Приготовление современных химических волокон информация. Технология производства и свойства химических волокон. Ткани из химических волокон. Нетканные материалы из химических волокон

Разработка урока технологии.

Разработано учителем технологии

«Общеобразовательной школы №2 акимата г. Шахтинска»

Карагандинской области Республики Казахстан

Султангареевой Луизой Махмутовной

Класс 7

Раздел: Знакомство с тканями.

Длительность: 1 час

Тема: Химические волокна, их свойства. Технология производства химических волокон.

Экологическое влияние тканей на организм человека.

создать условия для обобщения, систематизации и расширения знаний учениц о текстильных волокнах, их свойствах, процессах производства тканей;

способствовать формированию знаний о технологии производства тканей из химических волокон и их ассортименте;

способствовать выявлению пробелов в знаниях учащихся и их коррекции;

способствовать развитию умения анализировать информацию, наблюдательности и внимательности, мышления;

содействовать воспитанию положительной мотивации к предмету, активности в работе на уроке, аккуратности, а так же культуры поведения.

    • Уточнение и закрепление знаний о натуральных волокнах.
    • Знакомство с технологией получения химических волокон.
    • Нетканые материалы из химических волокон.
    • Ассортимент тканей.

Наглядность и оборудование:

Коллекции образцов тканей из химических и натуральных волокон;

Презентация Power Point «Производство тканей из химических волокон»;

Информационные материалы «Свойства тканей из химических волокон»

ХОД УРОКА.

Организационный момент.

а) приветствие;

б) выявление отсутствующих учащихся;

в) организация внимания учащихся.

Обратить внимание на доску, на которой размещены образцы тканей (в том числе нетканые - ватин, синтепон).

Вводная часть занятия.

1. Сообщение темы занятия. Введение в тему урока.

Посмотрите на свою одежду. Из чего она изготовлена?

Знаете ли вы, из каких материалов выполнены эти ткани?

Эти материалы природные или их создал человек?

Взгляните на занавеси окна. Что вы можете сказать об этой ткани? Каковы её несомненные достоинства? А недостатки?

Можно ли из этой ткани пошить одежду? Почему?

Сегодня на уроке мы будем говорить о химических волокнах, технологии их производства и свойствах тканей из этих волокон.

2. Совместное с учащимися формулирование учебных целей занятия:

Что предстоит сегодня нам изучить?

изучить особенности производства химических волокон;

выяснить, где целесообразно использование тканей из химических волокон (в соответствии с их свойствами).

3. Актуализация знаний учащихся. Беседа.

Каковы этапы производства ткани?

Назовите группы волокон по их происхождению.

4. Обобщение ответов. Подведение итога беседы.

III . Основная часть занятия

    1. Рассказ учителя «Производство химических волокон» с использованием материалов Презентации.

Технология получения химических волокон обеих групп одинакова: сырье (органические вещества) + химические растворители, получается жидкая вязкая масса. Эту массу продавливают через фильтры (фильеры), формируя тем самым нити. Затем эти нити погружают в ванну с отвердителями и после обработки и промывания сматывают на бобины, полученные непрерывные нити.

Успехи современной химии позволяют создавать химические волокна как из природных материалов, главным образом целлюлозы, получаемой из дерева, соломы, отходов хлопка. Такое волокно называется искусственным , так и из синтетических полимеров, продуктов переработки каменного угля, нефти. Это волокно - синтети ческое (запись в тетрадь в виде схемы).

Перечислить множество химических волокон, которые используются для производства тканей очень сложно. А в лабораториях синтезируются все новые и новые их виды.

  1. Самостоятельная работа учащихся

Проблема. Исследование «Причины и особенности создания химических волокон».

Работа с Информационным материалом «Свойства тканей из химических волокон » по подгруппам.

  1. Представление изученного материала. Метод «Карусель». Один из членов команды переходит к другой команде и рассказывает содержание своего материала.
  2. Обсуждение.
    • Причины создания химических волокон (Стоимость. Зависимость от природных и погодных условий. Проч.).
    • Этапы создания.
    • Свойства химволокон. (Особенные, оригинальные свойства:

Самое прочное волокно;

Волокно с высокими гигиеническими свойствами;

Ткани с высокой раздвижкой нитей и проч.

  1. Анализ ответов учащихся. Дополнение и уточнение.
  2. Работа с коллекцией образцов тканей.
    • назвать номера образцов тканей, изготовленных из химического волокна
    • определить области применения этой ткани в быту.
  1. Работа учащихся в тетрадях «Запись основных этапов производства химического волокна »

IV. Заключительная часть занятия.

Закрепление изученного. Устный диктант.

Если вы согласны с утверждением, хлопните в ладоши. Ваше несогласие выразите тишиной.

Утверждения:

1.Химические волокна делятся на две группы: искусственные и синтетические.

2.Сырьем для получения искусственных волокон служат полезные ископаемые: нефть, уголь, газ.

3.Сырьем для получения синтетических волокон служат: еловые щепа, отходы от переработки хлопка.

4. Технология получения нитей химических волокон едина и проста:

Сырье + растворители = вязкая масса.

Формирование нитей через фильтры.

Обработка нитей затвердителем, промывание.

Сматывание в бобины.

5. Химические волокна легкие, красивые, быстро сохнут.

6. На получение химических волокон затрачивается меньше средств и времени - они более экономичны.

7. У синтетических волокон очень высокие гигиенические свойства: гигроскопичность.

8. Соединять, при выработке тканей, химические волокна с натуральными нежелательно, так как они несовместимы.

9. У тканей из химических волокон низкая прочность.

10. Смешивают ли химические волокна с натуральными (для улучшения свойств тканей).

Рефлексия: беседа.

Что нового и интересного (неожиданного) вы узнали на занятии?

Как эти знания пригодятся вам в жизни?

Подведение итогов занятия.

Анализ ответов учащихся. Выставление оценок за работу на уроке.

Выдача домашнего задания .

Выполнить творческое задание « Применение тканей из химических волокон в быту» (изготовление поделки - макета «Платье бальное»; шторы; панно и проч.)

Обратить внимание учениц на особые свойства тканей из химических тканей: пышность, жесткость ткани, непромокаемость, прозрачность. Демонстрация образцов из Методического фонда учителя (работы учениц прошлых лет).

Приложение 1

Информационный материал 1

«Химические волокна, их свойства. Технология производства химических волокон»

В современном мире все больше тканей производят из химического волокна. Редко в гардеробе современного человека можно найти вещь, изготовленную только из натурального волокна. В наше время почти все натуральные ткани содержат добавки, которые улучшают их физико - механические свойства. Ими стали созданные человеком химические волокна. Однако надо отметить снижение гигиенические свойства.

Химические текстильные волокна получают путем переработки разного по происхождению сырья.

По этому признаку они делятся на две группы:

Искусственные (вискозные, ацетатные, медно-аммиачные);

Синтетические (полиэфирные, полиамидные, полиакрило-нитрильные, эластановые).

Этапы получения химического волокна.

I этап: Получение прядильного раствора.

Для искусственного волокна: Растворение в щелочи целлюлозной массы.

Для синтетического волокна: сложение химических реакций различных веществ.

II этап: Формирование волокна.

Пропуск раствора через фильеры.

Количество отверстий в фильере - 24-36 тысяч.
Раствор затвердевает, образуя твердые тонкие нити.

III этап: Отделка волокна.

Нити промывают, сушат, крутят, обрабатывают высокой температурой.

Отбеливают, красят, обрабатывают раствором мыла.

Характеристика свойств тканей из химических волокон

Свойства тканей

Показатели свойств тканей

вискозных

ацетатных

капрона

лавсана

нитрона

Физико-механические:

Прочность

понижается во влажном состоянии

Меньше, чем у вискозной, понижается во влажном состоянии

Очень высокая

Сминаемость

Небольшая

Небольшая

Драпируемость

Гигиенические:

Гигроскопичность

Воздухопроницаемость

Незначительная

Водопроницаемость

Теплозащитные

Невысокие

Меньше, чем у вискозной

Очень высокие

Технологические:

Небольшая

Раздвижка нитей

Значительная

Осыпаемость

Значительная

Незначительная

Износостойкость

Приложение 2

Информационный материал 2

Преимущества химических волокон

Название преимущества

Описание

Широкая сырьевая база.

Высокая рентабельность производства

Хлопковое волокно, например, вырастает за три месяца всего на 3-4 см, химические же волокна получают со скоростью сотен метров в минуту. О большей экономичности производства таких волокон говорят следующие цифры: на получение тонны хлопка затрачивается 200 рабочих дней, на получение тонны льна - 400 рабочих дней, а на тонну вискозного волокна - всего лишь 50 рабочих дней.

Независимость от климатических условий.

Чтобы получить много шерсти, нужны огромные пастбища для овец. Чтобы вырастить хлопок, лен и т. д., требуются плодородные почвы. Для получения натурального шелка нужны плантации тутовых деревьев. Во всех этих случаях сбор продукции сильно зависит от засухи и дождей, поздней или ранней весны, от времени наступления осени и морозов. Производство же синтетических волокон может быть организовано почти в любой местности, и на него не влияют условия погоды.

Многие химические волокна обладают также лучшими механическими свойствами.

Ткани из этих волокон обладают высокой прочностью, эластичностью, износостойкостью и меньшей сминаемостью. Именно поэтому появились смесовые ткани: натуральное волокно соединяют с химическими волокнами для улучшения свойств тканей.

Наличие новых свойств, невозможных для натуральных волокон.

В 60-70-е гг. созданы химические волокна из полимеров со специфическими свойствами, например:

термостойкие волокна (из ароматических полиамидов . полиимидов и др.), выдерживающие длительную эксплуатацию при 200-300° С;

жаростойкие углеродные волокна, получаемые карбонизацией химические волокна и обладающие высокой жаростойкостью (в бескислородных условиях до 2000° С, в кислородсодержащих средах до 350-400°С);

фторволокна (из фторсодержащих карбоцепных полимеров), устойчивые в агрессивных средах, физиологически безвредные, обладающие хорошими антифрикционными и электроизоляционными свойствами. Некоторые из этих волокон характеризуются также более высокими, чем обычные химические волокна, прочностью , модулем, большей растяжимостью и др.

Однако: недостаток некоторых химических волокон, например полиакрилонитрильных, полиэфирных, - низкая гигроскопичность .

Вы уже знакомы с материалами, изготовленными из натуральных волокон, - это хлопок, лен, шерсть, шелк. Но в современном мире все больше и больше тканей производят из искусственного волокна. Уже в XVII в. англичанин Роберт Гук высказал мысль о возможности получения искусственного волокна. Однако промышленным путем искусственное волокно для изготовления тканей получили только в конце XIX в. В России первый завод по производству искусственного шелка был построен в 1913 г. в подмосковном городе Мытищи.

В гардеробе современного человека редко можно найти вещь, изготовленную из натурального волокна. Сегодня почти все натуральные ткани содержат добавки, которые улучшают их свойства.

При покупке тканей, текстильных и трикотажных изделий нельзя ориентироваться только на их внешний вид. Чтобы правильно ухаживать за вещью, очень важно знать сырьевой состав и свойства данного материала.

Технология производства химических волокон

Химические текстильные волокна получают путем переработки разного по происхождению сырья. По этому признаку они делятся на искусственные и синтетические. Сырьем для производства искусственных волокон служит целлюлоза, получаемая из древесины ели и отходов хлопка. Сырьем для производства синтетических волокон являются газы - продукты переработки каменного угля и нефти.

Производство химических волокон делится на три этапа:

  1. Получение прядильного раствора. Все химические волокна, кроме минеральных, производят из вязких растворов или расплавов, которые называют прядильными. Например, искусственные волокна получают из растворенной в щелочи целлюлозной массы, а синтетические волокна - путем сложения химических реакций различных веществ.
  2. Формование волокна. Вязкий прядильный раствор пропускают через фильеры - колпачки с мельчайшими отверстиями. Количество отверстий в фильере колеблется от 24 до 36 тыс. Струйки раствора, вытекая из фильер, затвердевают, образуя твердые тонкие нити. Далее нити из одной фильеры на прядильных машинах соединяются в одну общую нить, вытягиваются и наматываются на бобину.
  3. Отделка волокна. Полученные нити проходят промывку, сушку, крутку, термическую обработку (для закрепления крутки). Некоторые волокна отбеливают, красят и для придания мягкости обрабатывают раствором мыла.

Новые понятия

Химические волокна: искусственные, синтетические; целлюлоза.

Контрольные вопросы

1. Какова технология производства химических текстильных волокон? 2. Что является сырьем для производства химических волокон?

Волокнами называют тела, длина которых во много раз превышает их очень малые размеры поперечного сечения, обычно измеряемого микронами. Волокнистые материалы, т.е. вещества, состоящие из волокон, имеют широкое распространение. Это разнообразные текстильные изделия, мех, кожа, бумага и т.д. Почти до начала 20 века для изготовления волокна и тканей на его основе использовались только природные волокнистые материалы: хлопок, лен, натуральный шелк и пр.

Впервые получение искусственного волокна было осуществлено продавливанием через узкие отверстия азотнокислого эфира целлюлозы в спирто-ацетоновой смеси. В н.в. уже известно свыше 500 различных видов химических волокон, из которых освоено и выпускается промышленностью более 40. По своему происхождению все волокна могут быть подразделены на природные и химические. Химические в свою очередь делятся на искусственные, изготовляемые из ВМС, находящихся в природе в готовом виде (целлюлоза, казеин) и синтетические волокна, получаемые из высокополимеров, предварительно синтезируемых из мономеров.

Если свойства природных волокон изменяются в узких пределах, то химические волокна могут обладать комплексом заранее заданных свойства в зависимости от их будущего назначения. Из химических волокон вырабатываются товары широкого потребления: ткани, трикотаж, одежда, обувь и т.д. В производстве различных типов химических волокон, как из природных полимеров, так и из смол, имеется много общего, хотя каждый метод обладает своими характерными особенностями.

Принципиальные схемы производства химических волокон независимо от исходного сырья делится на четыре стадии.

1. Получение исходного материала (полупродукта). В том случае, если сырьем являются природные ВМС, то их предварительно необходимо очистить от примесей. Для синтетических волокон – это синтез полимеров – получение смолы. При всем многообразии исходных полимерных материалов к ним предъявляются следующие общие требования, обеспечивающие возможность формования волокна и достаточную прочность его:

– линейное строение молекул, позволяющее растворять или плавить исходный материал для формования волокна и ориентировать молекулы в волокне;

– ограниченный молекулярный вес, так как при малой величине молекулы не достигается прочность волокна, а при слишком большой возникают трудности при формовании волокна из-за малой подвижности молекул;

– полимер должен быть чистым, так как примеси снижают прочность волокна.

2. Приготовление прядильной массы. Не все природные и синтетические материалы могут служить основой для производства волокна. Получение вязких концентрированных растворов - высокополимеров в доступных растворителях или перевод смолы в расплавленное состояние – обязательное условие для осуществления процесс прядения. Только в растворе или в расплавленном состоянии могут быть созданы условия, позволяющие снизить энергию взаимодействия макромолекул и после преодоления межмолекулярных связей ориентировать молекулы вдоль оси будущего волокна.

3.Формование волокна является самой ответственной операцией и заключается в том, что прядильная масса подается в фильеру (нитеобразователь), имеющую большое число мельчайших отверстий в донышке в зависимости от метода формования. Пучки тонких волокон, образовавшихся из струек, через ряд направляющих приспособлений непрерывно отводятся в приемное устройство и затем вытягиваются наматывающими приспособлениями: бобиной, роликом, центрифугой. В ходе формования линейные макромолекулы ориентируются вдоль оси волокна. Изменяя условия формования и вытяжки можно получить разные свойства волокна.

4.Отделка заключается в придании волокну различных свойств, необходимых для дальнейшей переработки. Для этого волокна очищают тщательной промывкой от всяких примесей. Кроме того, волокно отбеливается, в некоторых случаях окрашивается и ему сообщается обработкой мыльным или жиросодержащим раствором большая скользкость, что улучшает его способность перерабатываться на текстильных предприятиях.

Вискозный метод производства искусственного волокна из целлюлозы является наиболее широко применяемым способом. Выпуск вискозных волокон в виде шелка, корда и штапеля составляет примерно 76% всех химических волокон.

Для подготовки прядильного раствора целлюлоза с влажностью 5-6% в виде листов размером 600 *800 мм обрабатывается 18-20% раствором едкого натра (процесс мерсеризации). При этом целлюлоза, впитывая раствор едкого натра, сильно набухает. Из нее вымывается большая часть гемицеллюлозы, частично разрушаются межмолекулярные связи и в результате образуется новое химическое соединение – щелочная целлюлоза.

[С 6 Н 7 О 2 (ОН) 3 ]n + nNаОН↔[С 6 Н 7 О 2 (ОН) 2 ОН*NаОН]n

Реакция между целлюлозой и концентрированным раствором едкого натра является обратимой. В зависимости от применяемой аппаратуры и формы целлюлозы процесс осуществляется при 20-50 0 С в течение 10-60 мин. Затем щелочная целлюлоза отжимается от избытка едкого натра, который направляется на регенерацию, где фильтруется, укрепляется, отстаивается, после чего вновь возвращается на мерсеризацию. Далее щелочная целлюлоза измельчается и выдерживается в определенных условиях (20-22 0 С). В этом процессе, называемом предварительным созреванием, в результате окисления в щелочной среде кислородом воздуха снижается степень полимеризации целлюлозы, что позволяет в широких пределах регулировать вязкость получаемого затем прядильного раствора. После этого деструктированная щелочная целлюлоза обрабатывается сероуглеродом (ксанотогенирование целлюлозы). В результате реакции получается оранжево-желтый ксантогенат целлюлозы, который в отличие от исходной целлюлозы, хорошо растворяется в 4-7% растворе едкого натра. Образующийся вязкий раствор называется вискозой. Состав и свойства получаемого ксантогената целлюлозы в большой степени зависят от продолжительности и температуры процесса, а также количества введенного сероуглерода. Все перечисленные операции проводятся последовательно в 4-5 отдельных аппаратах или осуществляются до окончательного растворения в одном аппарате.

Широкому распространению производства вискозного волокна способствует доступность и дешевизна сырья. Вискозное волокно устойчиво к действию органических растворителей, выдерживает длительное воздействие температуры. Из недостатков следует отметить слабую стойкость волокна по отношению к щелочам и значительную потерю прочности в мокром состоянии.

Из вискозы, кроме шелка и штапеля, получают целлофан, корд, каракуль, искусственный волос и укупорку для бутылок.

При взаимодействии целлюлозы с уксусным ангидридом в присутствии уксусной кислоты и в качестве катализатора серной или хлорной кислоты образуется уксуснокислый эфир целлюлозы, а из него ацетатное волокно. Полиамидное волокно - капрон получается из смолы капрон, исходным сырьем для которой является капролактам. Последний вырабатывается в виде белого порошка из фенола, бензола или циклогексана.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru

1. Основные этапы производства химических волокон

2. Высокопрочные, термостойкие и негорючие волокна и нити (фенилон, внивлон, оксалон, армид, углеродные и графические): состав, строение, получение, свойства и применение

3.Определить вид волокна и сделать рисунок его поперечного и продольного сечения, если оно горит небыстро, издаёт запах жжёного рога или пера. При этом образуется чёрный шарик, легко растирающийся в порошок. Волокно растворяется при кипячении в 65% растворе азотной кислоты, а также в концентрированной азотной кислоте и 5 и 40% растворах едкого натра и не растворяется в органических растворителях

Список используемой литературы

1. Основные этапы производства химических волокон

К химическим волокнам относятся, создаваемые в заводских условиях путём формирования из органических природных или синтетических полимеров или неорганических веществ. Искусственные волокна получают из высокомолекулярных соединений, встречающихся в готовом виде (целлюлоза, белки). Синтетические волокна производят из высокомолекулярных соединений, синтезируемых из низкомолекулярных соединений. Они подразделяются на гетероцепные и карбоцепные волокна. Гетероцепные волокна образуются из полимеров, в основной молекулярной цепи которых кроме атомов углерода содержатся атомы других элементов. Карбоцепными называют волокна, которые получают из полимеров, имеющих в основной цепи молекул только атомы углерода.

Прототипом процесса получения химических нитей послужил процесс образования шелкопрядом нити при завивке кокона. Существовавшая в 80-х гг. ХIХ в. Не совсем верная гипотеза о том, что шелкопряд выдавливает волокнообразующую жидкость через шелкоотделительные железы и таким образом прядёт нить, легла в основу технологических процессов формирования химических нитей. Современные способы формирования нитей также заключаются в продавливании исходных растворов или расплавов полимеров через тончайшие отверстия фильер.

Производство химических волокон состоит из пяти основных этапов: получение и предварительная обработка сырья, приготовление прядильного раствора или расплава, формирование нитей, отделка и текстильная переработка. Искусственные волокна получают из различного природного сырья - древесины, отходов хлопка, металлов, которые в процессе предварительной обработки проходят очистку или превращение в новые высокомолекулярные соединения.

Для получения синтетических волокон исходным сырьём являются газы, нефть, каменный уголь, продукты переработки которых используются для синтеза волокнообразующих полимеров.

Получение и предварительная обработка сырья для искусственных волокон и нитей состоит в его очистке или химическом превращении в новые полимерные соединения. Сырьё для синтетических волокон и нитей получают путём синтеза полимеров из простых веществ на предприятиях химической промышленности. Предварительно это сырьё не обрабатывают.

Приготовление прядильного раствора или расплава. При изготовлении химических волокон и нитей необходимо из твёрдого исходного полимера получить длинные тонкие текстильные нити с продольной ориентацией макромолекул, т.е. нужно переориентировать макромолекулы полимера. Для этого следует перевести полимер в жидкое (раствор) или размягченное (расплав) состояние, при котором нарушается межмолекулярное взаимодействие, увеличивается расстояние между макромолекулами и появляется возможность их свободного перемещения относительно друг друга. Растворы используются при получении искусственных и некоторых видов синтетических нитей (полиакрилонитрильных, поливинилспиртовых, поливинилхлоридных). Из расплавов образуются гетероцепные (полиамидные, полиэфирные) и некоторые карбоцепные (полиолефиновые) волокна и нити.

Прядильный раствор или расплав приготовляют в несколько стадий.

Растворение или расплавление полимера производят с целью получения раствора или расплава нужной вязкости и концентрации.

Смешивание полимеров из различных партий выполняют для повышения однородности растворов или расплавов, чтобы получать волокна равномерные по свойствам на всём их протяжении.

Фильтрация необходима для удаления из раствора или расплава механических примесей, не растворившихся частиц полимера, чтобы предотвратить засорение фильер и улучшить свойства волокна; путём многократного прохождения раствора или расплава через фильтры.

Обезвоздушивание заключается в удалении из раствора пузырьков воздуха, которые попадая в отверстия фильер, обрывают струйкой раствора и препятствуют образованию волокна; осуществляется путём выдерживания раствора в течение нескольких часов под вакуумом. Расплав обезвоздушиванию не подвергают, так как в расплавленной массе полимера воздуха практически нет.

Формирование нитей. Состоит в дозированном продавливании прядильного раствора или расплава через отверстия фильер, затвердевании вытекающих струек и наматывании полученных нитей на приёмные устройства. Струйки формируются в элементарные нити из раствора. При формировании из расплава струйки нитей, вытекающие из фильеры, охлаждаются в обдувочной шахте струёй воздуха или инертного газа. При формировании из раствора сухим способом струйки полимера обрабатываются струёй горячего воздуха, в результате чего растворитель испаряется, а полимер затвердевает. В случае формирования из раствора мокрым способом струйка нити из фильер поступают в раствор осадительной ванны, где происходит физико-химический процессы выделения полимера из раствора и иногда химические изменения состава исходного полимера. В последнем случае используется одна или две ванны для формирования нити.

При формировании получают либо комплексные нити, состоящие из нескольких длинных элементарных нитей, либо штапельные волокна-отрезки нитей определённой длины. Для получения комплексных текстильных нитей количество отверстий фильтре может быть от 12 до 100. Сформированные нити из одной фильеры соединяются, вытягиваются и наматываются.

Химические волокна и нити непосредственно после формирования не могут быть использованы для производства текстильных материалов. Они требуют дополнительной отделки, которая включает в себя ряд операций.

Удаление примесей и загрязнений необходимо при получении вискозных, белковых и некоторых видов синтетических нитей, формируемым мокром способом. Эта операция осуществляется путём промывки нитей в воде или различных растворах. Беление нитей или волокон, которые впоследствии окрашиваются в светлые и яркие цвета, проводится путём их обработки оптическими отбеливателями.

Вытягивание и термообработка синтетических нитей необходимы для перестройки их первичной структуры. В результате нити становятся более прочными, но менее растяжимыми. Поэтому после вытягивания проводят термообработку для релаксации внутренних напряжений и частичной усадки нитей. Поверхностная обработка (авиаж, аппретирование, замасливание) необходима для придания нитям способности к последующим текстильным переработкам. При такой обработки повышается скольжение и мягкость, уменьшается поверхностное склеивание элементарных нитей и их обрывность, снижается электризуемость и т. п.

Сушка нитей после мокрого формирования и обработки различными жидкостями выполняется в специальных сушилках.

Текстильная переработка. Этот процесс предусмотрен для соединения нитей и повышения их прочности (скручивание и фиксация крутки), увеличения объёма валок нитей (перематывание), оценки качества полученных нитей (сортировка).

Одним из основных направлений расширения и улучшение ассортимента химических волокон является модификация существующих для придания им новых заранее заданных свойств

2. Высокопрочные, термостойкие и негорючие волокна и нити(фенилон, внивлон, оксалон, армид, углеродные и графические): состав, строение, п олучение, свойства и применение

К волокнам с особыми свойсвами относятся волокна, обладающие специфичискими свойствами: темо- и жаростойкие, волокна, способные выдерживать повышенные,высокие и очень высокие температуры (от 250 до 3000 0 С), полупроницаемые полые волокна для мембранного разделения жидких и газовых смесей и др. Создание волокон с осбыми ствойствами позволило резко расширить границы примениние химических волокон.

Термостойкие волокна предназначены для эксплуатации при температурах 250-400 0 С, т.е выше облости разложения обычных химических волокон массового примения. Получение подобных волокон требует решение сложных научно-технических проблем, связанных с синтезом полимеров и переработкой их в волокно.Полимеры для тармостойких волокон должны удовлетворять ряду требований, важнейшими из которых являются: высокие температуры плавления и стеклования и термическая стойкость. Этим требованиям отвечают ароматические, гетероциклические и лестничные полимеры, для синтеза которых используются би- и тетрафункциональные ароматические соединения. Оброзование гетероциклов в полемирной цепи приводит к повышению термостойкости волокон.

Известно большое число различных типов термостойких волокон. Из них наибольшее распростронение получили волокна на основе ароматическх полиамидов номекс (фенилон), полимидные, полиоксадиазольные, полибензимидазольные и волокна лестничного стоения.

Терможаростойкие и негорючие волокна: внивлон -сверх высокомодульное волокно СВМ; оксалон, арамид Т, кевлар, номекс, фенилон - в структуре содержат бензельное кольцо. Например, волокно номекс (форм.2.1):

Фенилон торговое название, принятое в СССР для линейного ароматического полиамида - поли-м -фениленизофталамида, (в США он известен под названием «номекс»). (форм.2.2)

[- HMC 6 H 4 NHOCC 6 H 4 CO -] n (2.2)

Фенилон получают поликонденсацией дихлор-ангидрида изофталевой кислоты и м-фенилендиамина в эмульсии или растворе. Фенилон - полимер белого цвета, t cтеклов.270 °С; при нагревании до 340-360 °С он кристаллизуется, t пл 430°С; молярная масса 20 000-120 000. Растворяется в концентрированной серной кислоте, диметилацетамиде и диметилформамиде, содержащих добавки, например LiCl или CaCl 2 ; не горит, химически устойчив в кипящей воде, к действию топлив, масел, некоторых минеральных и органических кислот, щелочей, стоек к действию радиации, поражению плесневыми грибками.

Изделия из фенилона характеризуются высокими прочностью (при сжатии и изгибе 240 Мн/м 2 , или 2409 кгс/см 2) и диэлектрическими свойствами (тангенс угла диэлектрических потерь 0,01) в интервале температур от -70 до 250 °С. Фенилон применяют для получения волокна, электроизоляционной бумаги, лака и плёнок, а также как конструкционный и антифрикционный материал в электротехнической, радиотехнической и машиностроительной промышленности. Волокна и плёнки из фенилона. получают формованием из растворов, изделия - прессованием и пресс-литьём при ищи 320-340°С.

Из волокна нормекс изготавливается защитная одежда от воздействия тепла и света для работы в горячих цехах, а также для пожарников и автогонщиков. Все термостойкие волокна являются не горючими или малогорючими, поэтому могут использоваться как декоративные и обивочные текстильные материалы в самолётах, на кораблях, в больницах, госпиталях, школах и других общественных зданиях.

Внивлон -- термостойкое высокопрочное полимерное синтетическое волокно. Он разработан в СССР, но имеет аналоги в других странах. Волокно отличается повышенной устойчивостью к истиранию, деформации, высоким температурам, химическому воздействию. Внивлоновые волокна идут на производство технических нитей и тканей, из которых шьют термозащитные и химзащитные костюмы, различную спецодежду, бронежилеты. Ткань может дублировать. Поливинилспиртовое волокно ПВС (форм.2.3):

(-СН 2 -СН(ОН) -) n (2.3)

Оксалон - высокотермостойкое высокомодульное волокно. Оно может выпускаться в модифицированном виде и быть негорючим и высокохемостойким. Очень хорошо проявили себя ткани из оксалона для обтяжки гладильных прессов, а также в качестве спецодежды. Предполагается, что оксалон найдет также применение в качестве высокотемпературной электро-и теплоизоляции.

Волокно Оксалон устойчиво к действию разбавленных кислот и щелочей, а в структуре плотной ткани не воспламеняется в пламени.

Заметим, что у сульфона и оксалона относительно высокая температурная прочность; у стеклоткани высокая температурная и химическая стойкости, но низкая прочность на изгиб и истирание; для полифена характерна исключительно высокая химическая прочность, но он легко текуч.

В последние годы организовано производство синтетических тканей, более термостойких, чем нитрон и лавсан, а именно тефлона, фильтрона, сульфона, оксалона. Термостойкость этих материалов соответственно составляет 230; 270; 260 и 250 С. Тефлоновые ткани используют для очистки газообразного хлора от пыли.

Все термостойкие волокна формируют из расплавов, так как температура плавления термостойких полимеров лежит в облости их термического разложения и получить расплавы невозможно.

Вследствии плохой растворимости ароматических полимеров в качестве растворителей ипользуют только органические апротонные растворители (диметилформамид, диметилацетамид и д. р.) и концетрированные кислоты (серная, олеум, полифосфорная).

К негорючим волокнам относят волокна, которые не воспламеняются и не распространяют пламя. Такие синтетические волокна, как полиамидные, полиэфирные, полиолефиновые, при повышенных температурах плавятся. Перед плавлением синтетические ткани сильно усаживаются. Поэтому при возгорании одежда из синтетических матириалов сильная усадка может обусловить более тесный контакт выделяющегося может привести к тяжёлым ожогам. К негорючим химическим волокнам относятся поливинилхлоридное, хлориновое, фторлоновое, волокно из политетрафторэтилена и термостойкие волокна, полученные на основе ароматических полиамидов и полиэфиров,гетероциклических и лестничных полимеров.

Уневерсальных методов огнезащиты текстильных матириалов не существует, так как процесс горения волокон протекает по различным механизмам и зависит главным образом от химической природы полимера и характера продуктов, выделяющихся при термоокислительном разложении.

Для придания химическим волокнам повышенной стойкости к действию огня используют различные методы:поверхностную обработку тканей; ведение добавок в полимер перед формованием; химическую модификацию волокон или изделий из них.

Наиболее простой в технологическом отношении является поверхностная отделка тканей, которая включаетследующие стадии: пропитку ткани водным раствором соответствующих веществ, сушку и термообработку. Для обработки тканей используют азот-, фосфор-, серо- и галогеносодержащие продукты. Количество наносимого аппрета составляет 15-100% и зависит от природы исходного волокна и назначения ткани. Длятого чтобы предовратить вымывание этих продуктов при последующих стирках, ткани подвергают в определённых условиях термообработке, в результате чего происходт химческие превращения применяемых веществ. Это приводит к образованию на поверхности ткани нерастворимого продукта, в состав которого входят фосфор, азот или галогены, и частично- к химическому присоединению его к волокну. Однако в большинстве случаев нанесённые на поверхность волокнаили ткани огнезащитные.аппреты нестойки к водным обработками постепенно вымываются из ткани. Принанесении большого количества препаратасильно повышается жесткость ткани. химический волокно нить углерод

Довольно преспективным способом являетсямодификация волокон или изднлий из них путем химического присоеди нения антиприена к полимеру. Химической модификацией удаётся получить волокно с высокими и стабильными огнезащитными свойствами. Для снижения горючести текстильных матириалов путем химической модификации используют реакции полимераналогичных превращенийи привитой полимеризации. Этот метод оказался особенно эфективным при получении негорючихполиамидных волокон. Весьма существенным способом является и тот факт, что полученные по такому способу негорючие полиамидные волокна теряют плавкость.

Несмотря на большое число средств, предложенных для огнезащиты химических волокон и многочисленные иследования в этом направлении, можно считать, что удовлетворительно решена только проблема получения огнестойких целюлозных матириалов. Способность болььшинства традиционных синтетических волокон плавится затрудняет разработку достаточно эффективных и простых в технологическом аспекте мнтодов придания им огнестойкости.

Неорганические химические волокна - получают путем высокотемпературной обработке природных веществ: песка, мела, глинозема, доломита, каолина. К ним относятся - стекловолокно, кремнеземные, алюмосиликатное, кварцевые. Эти волокна в основном используются для технических целей.

Углеродное волокно -- материал, состоящий из тонких нитей диаметром от 5 до 15 микрон, образованных преимущественно атомами углерода. Атомы углерода объединены в микроскопические кристаллы, выровненные параллельно друг другу. Выравнивание кристаллов придает волокну большую прочность на растяжение. Углеродные волокна характеризуются высокой силой натяжения, низким удельным весом, низким коэффициентом температурного расширения и химической инертностью.

Углеродное волокно обычно получают термической обработкой химических или природных органических волокон, при которой в материале волокна остаются главным образом атомы углерода. Температурная обработка состоит из нескольких этапов. Первый из них представляет собой окисление исходного (полиакрилонитрильного, вискозного) волокна на воздухе при температуре 250 °C в течение 24 часов. В результате окисления образуются лестничные структуры. После окисления следует стадия карбонизации -- нагрева волокна в среде азота или аргона при температурах от 800 до 1500 °C. В результате карбонизации происходит образование графитоподобных структур. Процесс термической обработки заканчивается графитизацией при температуре 1600-3000 °C, которая также проходит в инертной среде. В результате графитизации количество углерода в волокне доводится до 99 %. Помимо обычных органических волокон (чаще всего вискозных и полиакрилонитрильных), для получения углеродное волокно могут быть использованы специальные волокна из фенольных смол, лигнина, каменноугольных и нефтяных пеков.

Углеродное волокно имеют исключительно высокую теплостойкость: при тепловом воздействии вплоть до 1600--2000 °С в отсутствии кислорода механические показатели волокна не изменяются. Их предельная температура эксплуатации в воздушной среде составляет 300--350°С. Нанесение на углеродное волокно тонкого слоя карбидов, в частности SiC, или нитрида бора позволяет в значительной мере устранить этот недостаток. Благодаря высокой химической стойкости углеродное волокно применяют для фильтрации агрессивных сред, очистки газов, изготовления защитных костюмов и др. Изменяя условия термообработки, можно получить углеродное волокно с различными электрофизическими свойствами (удельное объёмное электрическое сопротивление от 2·10?3 до 106 ом/см) и использовать их в качестве разнообразных по назначению электронагревательных элементов, для изготовления термопар и др.

Графит и неграфитированные виды углерода различаются по своим свойствам. По электрическим свойствам и теплопроводности графит превосходит углерод. Технический графит представляет собой поликристаллический жаропрочный материал, получаемый смешением наполнителя (обожженного нефтяного кокса) и связующего -- каменноугольного пека. Такую смесь формуют и обжигают в инертной атмосфере. Для ускорения роста кристаллов материал нагревают затем до 1927--3038 С. Технический продукт часто содержит значительное количество графита с дефектной кристаллической решеткой, а также с меж-гранулярными поверхностями раздела и пустотами. Однако недостаточная поверхностная хемостойкость искусственного графита препятствует применению его при высоких температурах. И к окислению ограничивает применение искусственного графита в условиях высоких температур и эрозии. Однако последние исследования в области покрытий для графита указывают на возможность частичного решения этой проблемы в недалеком будущем. Советские и другие исследователи установили, что окислительную деструкцию углеродных материалов и графита при 1200 °С в течение 100 ч можно предотвратить с помощью стеклосилицидных покрытий. Создание фирмой Юнион Карбид Корпорэйшн искусственного графита в виде упругих волокон и тканей уже дало возможность использовать графит во многих новых областях техники, в частности в ракетостроении

3. Определить вид волокна и сделать рисунок его поперечного и продольного сечения, если оно горит небыстро, издаёт запах жжёного рога или пера. При этом образуется чёрный шарик, легко растирающийся в порошок. Волокно растворяется при кипячении в 65% растворе азотной кислоты, а также в концентрированной азотной кислоте и 5 и 40% растворах едкого натра и не растворяет ся в органических растворителях

По характеристики горения это волокно может быть шерстяным или шелковым т.к.:издаёт запах жжёного рога или пера, при этом образуется чёрный шарик, легко растирающийся в порошок.

По действию реагентов это волокно шерсть т.к. волокно растворяется при кипячении в 65% растворе азотной кислоты, а также в концентрированной азотной кислоте и 5 и 40% растворах едкого натра и не растворяется в органических растворителях. Волокно шерсти состоит из трех слоев: чешуйчатого, коркового и сердцевинного (рис.3.1).

Рис. 3.1. Строение шерсти. 1- чешуйчатый слой; 2- корковый слой; 3- сердцевинный слой. Продольный вид и поперечный срез волокна шерсти: а) - пух; б) - переходный волос; в) - ость; г) - мертвый волос.

Используемая литература

1. Бузов Б.А. Материаловедение в производстве изделий легкой промышленности (швейное производство) / Б.А. Бузов, Н.Д. Алыменкова; под ред. Б.А. Бузова. - М.: Изд-ий центр «Академия», 2008. - 448 с.

2. Бузов Б.А. Материаловедение швейного производства / Б.А. Бузов, Т.А. Модестова, Н.Д. Алыменкова; под ред. Б.А. Бузова. - М.: Изд-ий центр Легкая индустрия, 1978. - 480 с.

3.Суворова О.В. Материаловедение швейного производства. Учебное пособие. Ростов Н/Д: «Феникс»,2001-416 с.

4. Зазалина З.А., Дружинина Т.В., Конкин А.А. Основы технологии химических волокон: М.: Химия, 1985-304 с.

5.Веселов.В.В., Колотилова Г.В.Химизация технологических процессов швейного производства.-М.: Легпромбытиздат, 1985.-128 с.

6.Структура, свойства и технология получения углеродных волокон: Сб. науч.ст./ Авт.-сост., пер.С.А. Подкопаев.Челябинск.Челяб.гос.ун-т, 2006, 217 с.

7. Исследование структуры и определение свойств волокон и ниток / Сарат.гос.техн.ун-т: Сост. Бесшапошникова В.И. - Саратов, 2009. - 44 с.

Размещено на Allbest.ru

Подобные документы

    Применение химических или физико-химических процессов переработки природных и синтетических высокомолекулярных соединений (полимеров) при производстве химических волокон. Полиамидные и полиэфирные волокна. Формования комплексных нитей из расплава.

    дипломная работа , добавлен 20.11.2010

    Виды искусственных волокон, их свойства и практическое применение. Вискозные, медно-аммиачные и ацетатные волокна, целлюлоза как исходный материал для их получения. Улучшение потребительских свойств пряжи благодаря использованию химических волокон.

    курсовая работа , добавлен 02.12.2011

    Анализ развития производства химических волокон. Основные направления совершенствования способов получения вискозных волокон. Современные технологии получения гидратцеллюлозных волокон. Описание технологического процесса. Экологическая экспертиза проекта.

    дипломная работа , добавлен 16.08.2009

    Классификация химических волокон. Свойства и качества искусственных их разновидностей: вискозы и ацетатного волокна. Полиамидные и полиэфирные их аналоги. Сфера применения капрона, лавсана, полиэфирного и полиакрилонитрильного волокон, акриловой пряжи.

    презентация , добавлен 14.09.2014

    Стеклянное волокно, его применение. Общие сведения о базальтовом волокне. Структуры, образующиеся при окислении ПАН-волокна. Плотность и теплопроводность арамидных волокон. Основные свойства полиолефиновых волокон. Поверхностные свойства борных волокон.

    контрольная работа , добавлен 16.12.2010

    Строение ацетатных и триацетатных волокон. Основные элементы структуры швейных изделий. Свойства волокон и область их использования. Текстурированные нити, их виды, получение, свойства и использование. Штопорность швейных ниток и методы ее определения.

    контрольная работа , добавлен 26.01.2015

    Физико-механические свойства базальтовых волокон. Производство арамидных волокон, нитей, жгутов. Основная область применения стекловолокна и стеклотекстильных материалов. Назначение, классификация, сфера применения углеродного волокна и углепластика.

    контрольная работа , добавлен 07.10.2015

    Сравнительная характеристика химических и физико-химических свойств гетероцепных и карбоцепных волокон. Технология крашения хлопчатобумажных, льняных тканей и из смеси целлюлозных и полиэфирных волокон. Суть заключительной отделки шерстяных тканей.

    контрольная работа , добавлен 20.09.2010

    Сравнение физико-химических свойств волокон натурального шелка и лавсана. Строение волокон, его влияние на внешний вид и свойства. Сравнение льняной системы мокрого прядения льна и очесочной системы сухого прядения. Гигиенические свойства тканей.

    контрольная работа , добавлен 01.12.2010

    Основу материалов и тканей составляют волокна. Друг от друга волокна отличаются по химическому составу, строению и свойствам. В основу существующей классификации текстильных волокон положено два основных признака - способ их получения и химический состав.

Цели урока:

Образовательная :

  • Ознакомить учащихся с технологическим процессом производства химических волокон.
  • Ознакомить учащихся со свойствами тканей из искусственных и синтетических волокон.

Развивающая :

  • Способствовать формированию и развитию познавательного интереса учащихся к предмету.
  • Способствовать формированию и развитию интеллектуальных качеств личности.
  • Развивать логическое мышление.

Воспитательная :

  • Воспитывать бережное отношение к одежде из натуральных и химических волокон.
  • Воспитывать уважительное отношение к труду людей.

Методическое оснащение урока:

  • cхема «Текстильные волокна»;
  • схема получения химических волокон;
  • образцы тканей из химических волокон;
  • учебник, рабочая тетрадь;
  • лупы;
  • материалы для контроля знаний учащихся – тесты.

Методы обучения:

  • словесные (объяснение с демонстрацией);
  • наглядные (использование компьютера с проектором);
  • практические (лабораторная работа по изучению свойств тканей из искусственных, синтетических волокон, шерсти, хлопка).

Ход урока

(В Приложении 1 представлена презентация.)

I. Организация урока

  • Проверка готовности учащихся к уроку.
  • Сообщение темы и цели урока.

II. Повторение, подготовка к изучению новой темы

  • Назовите ткани из натуральных волокон. (Льняные, хлопчатобумажные, шёлковые, шерстяные. )
  • Какие свойства тканей из натуральных волокон помогают спортсменам легче переносить нагрузки на тренировках? (Гигроскопичность и воздухопроницаемость, прочность и теплозащитность .)

III. Изучение нового материала

1. Словесно-иллюстративный рассказ

Учитель. Издавна, для производства тканей люди использовали те волокна, которые давала им природа. Вначале, это были волокна диких растений, затем волокна конопли, льна, а также шерсть животных. С развитием земледелия люди начали выращивать хлопчатник, дающий очень прочное волокно.

Но природное сырьё имеет свои недостатки, натуральные волокна слишком короткие, требуют сложной технологической обработки. И, люди стали искать сырьё, из которого можно было бы дешёвым способом получать ткань тёплую, как шерсть, лёгкую и красивую как шёлк, практичную, как хлопок.

Сегодня все текстильные волокна можно представить в виде следующей схемы:

Сейчас в лабораториях синтезируются всё новые и новые виды химических волокон, и ни одному специалисту не под силу перечислить их необъятное множество. Учёным удалось заменить даже шерстяное волокно – оно называется нитрон .

Производство химических волокон включает 5 этапов:

1. Получение и предварительная обработка сырья.
2. Приготовление прядильного раствора или расплава.
3. Формование нитей.
4. Отделка.
5. Текстильная переработка.

Хлопковые и лубяные волокна содержат целлюлозу. Было разработано несколько способов получения раствора целлюлозы, продавливания его сквозь узкое отверстие (фильеру) и удаления растворителя, после чего получались нити, похожие на шёлковые. В качестве растворителей использовали уксусную кислоту, щелочной раствор гидрооксида меди, едкий натр и сероуглерод. Полученные нити называются соответственно:

  • ацетатными,
  • медноаммиачными,
  • вискозными.

На рисунке центрифугальная прядильная машина, где

1- центрифуга,
2 - фильера.

А сама фильера схематично выглядит так:

1 - прядильный раствор,
2 - фильера,
3 - волокна.

При формовании из раствора по мокрому способу струйки попадают в раствор осадительной ванны, где происходит выделение полимера в идее тончайших нитей.

Большую группу нитей, выходящих из фильер, вытягивают, скручивают вместе и наматывают в виде комплексной нити на патрон. Количество отверстий в фильере при производстве комплексных текстильных нитей может быть от 12 до 100.

При производстве штапельных волокон в фильере может быть до 15000 отверстий. Из каждой фильеры получают жгутик волокон. Жгуты соединяются в ленту, которая после отжима и сушки режется на пучки волокон любой заданной длины. Штапельные волокна перерабатываются в пряжу в чистом виде или в смеси с натуральными волокнами.

Синтетические волокна вырабатывают из полимерных материалов. Волокнообразующие полимеры синтезируют из продуктов переработки нефти:

  • бензола
  • фенола
  • аммиака и т.д.

2. Сообщение ученицы

Изменяя состав исходного сырья и способы его переработки, синтетическим волокнам можно придавать уникальные свойства, которых нет у натуральных волокон. Синтетические волокна получают в основном из расплава, например, волокна из полиэфира, полиамида, продавливаемого через фильеры.

В зависимости от вида химического сырья и условий его формирования можно вырабатывать волокна с самыми различными, заранее намеченными свойствами. Например, чем сильнее тянуть струйку в момент выхода её из фильеры, тем прочнее получается волокно. Иногда химические волокна даже превосходят стальную проволоку такой же толщины.

Среди новых, уже появившихся волокон, можно отметить волокна – хамелеоны, свойства которых меняются в соответствии с изменениями окружающей среды. Разработаны полые волокна, в которые заливается жидкость, содержащая цветные магнетики. С помощью магнитной указки можно изменять рисунок ткани из таких волокон.

С 1972 года запущено производство арамидных волокон, которые разделяют по двум группам. Арамидные волокна одной группы (номэкс, конэкс, фенилон) используют там, где необходима стойкость к пламени, и термическим воздействиям. Вторая группа (кевлар, терлон) имеет высокую механическую прочность в сочетании с малой массой.

Высокую механическую прочность и хорошую устойчивость к химическим реагентам имеют керамические волокна, основной вид которых состоит из смеси оксида кремния и оксида алюминия. Керамические волокна можно использовать при температуре около 1250 o С. Они отличаются высокой химической стойкостью, а устойчивость к радиации позволяет применять их в космонавтике.

3. Ознакомление с различными свойствами текстильных волокон

Таблица «Классификация тканей по волокнистому составу» (Её можно распечатать по количеству учениц и раздать, для укрепления её в тетрадь, в целях экономии времени).

Наименование ткани

Положительные свойства

Отрицательные свойства

Хлопчатобумажные ткани

Обладают хорошей прочностью, лёгкостью, мягкостью. Они легко впитывают влагу, пропускают воздух, легко стираются и не осыпаются при раскрое. Легко разглаживаются.

Они сильно сминаются

Льняные ткани

Обладают высокой прочностью. Они хорошо пропускают воздух, впитывают влагу и не осыпаются. Легко разглаживаются.

Они жёсткие, толстые, сильно сминаются.

Шерстяные ткани

Очень тёплые, хорошо драпируются, мало сминаются.

При замачивании изменяют свой размер, т.е. «садятся»

Шёлковые ткани

Прочные, они хорошо впитывают влагу, быстро высыхают, свободно пропускают воздух, мало сминаются.

Они растягиваются и при раскрое сильно осыпаются.

Искусственные ткани

Прочные, они хорошо драпируются. Обладают гигроскопичностью.

Сильно сминаются. В мокром состоянии теряют свою прочность. При раскрое – осыпаются.

Синтетические ткани

Обладают упругостью и прочностью. Не мнутся, не дают усадки, хорошо сохраняют форму.

Они плохо впитывают влагу и сильно осыпаются при раскрое.

IV. Лабораторно - практическая работа «Определение сырьевого состава материалов и изучение их свойств»

Инструменты и материалы: образцы тканей из искусственных и синтетических волокон, шерсти, хлопка; игла; сосуд с водой; тигели для поджигания нитей.

«Таблица свойств химических волокон»

Волокно

Блеск

Извитость

Прочность

Сминаемость

Горение

вискозное

горит хорошо, пепел серый, запах жжёной бумаги.

ацетатное

понижается во влажном состоянии

меньше, чем у вискозного

быстро горит жёлтым пламенем, остаётся оплавленный шарик

очень малая

плавится с образованием твёрдого шарика

очень малая

горит медленно, образует твёрдый тёмный шарик

очень малая

горит вспышками, образуется тёмный наплыв

Ход работы

  • Рассмотрите внешний вид образцов ткани. Определите, у каких из них поверхность блестящая, а у каких – матовая.
  • Определите на ощупь степень гладкости и мягкости каждого образца.
  • Определите сминаемость образцов: зажмите образец в кулаке на 30 секунд, а затем раскройте ладонь.
  • Выньте 2 нити из каждого образца и по одной из них намочите. Разорвите сухую, а затем мокрую нить. Определите, как меняется при этом прочность нити.
  • Выньте ещё по одной нити из каждого образца и подожгите её в тигле. Проанализируйте вид пламени, запах и оставшийся пепел после горения.
  • Результаты опытов занесите в таблицу.
  • На основании полученных данных и таблицы свойств химических волокон определите сырьевой состав каждого образца.

Признак ткани

Образец №1

Образец №2

Образец №3

Образец №4

Гладкость

Мягкость

Сминаемость

Осыпаемость

Прочность в мокром состоянии

Сырьевой состав материала

V. Итог урока

Закрепление изученного материала.

Вопросы

Почему люди стали искать новые способы получения волокон?
- О каких волокнах вы сегодня узнали на уроке?
- Что служит сырьём для производства искусственных волокон?
- Что служит сырьём для производства синтетических волокон?

Тест

1. Большая осыпаемость нитей в тканях:

А) хлопчатобумажные
Б) шерстяные
В) синтетические

2. Теплозащитные свойства выше у:

А) льна
Б) шёлка
В) нитрона

3. Какие ткани обладают большой гигроскопичностью и воздухопроницаемостью?

А) натуральные
Б) искусственные

4. Какие ткани теряют прочность в мокром состоянии?

А) натуральные
Б) синтетические

Выставление оценок, их аргументация.

(В Приложении 1 представлена презентация.)



Статьи по теме: