Характеристика содержания методов картографических проекций. Картографические проекции

3. И наконец заключительным этапом создания карты является отображение уменьшенной поверхность эллипсоида на плоскости, т.е. применение картографической проекции (математический способ изображения на плоскости пов-ти эллипсоида.).

Поверхность эллипсоида нельзя без искажения развернуть на плоскость. Поэтому она проецируется на фигуру, которую можно развернуть на плоскость (Рис). При этом возникают искажения углов между параллелями и меридианами, расстояний, площадей.

Существует несколько сотен проекций, которые используются в картографии. Разберем далее их основные типы, не вдаваясь во все многоообразие деталей.

В соответствии с типом искажений проекци деляться на:

1. Равноугольные (конформные) – проекции, не искажающие углов. При этом сохраняется подобие фигур, масштаб изменяется с изменением широты и долготы. Отношение площадей не сохраняется на карте.

2. Равновеликие (эквивалентные) – проекции, на которых масштаб площадей везде одинаков и площади на картах пропорциональны соответствующим площадям на Земле. Однако масштаб длин в каждой точке разный по разным направлениям. не сохраняются равенство углов и подобие фигур.

3. Равнопромежуточные проекции- проекции, сохраняющие постоянство масштаба по одному из главных направлений.

4. Произвольные проекции - проекции, не относящиеся ни к одной из рассмотренных групп, но обладающие какими-либо другими, важными для практики свойствами, называются произвольными.

Рис. Проецирование эллипсоида на фигуру, разворачиваемую в плоскость.

В зависимости от того на какую фигуру проецируется поверхность эллипсоида (цилиндр, конус или плоскость) проекции делятся на три основных типа: цилиндрические, конические и азимутальные. Тип фигуры, на которую проецируется эллипсоид определяет вид параллелей и меридианов на карте.

Рис. Различие проекций по типу фигур на которую проецируется поверхность эллипсоида и вид разверток этих фигур на плоскости.

В свою очередь в зависимости от ориентации цилундра либо конуса относительно эллипсоида цилиндрические и конические проекции могут быть: прямыми - ось цилиндра или конуса совпадает с осью Земли, поперечными - ось цилиндра или конуса перпендикулярна оси Земли и косыми - ось цилиндра или конуса наклонена к оси Земли под углом, отличным от 0° и 90°.

Рис. Различие проекций по ориентации фигуры на которую проецируется эллипсоид относительно Земной оси.

Конус и цилиндр могут либо касаться поверхности эллипсоида, либо пересекать ее. Взависимости от этого проекция будет касательная или секущая. Рис.



Рис. Касательная и секущая проекции.

Нетрудно заметить (рис), что длина линии на эллипсоиде и длина линии на фигуре которую он проецируется будет одна и таже вдоль экватора, касательной к конусу для касательной проекции и вдоль секущих линий конуса и цилиндра при секущей проекции.

Т.е. для этих линий масштаб карты будет точно соответствовать масштабу эллипсоида. Для остальных точек карты масштаб будет несколько больше или меньше. Это необходимо учитывать при нарезке листов карты.

Касательная к конусу для касательной проекции и секущие конуса и цилиндра для секущей проекции называются стандартными параллелями.

Для азимутальной проекции также существует несколько разновидностей.

В зависимости от ориентации касательной к эллипсоиду плоскости азумутальная проеция может быль полярной, экваториальной или косой (рис)

Рис. Виды Азимутальной проекции по положению касательной плоскости.

В зависимости от положения воображаемого источника света, который проецирует эллипсоид на плоскость – в центре эллипсоида, на полюсе, или на бесконечном удалении различают гномоническую (цетрально-перспективную), стереографическую и ортографическую проекции рис

Рис. Виды азимутальной проеции по положению воображаемого источника света.

Географические координаты любой точки эллипсоида остаются неизменными при любом выборе картографической проекции (определяются только выбранной системой «географических» координат). Однако наряду с географическими, для проекций эллипсоида на плоскости используют так называемые спроектированная системы координат. Это прямоугольные системы координат - с началом координат в определенной точке, чаще всего имеющей координаты 0,0. Координаты в таких системах измеряются в единицах длины (метрах). Более подробно об этом речь пойдет ниже при рассмотрении конкретных проекций. Часто при упоминании о системы координат слова «географические» и «спроецированная», опускают, что приводит к некоторой путанице. Географические координаты определяются выбранным эллипсоидом и его привязками к геоиду, «спроецированные» - выбранным типом проекции уже после выбора эллипсоида. В зависимости от выбранной проекции одним «географическим» координатам могут соответствовать разные «спроецированные». И наобоот одним и тем же «спроецированным» координатам могут соответствовать разные «географические», если проекция применена к разным эллипсоидам. На картах могут обозначаться одновременно как те так и другие координаты и «спроецированные» тоже являются географическими, если понимать дословно, что они описывают Землю. Подчеркнем, еще раз, что принципиальным является то, что «спроецированные» координаты связаны с типом проекции и измеряются, в единицах длины (метрах), а «географические» не зависят от выбранной проекции.

Рассмотрим теперь более детально две картографические проекции, наиболее важные для практической работе в археологии. Это проекция Гаусса-Крюгера и проекция Universal Transverse Mercator (UTM) – разновидности равноугольной поперечно (transverse)-цилиндрической проекции. Проекцию называют по имени флпмпндского картографа Меркатора, впервые применившему прямую цилиндрическую проекцию при создании карт.

Первая из этих проекций была разработана немецким математиком Карлом Фридррихом Гауссом в 1820-30 гг. для картографирования Германии - так называемой ганноверской триангуляции. Как истинно великий математик, он решил эту частную задачу в общем виде и сделал проекцию, пригодную для картографирования всей Земли. Математическое описание проекции было опубликовано в 1866 г. В 1912-19 гг. другой немецкий математик Крюгер Иоганнес Генрих Луис провел исследование этой проекции и разработал для нее новый, более удобный математический аппарат. С этого времени проекция называется по их именам - проекцией Гаусса-Крюгера

Проекция UTM была разработана после Второй Мировой Войны, когда страны НАТО пришли к согласию, что необходима стандартная пространственная система координат. Так как каждая из армий стран НАТО использовала свою собственную пространственную систему координат, было невозможным точно координировать военные перемещения между странами. Опрделение параметров системы UTM было опубликовано Армией США в 1951 г.

Для получения картографической сетки и составления по ней карты в проекции Гаусса-Крюгера поверхность земного эллипсоида разбивают по меридианам на 60 зон по 6° каждая. Как нетрудно заметить это соответствует разбиению Земного шара на 6°-е зоны при построении карты масштаба 1:100000. Зоны нумеруются с запада на восток, начиная с 0°: зона 1 простирается с меридиана 0° до меридиана 6°, ее центральный меридиан 3°. Зона 2 - с 6° до 12°, и т. д. Нумерация номенклатурных листов начинается с 180°, например, лист N-39 находится в 9-й зоне.

Для связи долготы точки λ и номера n зоны в которой точка находится можно использовать соотношения:

в Восточном полушарии n = (целая часть от λ/ 6°) + 1, где λ – градусы восточной долготы

в Западном полушарии n = (целая часть от (360-λ)/ 6°) + 1, где λ – градусы западной долготы.

Рис. Разбиение на зоны в проекции Гауса-Крюгера.

Далле каждая из зон проектируется на поверхность цилиндра, а цилиндр разрезается по образующей и разворачивается на плоскость. Рис

Рис. Система координат в пределах 6 градусных зон в проекциях ГК и UTM.

В проекции Гаусса-Крюгера цилиндр касается эллипсоида по центральному меридиану и масштаб вдоль него равен 1. рис

Для каждой зоны отсчет координат X, Y ведется в метрах от начала координат зоны, причем Х расстояние от экватора (по вертикали!), а Y- по горизонтали. Вертикальные линии сетки параллельны центральному меридиану. Начало координат смещено, от центрального меридиана зоны на запад (или центр зоны смещен на восток, для обозначения этого смещения часто используют английский термин – «false easting») на 500000 м для того, чтобы координата Х была положительной во всей зоне т. е. координата X на центральном меридиане равна 500 000 м.

В южном полушарии в тех же целях вводится северное смещение (false northing) 10 000 000 м.

Координаты записыватся в виде Х=1111111.1 м, Y=6222222,2 м либо

X s =1111111.0 м, Y=6222222,2 м

X s - означает, что точка в южном полушарии

6 – первая или две первые цифры в Y координате (соответственно всего 7 или 8 цифр до запятой) означают номер зоны. (Санкт-Петербург, Пулково -30 град 19 минут восточной долготы 30:6+1=6 - 6 зона).

В проекции Гаусса–Крюгера для эллипсоида Красовского составлены все топографические карты СССР масштаба 1:500000 и крупнее применение этой проекции в СССР началовсь в 1928 году.

2. Проекция UTM в целом аналогична проеции Гаусса-Крюгера, однако нумерация 6-градусных зон ведется по другому. Отсчет зон происходит от 180 меридиана на восток, таким образом номер зоны в проекции UTM на 30 больше, чем системе координат Гаусса-Крюгера (Санкт-Петербург, Пулково -30 град 19 минут восточной долготы 30:6+1+30=36 - 36 зона).

Кроме того UTM - это проекция на секущий цилиндр и масштаб равен единице вдоль двух секущих линий, отстоящих от центрального меридиана на 180 000 м.

В проекции UTM координаты приводятся в виде: Северное полушарие, 36 зона, N (северное положение)=1111111.1 м, E (восточное положение)=222222.2м. Начало координат каждой зоны также смещено на 500000 м на запад от центрального меридиана и на 10000000 на юг от экватора для южного полушария.

В проекции UTM составлены современные карты многих стран Европы.

Сравнение проекций Гаусса-Крюгера и UTM приведено в таблице

Параметр UTM Гаус-Крюгер
Величина зоны 6 градусов 6 градусов
Нулевой меридиан -180 градусов 0 градусов (Гринвич)
Масштаб коэф = 1 Секущие на расст 180 км от центр.меридиана зоны Центральный меридиан зоны.
Центральный меридиан иоответствующая ему зона 3-9-15-21-27-33-39-45 и.т.д 31-32-33-34-35-35-37-38-… 3-9-15-21-27-33-39-45 и.т.д 1-2-3-4-5-6-7-8-…
Соответствующая центр мердиану зона 31 32 33 34
Масштабный коэфф. по центральному меридиану 0,9996
Ложный восток (м) 500 000 500 000
Ложный север (м) 0 – северное полушарие 0 – северное полушарие
10 000 000 – южное полушарие

Забегая вперед следует отметить, что большинство GPS навигаторов может показывать координаты в поекции UTM, но не могут в проекции Гаусса-Крюгера для эллипсода Красовского (т.е. в системе координат СК-42).

Каждый лист карты или плана имеет законченное оформление. Основными элементами листа являются: 1) собственно картографическое изображение участка земной поверхности, координатная сетка; 2) рамка листа, элементы которой определены математической основой; 3) зарамочное оформление (вспомогательное оснащение), которое включает данные, облегчающие пользование картой.

Картографическое изображение листа ограничивается внутренней рамкой в виде тонкой линии. Северная и южная стороны рамки - отрезки параллелей, восточная и западная - отрезки меридианов, значение которых определяется общей системой разграфки топографических карт. Значения долготы меридианов и широты параллелей, ограничивающих лист карты, подписываются возле углов рамки: долгота на продолжении меридианов, широта на продолжении параллелей.

На некотором расстоянии от внутренней рамки вычерчивается так называемая минутная рамка, на которой показаны выходы меридианов и параллелей. Рамка представляет собой двойную линию, расчерченную на отрезки, соответствующие линейной протяженности 1" меридиана или параллели. Количество минутных отрезков на северной и южной сторонах рамки равно разности значений долготы западной и восточной сторон. На западной и восточной сторонах рамки количество отрезков определяется разностью значений широты северной и южной сторон.

Завершающим элементом является внешняя рамка в виде утолщенной линии. Часто она составляет одно целое с минутной рамкой. В промежутках между ними дается разметка минутных отрезков на десятисекундные, границы которых отмечены точками. Это упрощает работу с картой.

На картах масштаба 1: 500 000 и 1: 1 000 000 дается картографическая сетка параллелей и меридианов, а на картах масштаба 1: 10 000 - 1: 200 000 - координатная сетка, или километровая, так как линии ее проводятся через целое число километров (1 км в масштабе 1: 10 000 - 1: 50 000, 2 км в масштабе 1: 100 000, 4 км в масштабе 1: 200 000).

Значения километровых линий подписываются в промежутках между внутренней и минутной рамками: абсциссы на концах горизонтальных линий, ординаты на концах вертикальных. У крайних линий указываются полные значения координат, у промежуточных - сокращенные (только десятки и единицы километров). Кроме обозначений на концах часть километровых линий имеет подписи координат внутри листа.

Важным элементом зарамочного оформления являются сведения о среднем на территорию листа карты магнитном склонении, относящиеся к моменту его определения, и годовом изменении магнитного склонения, которые помещают на топографических картах масштаба 1:200 000 и крупнее. Как известно магнитный и географический полюса не совпадают и стрелка копмаса показывает направление несколько отличающееся от на правленя на географический пояс. Величину этого отклонения и называют магнитным склонением. Оно может быть восточное, либо западное. Прибавив к величине магнитного склонения годовое изменение магнитного склонения, умноженное на число лет пошедщих с момента создания карты до текущего момента определить магнитное склонение на текущий момент.

В заключении темы об основах картографии остановимся кратко на истории картографии в России.

Первые карты с отображенной географической системой координат (карты России Ф. Годунова (издана в 1613г.), Г. Геритса, И. Массы, Н. Витсена) появились в XVII веке.

В соответствии с законодательным актом русского правительства (боярским “приговором”) от 10 января 1696 «О снятии чертежа Сибири на холсте с показанием в оном городов, селений, народов и расстояний между урочищами» С.У. Ремизовым (1642-1720) создается огромное (217х277 см) картографическое произведение «Чертеж всех сибирских градов и земель», ныне находится в постоянной экспозиции Государственного Эрмитажа. 1701 г. - 1 января – дата, стоящая на первом титульном листе Атласа России Ремизова.

В 1726-34 гг. выходит в свет первый Атлас Всероссийской Империи, руководителем работ по созданию которого был обер-секретарь Сената И. К. Кириллов. Атлас был издан на латинском языке, и состоял из 14 специальных и одной генеральной карты под заглавием "Atlas Imperii Russici". В 1745 году был издан "Атлас Всероссийский". Первоначально работами по составлению атласа руководил академик, астроном И. Н. Делиль, представивший в 1728 г. проект составления атласа Российской империи. Начиная с 1739 года выполнение работ по составлению атласа осуществлял учрежденный по инициативе Делиля Географический департамент Академии Наук, задачей которого было составление карт России. Атлас Делиля включает комментарии к картам, таблицу с географическими координатами 62 городов России, легенду карт и сами карты: Европейской России на 13 листах при масштабе 34 версты в дюйме (1:1428000), Азиатской России на 6 листах в меньшем масштабе и карту всей России на 2-х листах в масштабе около 206 верст в дюйме (1:8700000) Атлас издан в виде книги параллельными изданиями на русском и латинском языках с приложением Генеральной Карты.

При создании атласа Делиля большое внимание уделялось математической основе карт. Впервые в России проводилось астрономическое определение координат опорных пунктов. В таблице с координатами указан способ их определения – "по достоверным основаниям" либо "при сочинении карты" В течение XVIII века в общей сложности было сделано 67 полных астрономических определений координат, относящихся к наиболее важным городам России, а также выполнено 118 определений пунктов по широте. На территории Крыма были определены 3 пункта.

Со второй половины XVIII в. роль главного картографо-геодезического учреждения России постепенно стало выполнять Военное ведомство

В 1763 г. был создан Особый Генеральный штаб. Туда были отобраны несколько десятков офицеров, которыеофицеры командировались для снятия районов расположения войск, маршрутов их возможного следования, дорог, по которым проходили сообщения воинскими подразделениями. По сути эти офицеры были первыми российскими военными топографами, которые выполнили первичный объем работ по картографированию страны.

В 1797 г. было учреждено Депо карт. В декабре 1798 г. Депо получило право контроля над всеми топографическими и картографическими работами в империи, а в 1800 г. к нему был присоединен Географический департамент. Все это сделало Депо карт центральным картографическим учреждением страны. В 1810 г. Депо карт перешло в ведение военного министерства.

8 февраля (27 января по старому стилю) 1812 г., когда было высочайшее утверждено «Положение для Военного Топографического Депо» (далее ВТД), в которое Депо карт вошло как особое отделение – архив военно-топографического депо. Приказом Министра обороны Российской Федерации от 9 ноября 2003 г. становлена дата годового праздника ВТУ ГШ ВС РФ – 8 февраля.

В мае 1816 г. ВТД было введено в состав Главного штаба, при этом директором ВТД назначался начальник Главного штаба. С этого года ВТД (независимо от переименований) постоянно находится в составе Главного или Генерального штаба. ВТД руководило созданным в 1822 году Корпусом топографов (после 1866 года -Корпусом военных топографов)

Важнейшими результатами работ ВТД на протяжении почти целого столетия после его создания являются три большие карты. Первая - специальная карта европейской России на 158 листах, размером 25х19 дюймов, в масштабе 10 верст в одном дюйме (1:420000). Вторая - военно-топографической карты Европейской России в масштабе 3 версты в дюйме (1:126000), проекция карты коническая Бонна, долгота считается от Пулково.

Третья - карта Азиатской России на 8 листах размером 26х19 дюймов, в масштабе 100 верст в дюйме (1:42000000). Кроме этого для части России, особенно для приграничных районов были подготовлены карты в полуверстовом (1:21000) и верстовом (1:42000) масштабе (на эллипсоиде Бесселя и проекции Мюфлинга).

В 1918 г. в состав созданного Всероссийского Главного штаба вводится Военно-топографическое управление (правопреемник ВТД), которое в дальнейшем до 1940 г. принимало разные названия. В подчинении этого управления на ходится и корпус военных топографом. С 1940 г. по настоящее время оно именуется «Военно-топографическое управление Генерального штаба Вооруженных Сил».

В 1923 года Корпус военных топографов был преобразован в военно-топографическая службу.

В 1991 году, была образована Военно-топографическая служба Вооружённых сил России, которая в 2010 году была преобразована в Топографическую службу Вооружённых сил Российской Федерации.

Следует сказать так же о возможности использования топографических карт в исторических исследованиях. Мы будем говорить только о топографических картах, созданных в XVII веке и позднее, построение которых опиралось на математические законы и специально проводившееся систематическое обследование территории.

Общие топографические карты отражают физическое состояние местности и ее топонимику на момент составления карты.

Карты мелких масштабов (более 5 верст в дюйме – мельче 1:200000) возможно использовать для локализации указанных на них объектов, лишь с большой неопределенностью в координатах. Ценность содержащейся информации в возможности выявления изменения топонимики территории, главным образом при ее сохранении. Действительно, отсутствие топонима на более поздней карте может свидетельствовать об исчезновении объекта, изменении названия, либо просто о его ошибочном обозначении, в то же время как его наличие будет подтверждать более старую карту причем, как правило, в таких случаях возможна более точная локализация..

Карты крупных масштабов дают наиболее полную информацию о территории. Они могут быть непосредственно использованы для поиска обозначенных на них и сохранившихся до настоящего времени объектов. Развалины построек являются одним из элементов, входящим в легенду топографических карт, и, хотя, лишь немногие из обозначенных развалин относятся к памятникам археологии, их идентификация является вопросом, заслуживающим рассмотрения.

Координаты сохранившихся объектов, определенные по топографическим картам СССР, либо путем непосредственных измерений при помощи глобальной космической системы местоопределения (GPS), могут быть использованы для привязки старых карт к современным системам координат. Однако даже карты начала-середины XIX века могут на отдельных участках территории содержать значительные искажения пропорций местности и процедура привязки карт состоит не только из соотнесений начал отсчета координат, но требует неравномерного растяжения или сжатия отдельных участков карты, которое осуществляется на основе знания координат большого количества опорных точек (так называемая трансформация изображения карты).

После проведения привязки, возможно, осуществить сравнение знаков на карте, с объектами присутствующими на местности в настоящее время, либо существовавшими в периоды предшествующие или последующие времени ее создания. Для этого необходимо производить сопоставление имеющихся карт разных периодов и масштабов.

Крупномасштабные топографические карты XIX века представляются весьма полезными при работе с межевыми планами XVIII - XIX веков, как связующее звено между этими планами и крупномасштабными картами СССР. Межевые планы составлялись во многих случаях без обоснования на опорных пунктах, с ориентировкой по магнитному меридиану. В силу изменений характера местности, вызванных природными факторами и деятельностью человека, непосредственное сопоставление межевых и прочих детальных планов прошлого века и карт XX века не всегда возможно, однако сопоставление детальных планов прошлого века с современной им топографической картой представляется более простым.

Еще одна интересная возможность применения крупномасштабных карт их использование для изучения изменений контуров берега. За последние 2,5 тысячи лет уровень, например, Черного моря повысился, как минимум на несколько метров. Даже за прошедшие с момента создания первых карт Крыма в ВТД два столетия, положение береговой линии в ряде мест могло сместиться на расстояние от нескольких десятков до сотен метров, главным образов вследствие абразии. Такие изменения вполне соизмеримы с размерами достаточно крупных по античным меркам поселений. Выявление поглощенных морем участков территории может способствовать открытию новых археологических памятников.

Естественно, что основными источниками по территории Российской империи для указанных целей, могут выступать трехверстная и верстовая карты. Использование геоинформационных технологий позволяет накладывать друг на друга и привязывать их к современным картам, совмещать слои крупномасштабных топографических карт различного времени и далее дробить их на планы. Причем планы создаваемые сейчас, как и планы XX века, окажутся привязанными к планам XIX века.


Современные значения параметров Земли: Экваториальный радиус, 6378 км. Полярный радиус, 6357 км. Средний радиус Земли, 6371 км. Длина экватора, 40076 км. Длина меридиана, 40008 км...

Здесь, конечно, надо учитывать, что величина самого «стадия» вопрос дискуссионный.

Диоптр - прибор, служащий для направления (визирования) известной части угломерного инструмента на данный предмет. Направляемая часть снабжается обыкновенно двумя Д. - глазным , с узким прорезом, и предметным , с широким прорезом и волоском, натянутым посередине (http://www.wikiznanie.ru/ru-wz/index.php/Диоптр).

По материалам сайта http://ru.wikipedia.org/wiki/Советская _система_разгравки_и_номенклатуры_топографических_карт#cite_note-1

Герхард Меркатор (1512 - 1594) - латинизированное имя Герарда Кремера (и латинская, и германская фамилии означают «купец»), фламандского картографа и географа.

Описание зарамочного оформления приводится по работе: «Топография с основами геодезии». Под ред. А.С.Харченко и А.П.Божок. М - 1986

С 1938 года в течении 30 лет ВТУ (при Сталине, Маленкове, Хрущеве, Брежневе) возглавлял генерал М.К.Кудрявцев. Никто на подобной должности ни в одной армии мира такое время не держался.

Картографическая проекция

Картографи́ческая прое́кция - математически определенный способ отображения поверхности эллипсоида на плоскости.

Суть проекций связана с тем, что фигуру Земли - эллипсоид, не развертываемый в плоскость, заменяют на другую фигуру, развёртываемую на плоскость. При этом с эллипсоида на другую фигуру переносят сетку параллелей и меридианов. Вид этой сетки бывает разный в зависимости от того, какой фигурой заменяется эллипсоид.

Искажения

В любой проекции существуют искажения , они бывают четырёх видов:

  • искажения длин
  • искажения углов
  • искажения площадей
  • искажения форм

На различных картах искажения могут быть различных размеров: на крупномасштабных они практически неощутимы, но на мелкомасштабных они бывают очень велики.

Искажения длин

Искажение длин - базовое искажение. Остальные искажения из него логически вытекают. Искажение длин означает непостоянство масштаба плоского изображения, что проявляется в изменении масштаба от точки к точке, и даже в одной и той же точке в зависимости от направления.

Это означает, что на карте присутствует 2 вида масштаба:

  • Главный, он на карте подписывается, но на самом деле это масштаб исходного эллипсоида, развертыванием которого в плоскость карта и получена.
  • Частный масштаб - их бесконечно много на карте, он меняется от точки к точке и даже в пределах одной точки.

Для наглядного изображения частных масштабов вводят Эллипс искажения .

Искажения площадей

Искажения площадей логически вытекают из искажения длин. За характеристику искажения площадей принимают отклонение площади эллипса искажений от исходной площади на эллипсоиде .

Искажения углов

Искажения углов логически вытекают из искажения длин. За характеристику искажений углов на карте принимают разность углов между направлениями на карте и соответствующими направлениями на поверхности эллипсоида.

Искажения формы

Искажения формы - графическое изображение вытянутости эллипсоида.

Классификация проекций по характеру искажений

Равноугольные проекции

В прямых конических проекциях оси земного шара и конуса совпадают. При этом конус берется или касательный, или секущий.

После проектирования боковая поверхность конуса разрезается по одной из образующих и развертывается в плоскость. При проектировании по методу линейной перспективы получаются перспективные конические проекции, обладающие только промежуточными свойствами по характеру искажений.

В зависимости от размеров изображаемой территории в конических проекциях принимаются одна или две параллели, вдоль которых сохраняются длины без искажений. Одна параллель (касательная) принимается при небольшом протяжении по широте; две параллели (секущие) - при большом протяжении для уменьшения уклонений масштабов от единицы. В литературе их называют стандартными параллелями.

Азимутальные проекции

В азимутальных проекциях параллели изображаются концентрическими окружностями, а меридианы - пучком прямых, исходящих из центра

Углы между меридианами проекции равны соответствующим разностям долгот. Промежутки между параллелями определяются принятым характером изображения (равноугольным или другим) или способом проектирования точек земной поверхности на картинную плоскость. Нормальная сетка азимутальных проекций ортогональна. Их можно рассматривать как частный случай конических проекций.

Применяются прямые, косые и поперечные азимутальные проекции, что определяется широтой центральной точки проекции, выбор которой зависит от расположения территории. Меридианы и параллели в косых и поперечных проекциях изображаются кривыми линиями, за исключением среднего меридиана, на котором находится центральная точка проекции. В поперечных проекциях прямой изображается также экватор: он является второй осью симметрии.

В зависимости от искажений, азимутальные проекции подразделяются на равноугольные, равновеликие и с промежуточными свойствами. В проекции масштаб длин может сохраняться в точке или вдоль одной из параллелей (вдоль альмукантарата). В первом случае предполагается касательная картинная плоскость, во втором - секущая. В прямых проекциях формулы даются для поверхности эллипсоида или шара (в зависимости от масштаба карт), в косых и поперечных - только для поверхности шара.

Азимутальную равновеликую проекцию называют также стереографической. Она получается проведением лучей из некоторой фиксированной точки поверхности Земли на плоскость, касательную к поверхности Земли в противолежащей точке.

Особый вид азимутальной проекции - гномоническая . Она получается проведением лучей из центра Земли к некоторой касательной к поверхности Земли плоскости. Гномоническая проекция не сохраняет ни площадей, ни углов, но зато на ней кратчайший путь между любыми двумя точками (то есть дуга большого круга) всегда изображается прямой линией; соответственно меридианы и экватор на ней изображаются прямыми линиями.

Псевдоконические проекции

В псевдоконических проекциях параллели изображаются дугами концентрических окружностей, один из меридианов, называемый средним - прямой линией, а остальные - кривыми, симметричными относительно среднего.

Примером псевдоконической проекции может служит равновеликая псевдоконическая проекция Бонна.

Псевдоцилиндрические проекции

В псевдоцилиндрических проекциях все параллели изображаются параллельными прямыми, средний меридиан - прямой линией, перпендикулярной параллелям, а остальные меридианы - кривыми. Причём средний меридиан является осью симметрии проекции.

Поликонические проекции

В поликонических проекциях экватор изображается прямой, а остальные параллели изображаются дугами эксцентрических окружностей. Меридианы изображаются кривыми, симметричными относительно центрального прямого меридиана, перпендикулярного экватору.

Кроме вышеперечисленных встречаются и другие проекции, не относящиеся к указанным видам.

См. также

Ссылки

  • // БСЭ

Проекция Математически определенный способ отображения поверхности шара или эллипсоида на плоскость, используемый для создания картографического произведения. [ГОСТ 21667 76] Тематики картография Обобщающие термины математическая картография… …

картографическая проекция - Математический способ изображения, а также собственно изображение поверхности эллипсоида или шара на плоскости географической картыСловарь по географии

Отображение всей поверхности земного эллипсоида или какой либо ее части на плоскость, получаемое в основном с целью построения карты. К. п. чертят в определенном масштабе. Уменьшая мысленно земной эллипсоид в Мраз, получают его геометрич. модель… … Математическая энциклопедия

Математически определённое отображение поверхности земного шара, эллипсоида (или глобуса) на плоскость карты. Проекция устанавливает соответствие между географическими координатами точки (широтой В и долготой L) и её прямоугольными координатами… … Географическая энциклопедия

псевдоазимутальная картографическая проекция - картографическая проекция Картографическая проекция, в которой параллели нормальной сетки концентрические окружности или их дуги, а меридианы кривые, исходящие из центра параллелей, симметричные относительно одного или двух прямолинейных… … Справочник технического переводчика

равновеликая картографическая проекция - равновеликая проекция Н.д.п. авталическая проекция гомолографическая проекция равноплощадная проекция эквивалентная проекция Картографическая проекция, в которой отсутствуют искажения площадей. [ГОСТ 21667 76] Недопустимые, нерекомендуемые… … Справочник технического переводчика

равноугольная картографическая проекция - равноугольная проекция Ндп. конформная проекция ортоморфная проекция изогональная проекция автогональная проекция Картографическая проекция, в которой отсутствуют искажения углов. [ГОСТ 21667 76] Недопустимые, нерекомендуемые автогональная… … Справочник технического переводчика

азимутальная картографическая проекция - азимутальная проекция Ндп. зенитальная проекция Картографическая проекция, в которой параллели нормальной сетки концентрические окружности, а меридианы их радиусы, углы между которыми равны соответствующим разностям долгот. [ГОСТ 21667 76]… … Справочник технического переводчика

равнопромежуточная картографическая проекция - равнопромежуточная проекция Ндп. эквидистантная проекция Произвольная картографическая проекция, в которой масштаб по одному из главных направлений постоянная величина. [ГОСТ 21667 76] Недопустимые, нерекомендуемые эквидистантная проекция… … Справочник технического переводчика

коническая картографическая проекция - коническая проекция Картографическая проекция, в которой параллели нормальной сетки дуги концентрических окружностей, а меридианы их радиусы, углы между которыми пропорциональны соответствующим разностям долгот. [ГОСТ 21667 76] Тематики… … Справочник технического переводчика

КАРТОГРАФИЧЕСКИЕ ПРОЕКЦИИ, математические способы отображения всей поверхности земного эллипсоида или его части на плоскости карты. Картографические проекции устанавливают соответствие между геодезическими координатами точек (широтой В и долготой L) и их прямоугольными координатами (Х и У) на карте:

Х = f 1 (В, L); Y = f 2 (В, L).

Конкретные реализации функций f 1 , и f 2 часто сложны, их число бесконечно, и, следовательно, разнообразие картографических проекций неограниченно. Исходная аксиома картографических проекций состоит в том, что сферическую поверхность нельзя развернуть на плоскость без деформаций - сжатий и растяжений, различных по величине и направлению. Математическая картография изучает все виды искажений и разрабатывает методы построения проекций, в которых искажения имели бы или наименьшие (в каком-либо смысле) значения, или заранее заданное распределение. Разные картографические проекции могут иметь следующие виды искажений: искажения длин - масштаб длин и расстояний непостоянен в разных точках карты и по разным направлениям; искажения площадей - масштаб площадей в разных точках карты различен, что нарушает размеры объектов; искажения углов - углы между направлениями на карте искажены относительно углов на местности; искажения форм - фигуры на карте деформированы и не подобны фигурам на местности, что является следствием искажения углов.

В любой картографической проекции различают главный масштаб длин и площадей - отношение, показывающее степень уменьшения размеров эллипсоида (шара) относительно его изображения на карте, и частные масштабы - отношение бесконечно малого отрезка (или площади), изображённого на карте, к соответствующей бесконечно малой величине на эллипсоиде (шаре). Картографические анимации имеют ещё и временной масштаб, т. е. отношение времени демонстрации карты к реальному времени изображаемого процесса.

По характеру искажений, возникающих при переходе от сферической поверхности к плоскости, картографические проекции подразделяют на равновеликие, которые сохраняют размеры площадей, равноугольные, оставляющие без искажений углы и формы контуров (ранее их называли конформными), и произвольные, где площади и углы искажены в разных соотношениях. Частный случай произвольных картографических проекций - равнопромежуточные проекции, в которых масштаб постоянен по одному из главных направлений (по меридиану или параллели). Смотри карты Картографических проекций.

Мерой деформаций в картографической проекции служит эллипс искажений (или индикатриса Тиссо). Любая бесконечно малая окружность на земном шаре (эллипсоиде) предстаёт на карте бесконечно малым эллипсом, размеры и форма которого отражают искажения длин, площадей и углов. Длина и ориентировка большой оси эллипса искажений соответствуют направлению наибольшего растяжения (а) в данной точке, а малая ось - наибольшего сжатия (b), отрезки вдоль меридиана и параллели характеризуют частные масштабы вдоль них (m и n).

Искажения на картах можно также показывать с помощью особых изолиний - изокол, т. е. линий равных искажений длин, площадей, углов или форм.

В зависимости от положения оси, используемой при проектировании системы сферических координат, различают картографические проекции нормальные (ось сферическая координат совпадает с осью вращения Земли), поперечные (ось сферических координат лежит в плоскости экватора) и косые (ось сферических координат расположена под углом к плоскости экватора).

По виду нормальной сетки меридианов и параллелей выделяют цилиндрические картографические проекции, в которых меридианы и параллели нормальной сетки являются прямыми, взаимно перпендикулярными линиями; иначе говоря, земной шар (эллипсоид) как бы проектируют на вспомогательную поверхность касательного или секущего цилиндра, который потом разворачивают в плоскость. В конических картографических проекциях поверхность земного шара также проектируют на вспомогательную поверхность касательного или секущего конуса, поэтому в нормальной конической проекции меридианы - это прямые, исходящие из точки полюса, а параллели - дуги концентрических окружностей. В нормальных (полярных) азимутальных картографических проекциях поверхность земного шара переносят на вспомогательную плоскость, перпендикулярную оси вращения Земли, параллели в ней - концентрические окружности, а меридианы - диаметры этих окружностей. В этой проекции всегда картографируют полярные области. Если плоскость проекции перпендикулярна к плоскости экватора, то получается поперечная (экваториальная) азимутальная проекция, которую всегда используют для карт полушарий. Вспомогательные касательные поверхности дают одну общую линию или точку для эллипсоида (шара) и плоскости карты, где искажения отсутствуют. В случае секущей поверхности появляются две общие линии. В псевдоцилиндрических картографических проекциях параллели - прямые (как и в цилиндрических проекциях), средний меридиан - перпендикулярная им прямая, а остальные меридианы - кривые, увеличивающие кривизну по мере удаления от среднего меридиана. В псевдоконических картографических проекциях все параллели предстают дугами концентрических окружностей (как в нормальных конических), средний меридиан - прямая линия, а остальные меридианы - кривые, причём кривизна их возрастает с удалением от среднего меридиана. В нормальных поликонических картографических проекциях параллели представлены дугами эксцентрических окружностей, а меридианы - кривыми, симметричными относительно прямого среднего меридиана. Полярные псевдоазимутальные картографические проекции - это видоизменённые азимутальные проекции, в которых параллели изображены в виде концентрических окружностей, а меридианы - в виде кривых линий, симметричных относительно одного или двух прямых меридианов.

Компьютерные технологии позволяют получать эти и множество произвольных картографических проекций любого вида. Их свойства задают в соответствии с особенностями картографируемой территории и её положением на земном шаре, назначением и способом использования карты, предпочтительным распределением искажений и т.п. Многогранные картографические проекции получают, проектируя земной шар на поверхность многогранника. Чаще всего каждая грань представляет собой равнобочную трапецию, хотя возможны и иные варианты (например, шестиугольники, квадраты, ромбы). Разновидностью многогранных являются многополосные картографические проекции, причём полосы могут «нарезаться» по меридианам и по параллелям. Такие проекции удобны тем, что искажения в пределах каждой грани или полосы невелики, поэтому их всегда используют для многолистных карт. Топографические и обзорно-топографические карты создают исключительно в многогранной проекции, и рамка каждого листа представляет собой сферическую трапецию, образованную линиями меридианов и параллелей. Однако блок листов карт нельзя совместить по общим рамкам без разрывов.

В некоторых случаях для уменьшения искажений используют разорванные картографические проекции, где непрерывность изображения нарушается на океанах, если содержание карты приурочено к материкам (например, карта населения, сельскохозяйственная карта), или на материках, если карта характеризует только океаны (например, геологическое строение дна Мирового океана).

Многочисленность картографических проекций объясняется разнообразием задач, для которых служат карты (например, для морских и аэронавигационных карт нужны равноугольные, а для кадастровых измерений - равновеликие картографические проекции), географическим положением территории (полярные области изображают в нормальных картографических проекциях, а полушария - в поперечных азимутальных картографических проекциях), назначением карт (разные проекции нужны для школьных и научно-справочных карт). Созданы специальные электронные атласы картографических проекций, с помощью которых можно отыскать подходящую картографическую проекцию, оценить её свойства, а при необходимости провести те или иные модификации или преобразования. Выбор вариантов очень велик, но всё же существуют некоторые предпочтительные и наиболее традиционные картографические проекции.

Карты мира обычно составляют в цилиндрических, псевдоцилиндрических и поликонических картографических проекциях. Для уменьшения искажений часто используют секущие цилиндры, а псевдоцилиндрические картографические проекции дают с разрывами на океанах. Карты полушарий всегда строят в азимутальных картографических проекциях. Для Западного и Восточного полушарий используют поперечные (экваториальные), для Северного и Южного полушарий - нормальные (полярные), а в других случаях (например, для материкового и океанических полушарий) - косые азимутальные картографические проекции. Для карт материков Европы, Азии, Северной Америки, Южной Америки, Австралии с Океанией чаще всего применяют равновеликие косые азимутальные картографические проекции, для Африки - поперечные, а для Антарктиды - нормальные азимутальные картографические проекции. Карты России в целом составляют чаще всего в нормальных конических равнопромежуточных картографических проекциях с секущим конусом, но в некоторых случаях - в поликонических, произвольных и в других картографических проекциях. Однако сетка конических картографических проекций не всегда удобна. Например, на картах России для начальной школы требуется картографическая проекция, в которой меридианы сходятся в точке полюса, а самая северной точка суши (мыс Челюскин) располагается ближе всего к северной рамке. Карты отдельных стран, административных областей, провинций, штатов выполняют в косых равноугольных и равновеликих конических или азимутальных картографических проекциях, но многое зависит от конфигурации самой территории и её положения на земном шаре. Для небольших по площади районов задача выбора картографических проекций теряет актуальность, можно использовать разные равноугольные проекции, поскольку искажения площадей на малых территориях малоощутимы. Топографические карты России создают в поперечно-цилиндрической проекции Гаусса - Крюгера, а карты США и многих других западных стран - в универсальной поперечно-цилиндрической проекции Меркатора (сокращенно UTM). Обе проекции близки по своим свойствам, и та и другая по существу являются многополосными. Морские и аэронавигационные карты выполняют исключительно в цилиндрической проекции Меркатора, а тематические карты морей и океанов создают в самых разнообразных, иногда довольно сложных проекциях. Например, для совместного показа Атлантического и Северного Ледовитого океанов применяют особые проекции с овальными изоколами, а для изображения Мирового океана - равновеликие проекции с разрывами на материках.

В любом случае при выборе проекции, в особенности для тематических карт, следует иметь в виду, что обычно искажения на карте минимальны в центре и быстро возрастают к краям. Кроме того, чем мельче масштаб карты и обширнее пространственный охват, тем большее внимание приходится уделять математическим факторам выбора картографических проекций, и, наоборот, для малых территорий и крупных масштабов более существенными становятся географические факторы.

Краткие исторические сведения. Первые карты с использованием сетки меридианов и параллелей создали греческие учёные Эратосфен, Гиппарх. Клавдий Птолемей в «Руководстве по географии» описал принципы создания некоторых конических проекций. Великие географические открытия послужили значительному развитию картографии и способствовали созданию новых картографических проекций. Большой вклад в теорию проекций внесли фламандские картографы: Г. Меркатор, предложивший цилиндрическую (Меркатора) проекцию для навигационных карт, А. Ортелий, Я. Янсон (1588-1664) и др. Теория проекций всегда рассматривалась как важнейшая научная проблема картографии. Свой вклад в разработку картографических проекций внесли известные математики И. Ламберт, Л. Эйлер, Ж. Лагранж, К. Гаусс. В середине 19 века французский исследователь А. Тиссо создал общую теорию искажений картографических проекций. В России теорией картографических проекций занимались А. П. Болотов (1803-1853), Ф. И. Шуберт, П. Л. Чебышев, Д. А. Граве, Д. И. Менделеев, В. В. Витковский (1856-1924), Ф. Н. Красовский, В. В. Каврайский, Г. А. Гинзбург (1905-1975), Н. А. Урмаев и др.

Лит.: Витковский В. В. Картография. Теория картографических проекций. СПб., 1907; Каврайский В. В. Математическая картография. М.; Л., 1934; Урмаев Н. А. Методы изыскания новых картографических проекций. М., 1947; Гинзбург Г. А. Картографические проекции. М., 1951; Соловьев М. Д. Математическая картография. М., 1969; Сорокин А. И. Морская картография. М., 1985; Вахрамеева Л. А., Бугаевский Л. М., Казакова З. Л. Математическая картография. М., 1986; Серапинас Б. Б. Математическая картография. М., 2005.

Визуализация данных самого разного рода, имеющих некое географическое распределение, в последнее время получает все большее и большее распространение. Тут, на Хабре, статьи с картами встречаются чуть ли не каждую неделю. Карты в статьях очень разные, но роднит их одно: как правило, в них используются всего две картографические проекции, при том - не самые удачные из существующих. Мне бы хотелось дать несколько наглядных примеров проекций, которые выглядят более эстетично и лучше приспособлены для разных видов визуализации. В этой статье будут рассмотрены общемировые проекции и проекции большей части Земли, так как визуализация чего-либо на карте мира, пожалуй, является наиболее распространенной из подобных задач.

Легкое введение

Поскольку статья ориентирована на вопросы визуализации данных, я не буду касаться глубоко теории проекций (датумов, конформности, равноугольности и тому подобного), кроме общих принципов их построения. Также, я буду говорить тут о «проекциях», формально подразумевая «систему координат», coordinate reference system, потому что для карт таких масштабов не имеет смысла отдельно рассматривать проекцию и датум. Математики здесь тоже практически не будет, кроме простой геометрии. Желающие ознакомиться с математическими принципами, могут это сделать по статьям на Wolfram MathWorld . Так что изучающим программирование в области геоинформационных систем или их опытным пользователям, эта статья, возможно, будет не очень полезна.

Перед началом, объясню пару вещей. Все примеры будут даваться с использованием набора данных государственных границ с вот этого сайта и набора данных Blue Marble Next Generation с сайта NASA . Последний включает в себя синтезированные безоблачные снимки земной поверхности за каждый из двенадцати месяцев 2004-го года, что позволит внести некоторое разнообразие в иллюстрации.

Я очень люблю открытый софт, но использовать GDAL в данном случае мне показалось неэффективно - некоторых не очень ходовых, но полезных проекций в его реализации на данный момент либо нет, либо я плохо смотрел исходники, а потому иллюстрации я готовил в коммерческой программе GlobalMapper, которой пользуюсь уже много лет, и которая славится поддержкой внушительного списка систем координат.

Названия проекций и некоторые термины я буду давать и англоязычные, потому что если кому-то захочется поискать материалы по этой теме, русскоязычных источников в сети найдется несколько меньше (объем статей в Википедии на русском меньше в несколько раз). Для большинства проекций я постараюсь дать не только названия, но и коды EPSG и/или WKID, а также название проекции в библиотеке PROJ.4 , широко используемой в открытом софте (например, в пакете R) для поддержки систем координат.

Некоторые проекции, возможно, окажутся кому-то знакомыми по картинке с xkcd , но все из них тут рассмотрены не будут.

Проблема

Начнем с того, что же это за самые распространенные проекции, и что с ними не так.

Первая проекция - так называемая «Географическая» , она же – Geographic projection, Latitude/Longitude, Plate carrée EPSG:4326 WKID:54001 PROJ.4:longlat . Строго говоря, она даже не совсем является проекцией, потому что получается путем интерпретации полярных угловых координат, как линейных прямоугольных, без всяких вычислений. Эту проекцию используют, потому что она способна отобразить всю поверхность Земли целиком и потому, что она самая простая математически, а данные очень часто распространяются не спроецированными, то есть именно в географических координатах (градусах широты и долготы).

Что же получается? Получается прямоугольник, где точки полюсов обращены в линии (верхнюю и нижнюю границы). Чем дальше от экватора, тем сильнее любой объект на карте оказывается сплюснут по вертикали и растянут по горизонтали. Как я уже сказал, это худо-бедно годится для отображения глобальных наборов данных, но полярные территории (Канада, Норвегия, Швеция, север России, Финляндия, Гренландия, Антарктида, Исландия) оказываются искажены. Проекции, которые позволяют избежать этого, существуют, и о них пойдет речь дальше. Единственная причина использовать эту проекцию - ее предельная простота программной реализации - нужно просто отобразить систему координат от -180º до 180º по X и от -90º до 90º по Y на плоскость, считая угловые единицы линейными.

Другая весьма популярная проекция - «проекция Меркатора» , Mercator projection PROJ.4:merc . Она также используется для визуализации данных, покрывающих весь мир, но ее популярность продиктована не только простотой - ее варианты являются стандартом де-факто для глобальных картографических сервисов, таких как Google Maps, Bing Maps, Here. С ней глубоко связаны картографические библиотеки OpenLayers, Leaflet, API упомянутых выше сервисов. В варианте Google и OpenStreetMap она носит название Web Mercator и имеет код EPSG/WKID:3857 , иногда на нее также ссылаются, как на EPSG:900913 . Принцип ее построения не сильно сложнее Географической – это проекция на цилиндр, чья ось совпадает с географической осью Земли, проецирование происходит линиями, выходящими из центра планеты, от чего ошибка растяжения приполярных областей по горизонтали оказывается скомпенсирована пропорциональным растяжением по вертикали. Проблема с этим только в том, что карта получится слишком большой по вертикали, если попытаться отобразить и север Гренландии. Потому обычно отбрасывают 16° полярных областей (в равной пропорции или больше - с юга).

На чей-то взгляд выглядит чуть лучше, чем Географическая, но одну проблему мы уже упомянули, а вторая - чем ближе объект к полюсам, тем он кажется больше, хотя его форма уже не так искажена. Потому, если предмет визуализации - плотность маркеров на единицу территории или расстояния, такой способ отображения будет вводить в заблуждение. При грамотном выборе способа визуализации, конечно, это можно скомпенсировать, а для каких-то случаев это вообще не проблема: например, если величина какого-то показателя в целой стране соотнесена с цветом этой страны на карте, эффект растяжения площадей не сказывается. Эта проекция сохраняет только форму объектов, потому очертания континентов и стран выглядят довольно узнаваемо. И, как я уже сказал, она - ваш первый и самый простой вариант при создании интерактивных веб-карт.

Варианты решения

Что же делать с глобальными данными, если нам по какой-то причине понадобилась проекция, лучше сохраняющая такие свойства объектов, как форма, площадь, расстояния и углы? Законы геометрии не дают нам сохранить все эти свойства сразу, развернув круглую поверхность Земли на плоскость. Однако, для визуализации данных более всего важна эстетика и восприятие, а не сохранение свойств, как для навигационных или измерительных задач. Потому становится возможным подобрать такую проекцию, искажения в которой были бы равномерно распределены по свойствам. И таких проекций существует довольно много. Существуют три самых известных, обладающих сходными свойствами: Winkel Tripel WKID:54042 PROJ.4:wintri , «проекция Робинсона» Robinson projection WKID:54030 PROJ.4:robin , «проекция Каврайского» (Kavrayskiy projection). Первая и последняя имеют визуально минимальные искажения, а неспециалисту, не видя градусной сетки, вообще весьма сложно различить их, потому я приведу иллюстрацию для Winkel Tripel, как той, которая лично мне нравится больше всего.

Вот так описание этой проекции выглядит в формате ESRI WKT:
PROJCS["Robinson",
GEOGCS["GCS_WGS_1984",
DATUM["D_WGS84",

],
PRIMEM["Greenwich",0],

],
PROJECTION["Robinson"],
PARAMETER["central_meridian",0],


UNIT["Meter",1]
]

Как легко видеть, хотя искажение контуров и некоторое увеличение площади стран к полюсам здесь также наблюдаются, но это нельзя даже сравнивать с растяжением Географической проекции и пропорциональным увеличением проекции Меркатора.

Тут стоит сделать небольшое отступление и обратить внимание на то, что вид этой проекции по умолчанию страдает одним недостатком, который касается и других общемировых проекций. Дело в том, что если за центральный меридиан - линию, соединяющую северный и южный полюс через центр карты (longitude of origin) - принять нулевой меридиан, то карта будет разрезана по 180-му. Но при этом треть Чукотки окажется на левом краю карты, а две трети - на правом. Чтобы сделать карту красивее, разрез должен проходить где-то в районе 169-го западного меридиана восточнее острова Ратманова, для чего за центральный должен быть принят 11-й. Вот иллюстрация того, что получается:

А вот измененное для этого случая описание в ESRI WKT:
PROJCS["Robinson",
GEOGCS["GCS_WGS_1984",
DATUM["D_WGS84",
SPHEROID["WGS84",6378137,298.257223563]
],
PRIMEM["Greenwich",0],
UNIT["Degree",0.017453292519943295]
],
PROJECTION["Robinson"],
PARAMETER["central_meridian",11],
PARAMETER["false_easting",0],
PARAMETER["false_northing",0],
UNIT["Meter",1]
]

В формате определения системы координат для PROJ.4 долгота центра проекции задается параметром +lon_0=.

11-й меридиан - «магическое» число: практически все мировые проекции, имеющие равномерный масштаб вдоль экватора, могут быть разрезаны по Берингову проливу, если за центральный принять именно его, а не нулевой.

Замечу, что задумываясь о выборе проекции, стоит принимать во внимание все существующие реальные требования к визуализации. Например, если данные касаются климата, то может иметь смысл либо нанести на карту линии широты, либо использовать проекцию, где они горизонтальны, а не загибаются к краям карты (то есть, отказаться от Тройной Винкеля в пользу, например, Робинсона). В данном случае, это позволит легче и точнее оценить относительную близость разных мест к полюсам и экватору. Еще один весомый плюс проекции Робинсона - то, что она поддерживается множеством софта, в том числе открытого, тогда как про некоторые другие этого сказать нельзя.

Иногда, когда требуется максимально сохранить какое-то свойство, например - соотношение площадей объектов (стран) - эстетическая сторона страдает. Но поскольку это все же может для чего-то понадобиться, я приведу один пример такой проекции - «проекцию Моллвейде» , Mollweide projection WKID:54009 PROJ.4:moll .

Как видно, она довольно сильно напоминает проекцию Робинсона, но с той разницей, что полюса все же стянуты в точки, от чего форма приполярных областей выглядит сильно искаженной. Но пропорции площадей стран, как и требовалось, сохраняются куда лучше.

Самым молодым конкурентом этих проекций является проекция Natural Earth PROJ.4:natearth - она представляет из себя гибрид проекций Каврайского и Робинсона, а ее параметры были подобраны группой американских, швейцарских и словенских специалистов в 2007 году, тогда как возраст большинства картографических проекций - не менее полувека.

Для перепроецирования данных в нее существует некоторое количество инструментов, которые были написаны специально для этого, но ее поддержка еще далека от повсеместной.

Немного экзотики и специальных случаев

Конечно, все многообразие проекций на этом не заканчивается. Их изобретено немало. Некоторые просто выглядят странно (скажем, проекция Бонне изображает Землю в виде фигуры, напоминающей разрезанное яблоко или стилизованное сердце), некоторые - предназначены для особых ситуаций. Например, готов поспорить, что очень многие видели на картинках карту мира, которая похожа на корку мандарина, которую сняли и расплющили. Это, наверняка, была Interrupted Goode Homolosine projection WKID:54052 .

Вид ее вполне достоин названия. Ее назначение - отображать размер объектов (и в некоторой степени - форму) близко к естественным пропорциям. Ее главная проблема, кроме названия и странного вида, состоит в том, что путем подбора центрального меридиана невозможно добиться того, чтобы ни один крупный кусок суши не был разрезан. Обязательно пострадает что-то из списка: Гренландия, Исландия, Чукотка, Аляска. Лично на мой взгляд, проще привести отдельно изображения стран, чем использовать такую карту, если вы не хотите стилизовать свою работу под середину XX века.

Существуют проекции, которые по своей природе никак не отнести к общемировым, но мне бы хотелось рассмотреть их здесь, потому что они способны показать земной шар, то есть как-бы вид планеты из космоса. Одна из них - Vertical Near-Side Perspective projection WKID:54049 . Ее особое свойство - показывать земную поверхность в такой перспективе, как она выглядит с определенной высоты. Высота над эллипсоидом (идеализированной фигурой, моделирующей Землю) задается для этой проекции в явном виде.

На иллюстрации эта проекция имеет широту и долготу центра, равные широте и долготе Москвы, а высоту - 5000000 метров. Чем больше это расстояние, тем сильнее изображение Земли становится похоже на ее изображение в проекции, которую мы рассмотрим последней.

Проекция, которая показывает вид на Землю в параллельной перспективе, то есть как-бы с бесконечного расстояния, называется Orthographic projection WKID:43041 PROJ.4:ortho . В каком-то смысле, она знакома всем, кто когда-либо пользовался Google Earth. Я говорю, что в каком-то смысле, потому что «направление взгляда» в этой проекции всегда перпендикулярно поверхности Земли, тогда как в Google Earth его можно наклонять как угодно.

Для нее, как и для предыдущей проекции, можно задать центральные широту и долготу, чтобы ориентировать Землю желаемым образом. Например, можно показать полушарие с центром в какой-то точке, о которой идет речь - скажем, иллюстрируя транспортные потоки континентального масштаба, исходящие от одного предприятия. Сделав две карты с противоположными значениями координат, можно получить карту всего мира (правда, на краях искажения будут очень велики). Генерация последовательности карт с плавным изменением центральной точки даст кадры для анимации вращающейся планеты без всякой трехмерной графики.

Если статья окажется интересной, постараюсь написать продолжение о проекциях, используемых для отображения отдельных стран или регионов, ориентированную, как и эта статья, на базовые свойства этих проекций для задачи визуализации данных, инфографики и тому подобного.

Классификации картографических проекций

По характеру искажений проекции делятся на равноугольные, равновеликие и произвольные.

Равноугольные (или конформные) проекции сохраняют величину углов и формы бесконечно малых фигур . Масштаб длин в каждой точке постоянен по всем направлениям (что обеспечивается закономерным увеличением расстояний между соседними параллелями по меридиану) и зависит только от положения точки. Эллипсы искажений выражаются окружностями различных радиусов.

Для каждой точки в равноугольных проекциях справедливы зависимости:

/ L i = a = b = m = n; а> = 0°; 0 = 90°; k = 1 и а 0 =0° (или ±90°).

Такие проекции особенно удобны для определения направлений и прокладки маршрутов по заданному азимуту (например, при решении навигационных задач).

Равновеликие (или эквивалентные) проекции не искажают площади . В этих проекциях площади эллипсов искажений равны . Увеличение масштаба длин по одной оси эллипса искажений компенсируется уменьшением масштаба длин по другой оси, что вызывает закономерное уменьшение расстояний между соседними параллелями по меридиану и, как следствие, - сильное искажение форм.

Такие проекции удобны для измерения площадей объектов (что, например, существенно для некоторых экономических или морфометрических карт).

В теории математической картографии доказывается, что нет, и не может быть проекции, которая была бы одновременно и равноугольной, и равновеликой . Вообще, чем больше искажения углов, тем меньше искажения площадей и наоборот

Произвольные проекции искажают и углы, и площади . При их построении стремятся найти наиболее выгодное для каждого конкретного случая распределение искажений, достигая как бы некоторого компромисса. Эта группа проекций используется в случаях, когда чрезмерные искажения углов и площадей одинаково нежелательны . По своим свойствам произвольные проекции лежат между равноугольными и равновеликими . Среди них можно выделить равнопромежуточные (или эквидистантные) проекции, во всех точках которых масштаб по одному из главных направлений постоянен и равен главному.

Классификация картографических проекций по виду вспомогательной геометрической поверхности .

По виду вспомогательной геометрической поверхности различают проекции: цилиндрические, азимутальные и конические.

Цилиндрическими называют проекции, в которых сеть меридианов и параллелей с поверхности эллипсоида переносится на боковую поверхность касательного (или секущего) цилиндра, а затем цилиндр разрезается по образующей и развертывается в плоскость (рис. 6).

Рис.6. Нормальная цилиндрическая проекция

Искажения отсутствуют на линии касания и минимальны вблизи нее. Если цилиндр секущий, то имеется две линии касания, а значит 2 ЛНИ. Между ЛНИ искажения минимальны.

В зависимости от ориентировки цилиндра относительно оси земного эллипсоида различают проекции:

– нормальные, когда ось цилиндра совпадает с малой осью земного эллипсоида; меридианы в этом случае представляют собой равноотстоящие параллельные прямые, а параллели – прямые, им перпендикулярные линии;

– поперечные, когда ось цилиндра лежит в плоскости экватора; вид сетки: средний меридиан и экватор – взаимно перпендикулярные прямые, остальные меридианы и параллели – кривые линии (рис. в).

– косые, когда ось цилиндра составляет с осью эллипсоида острый угол; в косых цилиндрических проекциях меридианы и параллели – кривые линии.

Азимутальными называют проекции, в которых сеть меридианов и параллелей переносится с поверхности эллипсоида на касательную (или секущую) плоскость (рис.7).

Рис. 7. Нормальная азимутальная проекция

Изображение около точки касания (или линии сечения) плоскости земного эллипсоида почти совсем не искажается. Точка касания является точкой нулевых искажений.

В зависимости от положения точки касания плоскости на поверхности земного эллипсоида среди азимутальных проекций различают:

– нормальные, или полярные, когда плоскость касается Земли в одном из полюсов; вид сетки: меридианы – прямые линии, радиально расходящиеся из полюса, параллели – концентрические окружности с центрами в полюсе (рис. 7);

– поперечные, или экваториальные, когда плоскость касается эллипсоида в одной из точек экватора; вид сетки: средний меридиан и экватор – взаимно перпендикулярные прямые, остальные меридианы и параллели – кривые линии (в некоторых случаях параллели изображаются прямыми линиями;

косые, или горизонтные, когда плоскость касается эллипсоида в какой-либо точке, лежащей между полюсом и экватором. В косых проекциях только средний меридиан, на котором расположена точка касания, представляет собой прямую, остальные меридианы и параллели – кривые линии.

Коническими называются проекции, в которых сеть меридианов и параллелей с поверхности эллипсоида переносится на боковую поверхность касательного (или секущего) конуса (рис. 8).

Рис. 8. Нормальная коническая проекция

Искажения мало ощутимы вдоль линии касания или двух линий сечения конуса земного эллипсоида, которые являются линией (линиями) нулевых искажений ЛНИ. Подобно цилиндрическим конические проекции делятся на:

– нормальные, когда ось конуса совпадает с малой осью земного эллипсоида; меридианы в этих проекциях представлены прямыми линиями, расходящимися из вершины конуса, а параллели – дугами концентрических окружностей.

– поперечные, когда ось конуса лежит в плоскости экватора; вид сетки: средний меридиан и параллель касания – взаимно перпендикулярные прямые, остальные меридианы и параллели – кривые линии;

– косые, когда ось конуса составляет с осью эллипсоида острый угол; в косых конических проекциях меридианы и параллели – кривые линии.

В нормальных цилиндрических, азимутальных и конических проекциях картографическая сетка ортогональна – меридианы и параллели пересекаются под прямыми углами, что является одним из важных диагностических признаков этих проекций.

Если при получении цилиндрических, азимутальных и конических проекций использовать геометрический метод (линейное проектирование вспомогательной поверхности на плоскость), то такие проекции называют перспективно-цилиндрическими, перспективно-азимутальными (обыкновенными перспективными) и перспективно-коническими соответственно.

Поликоническими называются проекции, в которых сеть меридианов и параллелей с поверхности эллипсоида переносится на боковые поверхности нескольких конусов, каждый из которых разрезается по образующей и развертывается в плоскость. В поликонических проекциях параллели изображаются дугами эксцентрических окружностей, центральный меридиан представляет собой прямую, все остальные меридианы – кривые линии, симметричные относительно центральному.

Условными называются проекции, при построении которых не прибегают к использованию вспомогательных геометрических поверхностей. Сеть меридианов и параллелей строят по какому-нибудь заранее заданному условию. Среди условных проекций можно выделитьпсевдоцилиндрические , псевдоазимутальные и псевдоконические проекции, сохраняющие от исходных цилиндрических, азимутальных и конических проекций вид параллелей. В этих проекцияхсредний меридиан – прямая линия, остальные меридианы – кривые линии .

К условным проекциям относятся также многогранные проекции , которые получают путем проектирования на поверхность многогранника, касающегося или секущего земной эллипсоид. Каждая грань представляет собой равнобочную трапецию (реже – шестиугольники, квадраты, ромбы). Разновидностью многогранных проекций являются многополосные проекции , причем полосы могут нарезаться и по меридианам, и по параллелям. Такие проекции выгодны тем, что искажения в пределах каждой грани или полосы совсем невелики, поэтому их всегда используют для многолистных карт. Основное неудобство многогранных проекций состоит в невозможности совмещения блока листов карт по общим рамкам без разрывов.

Практически ценным является подразделение по территориальному охвату. По территориальному охвату выделяются картографические проекции для карт мира, полушарий, материков и океанов, карт отдельных государств и их частей. По этому принципу построены таблицы-определители картографических проекций. Кроме того, в последнее время предпринимаются попытки к разработке генетических классификаций картографических проекций, построенных на виде описывающих их дифференциальных уравнений. Эти классификации охватывают все возможное множество проекций, но являются крайне ненаглядными, т.к. не связаны с видом сетки меридианов и параллелей.



Статьи по теме: