя мембрана имеет зоны тесного контакта с внутренней мембраной; предполагается, что в этих участках осуществляется транспорт белков из цитоплазмы в начале пластид. Внутренняя мембрана проницаема для небольших незаряженных молекул и для недиссоциированных низкомолекулярных монокарбоновых кислот, для более крупных и заряженных метаболитов в мембране локализованы белковые переносчики. Строма - внутреннее содержимое пластид - представляет собой гидрофильный матрикс, содержащий неорганические ионы, водорастворимые органические метаболиты, геном пластид (несколько копий кольцевой ДНК), рибосомы прокариотического типа, ферменты матричного синтеза и другие ферментативные системы. Эндомембранная система пластид развивается в результате отшнуровки везикул от внутренней мембраны и их упорядочивания. Степень развития эндомембранной системы зависит от типа пластид. Наибольшего развития эндомембранная система достигает в хлоропластах, где она является местом протекания световых реакций фотосинтеза и представлена свободными тилакоидами стромы и тилакоидами, собранными в стопки - граны . Внутреннее пространство эндомембран называется люмен. Люмен тилакоидов, также как и строма, содержит ряд водорастворимых белков.

Геном и белоксинтезирующая система пластид высших растений

Одним из доказательств происхождения пластид от древних цианобактерий служит схожесть их геномов, хотя пластидный геном (пластом) значительно меньше. Пластом высших растений представлен многокопийной кольцевой двуцепочечной ДНК (плДНК) размером от 75 до 290 тыс. п. н. В большинстве пластидных геномов присутствуют два инвертированных повтора (IR A и IR B), разделяющих молекулу ДНК на две уникальные области: большую (LSR) и малую (SSR). В инвертированных повторах содержатся гены всех четырёх рРНК (4,5S, 5S, 16S и 23S), входящих в состав пластидных рибосом, а также гены некоторых тРНК . Голосеменные и растения семейства Бобовые не содержат инвертированных повторов. Многие пластидные гены организованы в опероны - группы генов, считывающихся с общего промотора . Некоторые пластидные гены имеют экзон-интронную структуру. В пластидах кодируются гены, обслуживающие процессы транскрипции и трансляции (гены «домашнего хозяйства»), а также некоторые гены, обеспечивающие выполнение функций пластид в клетке, прежде всего фотосинтез .

Транскрипцию в пластидах обеспечивают РНК-полимеразы двух типов:

  1. Мультисубъединичная пластидная РНК-полимераза бактериального типа состоит из двух α-субъединиц и по одной β, β", β" (все эти субъединицы кодируются в пластидном геноме). Однако для её активации необходимо присутствие σ-субъединицы, которая кодируется в ядре растительной клетке и импортируется в пластиды при освещении. Таким образом пластидная РНК-полимераза активна только на свету. Пластидная РНК-полимераза может обеспечивать транскрипцию с генов с эубактериальными промоторами (большинство генов фотосинтетических белков), а также с генов, имеющих универсальные промоторы.
  2. Мономерная РНК-полимераза фагового типа кодируется в ядре и белок имеет специальную сигнальную последовательность обеспечивающую импорт в пластиды. Обеспечивает транскрипцию генов «домашнего хозяйства» (в частности гены rif-оперона, который содержит гены пластидной РНК-полимеразы).

Процесс созревания транскриптов пластид имеет свои особенности. В частности пластидные интроны способны к автосплайсингу , то есть вырезания интронов происходит автокаталитически. Кроме того в пластидах происходит редактирование РНК - химическая модификация оснований РНК, приводящая к изменению закодированной информации (наиболее часто происходит замена цитидина на уридин) . Большинство зрелых мРНК пластид содержат в 3"-некодирующей области шпильку, защищающую её от рибонуклеаз .

  • Хлоропласты - зелёные пластиды, основной функцией которых является фотосинтез. Хлоропласты как правило имеют элипсовидную форму и длину от 5 до 8 мкм. Количество хлоропластов в клетке различно: в клетке хлоренхимы листа Arabidopsis содержится около 120 хлоропластов, в губчатой хлоренхиме листа клещевины их около 20, клетка нитчатой морской водоросли Spirogyra содержит единственный лентовидный хлоропласт. Хлоропласты имеют хорошо развитую эндомембранную систему, в которой выделяют тилакоиды стромы и стопки тилакоидов - граны. Зелёная окраска хлоропластов обусловлена высоким содержанием основного пигмента фотосинтеза - хлорофилла . Помимо хлорофилла хлоропласты содержат различные каротиноиды. Набор пигментов, участвующих в фотосинтезе (и, соответственно окраска) различен у представителей разных таксонов.
  • Хромопласты - пластиды, окрашенные в жёлтый, красный или оранжевый цвет. Хромопласты могут развиваться из пропластид или повторно дифференцироваться из хлоропластов; также хромопласты могут редифференцироваться в хлоропласты. Окраска хромопластов связана с накоплением в них каротиноидов . Хромопласты определяют окраску осенних листьев, лепестков некоторых цветов (лютики, бархатцы), корнеплодов (морковь), созревших плодов (томат).

Напишите отзыв о статье "Пластиды"

Ссылки

Отрывок, характеризующий Пластиды

Дрон, не отвечая, вздохнул.
– Если прикажете, они уйдут, – сказал он.
– Нет, нет, я пойду к ним, – сказала княжна Марья
Несмотря на отговариванье Дуняши и няни, княжна Марья вышла на крыльцо. Дрон, Дуняша, няня и Михаил Иваныч шли за нею. «Они, вероятно, думают, что я предлагаю им хлеб с тем, чтобы они остались на своих местах, и сама уеду, бросив их на произвол французов, – думала княжна Марья. – Я им буду обещать месячину в подмосковной, квартиры; я уверена, что Andre еще больше бы сделав на моем месте», – думала она, подходя в сумерках к толпе, стоявшей на выгоне у амбара.
Толпа, скучиваясь, зашевелилась, и быстро снялись шляпы. Княжна Марья, опустив глаза и путаясь ногами в платье, близко подошла к ним. Столько разнообразных старых и молодых глаз было устремлено на нее и столько было разных лиц, что княжна Марья не видала ни одного лица и, чувствуя необходимость говорить вдруг со всеми, не знала, как быть. Но опять сознание того, что она – представительница отца и брата, придало ей силы, и она смело начала свою речь.
– Я очень рада, что вы пришли, – начала княжна Марья, не поднимая глаз и чувствуя, как быстро и сильно билось ее сердце. – Мне Дронушка сказал, что вас разорила война. Это наше общее горе, и я ничего не пожалею, чтобы помочь вам. Я сама еду, потому что уже опасно здесь и неприятель близко… потому что… Я вам отдаю все, мои друзья, и прошу вас взять все, весь хлеб наш, чтобы у вас не было нужды. А ежели вам сказали, что я отдаю вам хлеб с тем, чтобы вы остались здесь, то это неправда. Я, напротив, прошу вас уезжать со всем вашим имуществом в нашу подмосковную, и там я беру на себя и обещаю вам, что вы не будете нуждаться. Вам дадут и домы и хлеба. – Княжна остановилась. В толпе только слышались вздохи.
– Я не от себя делаю это, – продолжала княжна, – я это делаю именем покойного отца, который был вам хорошим барином, и за брата, и его сына.
Она опять остановилась. Никто не прерывал ее молчания.
– Горе наше общее, и будем делить всё пополам. Все, что мое, то ваше, – сказала она, оглядывая лица, стоявшие перед нею.
Все глаза смотрели на нее с одинаковым выражением, значения которого она не могла понять. Было ли это любопытство, преданность, благодарность, или испуг и недоверие, но выражение на всех лицах было одинаковое.
– Много довольны вашей милостью, только нам брать господский хлеб не приходится, – сказал голос сзади.
– Да отчего же? – сказала княжна.
Никто не ответил, и княжна Марья, оглядываясь по толпе, замечала, что теперь все глаза, с которыми она встречалась, тотчас же опускались.
– Отчего же вы не хотите? – спросила она опять.
Никто не отвечал.
Княжне Марье становилось тяжело от этого молчанья; она старалась уловить чей нибудь взгляд.
– Отчего вы не говорите? – обратилась княжна к старому старику, который, облокотившись на палку, стоял перед ней. – Скажи, ежели ты думаешь, что еще что нибудь нужно. Я все сделаю, – сказала она, уловив его взгляд. Но он, как бы рассердившись за это, опустил совсем голову и проговорил:
– Чего соглашаться то, не нужно нам хлеба.
– Что ж, нам все бросить то? Не согласны. Не согласны… Нет нашего согласия. Мы тебя жалеем, а нашего согласия нет. Поезжай сама, одна… – раздалось в толпе с разных сторон. И опять на всех лицах этой толпы показалось одно и то же выражение, и теперь это было уже наверное не выражение любопытства и благодарности, а выражение озлобленной решительности.
– Да вы не поняли, верно, – с грустной улыбкой сказала княжна Марья. – Отчего вы не хотите ехать? Я обещаю поселить вас, кормить. А здесь неприятель разорит вас…
Но голос ее заглушали голоса толпы.
– Нет нашего согласия, пускай разоряет! Не берем твоего хлеба, нет согласия нашего!
Княжна Марья старалась уловить опять чей нибудь взгляд из толпы, но ни один взгляд не был устремлен на нее; глаза, очевидно, избегали ее. Ей стало странно и неловко.
– Вишь, научила ловко, за ней в крепость иди! Дома разори да в кабалу и ступай. Как же! Я хлеб, мол, отдам! – слышались голоса в толпе.
Княжна Марья, опустив голову, вышла из круга и пошла в дом. Повторив Дрону приказание о том, чтобы завтра были лошади для отъезда, она ушла в свою комнату и осталась одна с своими мыслями.

Долго эту ночь княжна Марья сидела у открытого окна в своей комнате, прислушиваясь к звукам говора мужиков, доносившегося с деревни, но она не думала о них. Она чувствовала, что, сколько бы она ни думала о них, она не могла бы понять их. Она думала все об одном – о своем горе, которое теперь, после перерыва, произведенного заботами о настоящем, уже сделалось для нее прошедшим. Она теперь уже могла вспоминать, могла плакать и могла молиться. С заходом солнца ветер затих. Ночь была тихая и свежая. В двенадцатом часу голоса стали затихать, пропел петух, из за лип стала выходить полная луна, поднялся свежий, белый туман роса, и над деревней и над домом воцарилась тишина.
Одна за другой представлялись ей картины близкого прошедшего – болезни и последних минут отца. И с грустной радостью она теперь останавливалась на этих образах, отгоняя от себя с ужасом только одно последнее представление его смерти, которое – она чувствовала – она была не в силах созерцать даже в своем воображении в этот тихий и таинственный час ночи. И картины эти представлялись ей с такой ясностью и с такими подробностями, что они казались ей то действительностью, то прошедшим, то будущим.
То ей живо представлялась та минута, когда с ним сделался удар и его из сада в Лысых Горах волокли под руки и он бормотал что то бессильным языком, дергал седыми бровями и беспокойно и робко смотрел на нее.
«Он и тогда хотел сказать мне то, что он сказал мне в день своей смерти, – думала она. – Он всегда думал то, что он сказал мне». И вот ей со всеми подробностями вспомнилась та ночь в Лысых Горах накануне сделавшегося с ним удара, когда княжна Марья, предчувствуя беду, против его воли осталась с ним. Она не спала и ночью на цыпочках сошла вниз и, подойдя к двери в цветочную, в которой в эту ночь ночевал ее отец, прислушалась к его голосу. Он измученным, усталым голосом говорил что то с Тихоном. Ему, видно, хотелось поговорить. «И отчего он не позвал меня? Отчего он не позволил быть мне тут на месте Тихона? – думала тогда и теперь княжна Марья. – Уж он не выскажет никогда никому теперь всего того, что было в его душе. Уж никогда не вернется для него и для меня эта минута, когда бы он говорил все, что ему хотелось высказать, а я, а не Тихон, слушала бы и понимала его. Отчего я не вошла тогда в комнату? – думала она. – Может быть, он тогда же бы сказал мне то, что он сказал в день смерти. Он и тогда в разговоре с Тихоном два раза спросил про меня. Ему хотелось меня видеть, а я стояла тут, за дверью. Ему было грустно, тяжело говорить с Тихоном, который не понимал его. Помню, как он заговорил с ним про Лизу, как живую, – он забыл, что она умерла, и Тихон напомнил ему, что ее уже нет, и он закричал: „Дурак“. Ему тяжело было. Я слышала из за двери, как он, кряхтя, лег на кровать и громко прокричал: „Бог мой!Отчего я не взошла тогда? Что ж бы он сделал мне? Что бы я потеряла? А может быть, тогда же он утешился бы, он сказал бы мне это слово“. И княжна Марья вслух произнесла то ласковое слово, которое он сказал ей в день смерти. «Ду ше нь ка! – повторила княжна Марья это слово и зарыдала облегчающими душу слезами. Она видела теперь перед собою его лицо. И не то лицо, которое она знала с тех пор, как себя помнила, и которое она всегда видела издалека; а то лицо – робкое и слабое, которое она в последний день, пригибаясь к его рту, чтобы слышать то, что он говорил, в первый раз рассмотрела вблизи со всеми его морщинами и подробностями.
«Душенька», – повторила она.
«Что он думал, когда сказал это слово? Что он думает теперь? – вдруг пришел ей вопрос, и в ответ на это она увидала его перед собой с тем выражением лица, которое у него было в гробу на обвязанном белым платком лице. И тот ужас, который охватил ее тогда, когда она прикоснулась к нему и убедилась, что это не только не был он, но что то таинственное и отталкивающее, охватил ее и теперь. Она хотела думать о другом, хотела молиться и ничего не могла сделать. Она большими открытыми глазами смотрела на лунный свет и тени, всякую секунду ждала увидеть его мертвое лицо и чувствовала, что тишина, стоявшая над домом и в доме, заковывала ее.
– Дуняша! – прошептала она. – Дуняша! – вскрикнула она диким голосом и, вырвавшись из тишины, побежала к девичьей, навстречу бегущим к ней няне и девушкам.

17 го августа Ростов и Ильин, сопутствуемые только что вернувшимся из плена Лаврушкой и вестовым гусаром, из своей стоянки Янково, в пятнадцати верстах от Богучарова, поехали кататься верхами – попробовать новую, купленную Ильиным лошадь и разузнать, нет ли в деревнях сена.
Богучарово находилось последние три дня между двумя неприятельскими армиями, так что так же легко мог зайти туда русский арьергард, как и французский авангард, и потому Ростов, как заботливый эскадронный командир, желал прежде французов воспользоваться тем провиантом, который оставался в Богучарове.
Ростов и Ильин были в самом веселом расположении духа. Дорогой в Богучарово, в княжеское именье с усадьбой, где они надеялись найти большую дворню и хорошеньких девушек, они то расспрашивали Лаврушку о Наполеоне и смеялись его рассказам, то перегонялись, пробуя лошадь Ильина.
Ростов и не знал и не думал, что эта деревня, в которую он ехал, была именье того самого Болконского, который был женихом его сестры.
Ростов с Ильиным в последний раз выпустили на перегонку лошадей в изволок перед Богучаровым, и Ростов, перегнавший Ильина, первый вскакал в улицу деревни Богучарова.
– Ты вперед взял, – говорил раскрасневшийся Ильин.
– Да, всё вперед, и на лугу вперед, и тут, – отвечал Ростов, поглаживая рукой своего взмылившегося донца.
– А я на французской, ваше сиятельство, – сзади говорил Лаврушка, называя французской свою упряжную клячу, – перегнал бы, да только срамить не хотел.
Они шагом подъехали к амбару, у которого стояла большая толпа мужиков.
Некоторые мужики сняли шапки, некоторые, не снимая шапок, смотрели на подъехавших. Два старые длинные мужика, с сморщенными лицами и редкими бородами, вышли из кабака и с улыбками, качаясь и распевая какую то нескладную песню, подошли к офицерам.
– Молодцы! – сказал, смеясь, Ростов. – Что, сено есть?
– И одинакие какие… – сказал Ильин.
– Развесе…oo…ооо…лая бесе… бесе… – распевали мужики с счастливыми улыбками.
Один мужик вышел из толпы и подошел к Ростову.
– Вы из каких будете? – спросил он.
– Французы, – отвечал, смеючись, Ильин. – Вот и Наполеон сам, – сказал он, указывая на Лаврушку.
– Стало быть, русские будете? – переспросил мужик.
– А много вашей силы тут? – спросил другой небольшой мужик, подходя к ним.
– Много, много, – отвечал Ростов. – Да вы что ж собрались тут? – прибавил он. – Праздник, что ль?
– Старички собрались, по мирскому делу, – отвечал мужик, отходя от него.
В это время по дороге от барского дома показались две женщины и человек в белой шляпе, шедшие к офицерам.
– В розовом моя, чур не отбивать! – сказал Ильин, заметив решительно подвигавшуюся к нему Дуняшу.
– Наша будет! – подмигнув, сказал Ильину Лаврушка.
– Что, моя красавица, нужно? – сказал Ильин, улыбаясь.
– Княжна приказали узнать, какого вы полка и ваши фамилии?



Статьи по теме: