Радиус видимой вселенной. Сопутствующее расстояние противоположно расстоянию углового диаметра

Всем привет! Хочу сегодня поделится с Вами впечатлениями о Вселенной. Только представить, нет конца, всегда было интересно, а такое может быть? Из этой статьи можно узнать о звездах, их видах и жизни, о большом взрыве, о черных дырах, о пульсарах и еще о некоторых важных вещах.

– это все что существует: пространство, материя, время, энергия. В нее входят все планета, звезды, и другие космические тела.

– это весь существующий материальный мир, она безгранична в пространстве и времени и разнообразна формами, которые в процессе своего развития принимает материя.

Изучаемая астрономией Вселенная – это часть материального мира, которая доступна исследованиям астрономическими способами, которые отвечают достигнутому уровню науки (эту часть Вселенной иногда называют Метагалактикой).

Метагалактика – доступна современным методам исследования часть Вселенной. Метагалактика вмещает в себя несколько миллиардов .

Вселенная столь огромна, что ее размеры осознать невозможно. Давайте поговорим о Вселенной: ее часть, которая нам видима, простирается на 1,6 млн. млн. млн. млн. км, — и насколько она велика за пределами видимого, никому не ведомо.

Как вселенная приобрела свой сегодняшний вид и из чего она возникла, пытаются объяснить очень многие теории. Согласно самой популярной теории, 13 млрд. лет назад она зародилась в результате гигантского взрыва. Время, космос, энергия, материя – все это возникло вследствие этого феноменального взрыва. Что было до так называемого «большого взрыва», говорить бессмысленно, до него ничего не было.

– по современным представлениям, это состояние Вселенной в прошлом (около 13 млрд. лет назад), когда его средняя плотность во много раз превышала современную. Со временем плотность Вселенной уменьшается из-за ее расширения.

Соответственно при углублении в прошлое плотность увеличивается, аж к тому моменту, когда классические представления о времени и пространстве теряют силу. За начало отсчета времени можно принять этот момент. Интервал времени от 0 до нескольких секунд условно называют периодом большого Взрыва.

Вещество Вселенной, в начале этого периода, получило колоссальные относительные скорости («взорвалось» и отсюда название).

Наблюдаемые в наше время, свидетельства большого Взрыва есть значение концентрации гелия, водорода и некоторых других легких элементов, реликтовое излучение, распределение неоднородностей во Вселенной (например, галактик).

Астрономы полагают, что Вселенная была невероятно раскалена и полна радиации после большого взрыва.

Атомные частицы – протоны, электроны и нейтроны сформировались приблизительно через 10 секунд.

Сами же атомы – атомы гелия и водорода – образовались лишь несколько сотен тысяч лет спустя, когда Вселенная остыла и значительно расширилась в размерах.

Отголоски большого взрыва.

Если большой взрыв произошел 13 млрд. лет назад, к настоящему времени Вселенная должна была бы охладеть до температуры около 3 градусов по Кельвину, то есть до 3 градусов выше абсолютного ноля.

Ученные зарегистрировали фоновые радиошумы, используя телескопы. Эти радиошумы по всему звездному небу, соответствуют этой температуре и их считают до сих пор доходящими до нас отголосками большого взрыва.

Согласно одной из самых популярных научных легенд, Исаак Ньютон увидел, как на землю упало яблоко, и понял, что это случилось под действием исходящей от самой Земли силы тяжести. От массы тела зависит величина этой силы.

Сила тяжести яблока, имеющего малую массу, не влияет на движение нашей планеты, у Земли большая масса и она притягивает яблоко к себе.

На космических орбитах силы притяжения удерживают все небесные тела. По орбите Земли движется Луна и не отдаляется от нее, на околосолнечных орбитах сила притяжения Солнца удерживает планеты, а Солнце удерживает в положении по отношению к другим звездам, сила, которая намного больше гравитационной.

Наше Солнце – звезда, причем довольно обычная и самых средних размеров. Солнце, как и все остальные звезды, представляет собой из светящегося газа шар, и подобно колоссальной печи, выделяющей тепло, свет и другие формы энергии. Солнечную систему образуют планеты на солнечной орбите и конечно же само Солнце.

Другие звезды, потому что очень далеки от нас, кажутся на небе крошечными, но на самом деле, некоторые из них, в сотни раз превышают наше Солнце в диаметре.

Звезды и галактики.

Местоположение звезд астрономы определяют, располагая их в созвездия или по отношению к ним. Созвездие – это группа видимых на определенном участке ночного неба звезд, но не всегда, в действительности, находящихся поблизости.

В звездные архипелаги, именуемые галактиками, группируются звезды в безбрежных космических просторах. Наша Галактика, которая называется млечный Путь, входит Солнце со всеми его планетами. Наша галактика далеко не самая большая, но достаточно огромна, чтобы ее представить.

По отношению к скорости света во Вселенной измеряются расстояния, быстрее нее человечество ничего не знает. Скорость света равна 300 тыс. км/сек. Как световой год, астрономы пользуются такой единицей – это расстояние, прошел бы за год луч света, тот есть 9,46 млн. млн. км.

Проксима в созвездии Кентавра – ближайшая к нам звезда. Она находится на отдалении 4,3 световых года. Мы не видим ее такой, глядя на нее, какой она была более четырех лет назад. А свет Солнца до нас доходит за 8 минут и 20 секунд.

Форму гигантского вращающегося колеса с выступающей осью – ступицей, имеет Млечный путь с сотнями тысяч миллионов его звезд. В 250 тыс. световых лет от его оси – ближе к ободу этого колеса расположено Солнце. Вокруг центра Галактики Солнце оборачивается по своей орбите за 250 млн. лет.

Наша Галактика – одна из многих, и никто не знает, сколько их всего. Более миллиарда Галактик уже открыты, и многие миллионы звезд в каждой из них. В сотнях миллионов световых лет от землян находятся наиболее далекие из уже известных Галактик.

В самое отдаленное прошлое Вселенной мы вглядываемся, изучая их. От нас и друг от друга отдаляются все Галактики. Похоже, что Вселенная все еще расширяется, а большой взрыв был ее первоначалом.

Какие бывают звезды?

Звезды – световые газовые (плазменные) шары, подобные Солнцу. Образуются из пыльно-газовой среды (большим образом из гелия и водорода), вследствие гравитационной неустойчивости.

Звезды бывают разные, но когда-то они все возникли и через миллионы лет они исчезнут. Нашему Солнцу почти 5 млрд. лет и по подсчетам астрономов, оно еще столько же просуществует, а потом начнет умирать.

Солнце – это одинарная звезда, многие другие звезды являются бинарными, то есть, по сути, состоят из двух звезд, которые вращаются друг вокруг друга. Так же астрономам известны тройные и так называемые кратные звезды, которые состоят их многих звездных тел.

Сверхгиганты – самые крупные звезды.

Антарес, диаметром в 350 раз больше диаметра Солнца, относится к этим звездам. Впрочем, очень малая плотность у всех сверхгигантов. Гиганты – менее крупные звезды с диаметром в 10 – 100 раз больше Солнечного.

Их плотность тоже мала, но она больше чем у сверхгигантов. Большинство видимых звезд, включая Солнце, классифицируются как звезды главной последовательности, или средние звезды. Их диаметр может быть как в десять раз меньше, так и в десять раз больше диаметра Солнца.

Красными карликами называются самые малые звезды главной последовательности, а белыми карликами – называются еще меньшие тела, которые уже не относятся к звездам главной последовательности.

Белые карлики (размерами с нашу ) чрезмерно плотны, но очень тусклы. Их плотность во много миллионов раз больше плотности воды. До 5 млрд. белых карликов может быть только в Млечном Пути, хотя ученные до сих пор открыли лишь несколько сотен таких тел.

Давайте для примера посмотрим видео сравнения размеров звезд.

Жизнь звезды.

Каждая звезда, как упоминалось ранее, рождается из облака пыли и водорода. Вселенная полна таких облаков.

Формирование звезды начинается, когда под влиянием какой-то еще (никем не понятной) силы и под действием тяготения происходит, как говорят астрономы, коллапс, или «схлопывание» небесного тела: облако начинает вращаться, а его центр нагревается. Эволюцию звезд можно посмотреть .

Ядерные реакции начинаются, когда внутри звездного облака температура достигает миллиона градусов.

В ходе этих реакций ядра атомов водорода соединяются и образуют гелий. Энергия, производимая реакциями, высвобождается в виде света и тепла, и загорается новая звезда.

Звездная пыль и остаточные газы наблюдаются вокруг новых звезд. Планеты образовались вокруг нашего Солнца из этой материи. Наверняка, вокруг других звезд, образовались похожие планеты, и вероятны какие-то формы жизни на многих планетах, об открытии которых не знает человечество.

Звездные взрывы.

От массы во многом зависит судьба звезды. Когда такая звезда, вроде нашего Солнца, использует свое водородное «топливо» — сжимается гелиевая оболочка, а расширяются внешние слои.

Звезда становится красным гигантом на этом этапе своего существования. После, со временем, ее внешние слои резко отходят, и оставляют за собой лишь малое яркое ядро звезды – белого карлика. Черным карликом (огромной углеродной массой) звезда становится, постепенно охладившись.

Более драматичная судьба ожидает звезды, массой в несколько раз превышающих массу Земли.

Они превращаются в сверхгигантов, намного крупнее красных гигантов, это происходит по мере истощения их ядерного топлива из-за чего они, и расширяются, становясь такими огромными.

После, под воздействием тяготения, происходит резкое схлопывание их ядер. Звезду на куски разносит невообразимым взрывом высвобожденная энергия.

Астрономы такой взрыв называют рождением сверхновой. В миллионы раз ярче Солнца какое-то время светит сверхновая. Впервые, за последние 383 года, в феврале 1987 года, невооруженным глазом было видно сверхновую из соседней галактики с Земли.

В зависимости от исходной массы звезды, после сверхновой может остаться небольшое тело, называемое нейтронной звездой. С диаметром не более нескольких десятков километров, такая звезда, состоит из твердых нейтронов, от этого ее плотность во много раз превышает огромную плотность белых карликов.

Черные дыры.

Сила коллапса ядра в некоторых сверхновых столь велика, что сжатие материи практически не приводит к ее исчезновению. Участок космического пространства с невероятно высокой гравитацией, остается вместо материи. Такой участок называют черной дырой, ее сила настолько мощна, что втягивает все в себя.

Черные дыры не могут быть видимы в силу своей природы. Тем не менее, астрономы полагают, что установили их местонахождение.

Астрономы ищут системы двойных звезд с мощным радиационным излучением и считают, что оно возникает вследствие выхода материи в черную дыру, сопровождающегося нагреванием температур в миллионы градусов.

В созвездии Лебедя (т. н. черная дыра Лебедя Х-1) обнаружен такой источник излучения. Некоторые ученные полагают, что кроме черных дыр, ещё существуют и белые. Эти белые дыры возникают в том месте, где к образованию новых звездных тел готовится приступить собравшаяся материя.

Так же Вселенная таит в себе загадочные образования, именуемые квазарами. Наверное, это ядра далеких галактик, которые ярко светятся, а дальше них, мы ничего не видим во Вселенной.

Вскоре после образования Вселенной, в нашем направлении начал двигаться их свет. Ученные считают, что энергия, равная энергии квазаров, может происходить только от космических дыр.

Пульсары – не менее таинственны. Пульсары – это регулярно испускающие пучки энергии образования. Они, по мнению ученных, являются звездами, которые быстро вращаются, а от них исходят световые лучи, как от космических маяков.

Будущее Вселенной.

Каков удел нашей вселенной не знает никто. Похоже на то, что после изначального взрыва, оно все еще расширяется. Возможны два сценария в очень далеком будущем.

Согласно первому из них, теории открытого пространства, Вселенная будет расширяться до тех пор, пока вся энергия не израсходуется на все звезды и галактики не прекратят своего существования.

Второй – теория закрытого пространства, согласно которой, расширение Вселенной когда-нибудь прекратится, она вновь начнет сжиматься и будет сокращаться, пока в процессе не исчезнет.

Ученные назвали этот процесс по аналогии с большим взрывом — большим сжатием. В результате может произойти еще один большой взрыв, сотворивши новую Вселенную.

Вот так, всему было начало и будет конец, только какой, никто этого не знает...

Шкала расстояний Вселенной

Поскольку Вселенная расширяется, на вопрос о расстояниях до очень далеких галактик трудно ответить. Все зависит от вашей точки зрения.

Туманность Омега

Туманность Орел

Скопление Антлия

Вот в чём заключается проблема определения расстояний в расширяющейся Вселенной: две галактики находятся рядом друг с другом, когда возраст Вселенной - всего 1 миллиард лет. Первая галактика излучает световой импульс. Вторая галактика не воспринимает данный импульс до тех пор, пока Вселенной не исполнится 14 миллиардов лет.

К этому моменту данные галактики разделяет порядка 26 миллиардов световых лет; световой импульс находится в пути в течение 13 миллиардов лет; и картинка, которую получают люди во второй галактике - это образ первой галактики на момент, когда её возраст составлял всего лишь один миллиард лет и когда она находилась на удалении всего 2 миллиарда световых лет.

В космологии общепринятыми являются четыре различные шкалы расстояний:

(1) Фотометрическое расстояние - DL

В расширяющейся Вселенной удалённые галактики намного более трудноразличимы, чем можно было ожидать, поскольку фотоны света растягиваются и развёртываются на обширную зону. Вот почему для того, чтобы разглядеть очень удалённые галактики, требуются огромные телескопы. Наиболее удалённые галактики, видимые через космический телескоп "Хаббл", настолько слабо различимы, что создаётся впечатление, как будто они находятся на удалении порядка 350 миллиардов световых лет, хотя они и находятся намного ближе.

Фотометрическая шкала не отображает реального расстояния, но она применяется для определения того, насколько тусклыми видятся нам очень удалённые галактики.

(2) Расстояние углового диаметра - DA

В расширяющейся Вселенной мы видим галактики у границы видимой Вселенной в тот момент, когда они были очень молодыми, порядка 14 миллиардов лет назад, поскольку свету, чтобы добраться до нас, потребовалось около 14 миллиардов лет.

Однако галактики в то время не только были молодыми, но и располагались намного ближе к нам.

Наиболее слабо различимые галактики, видимые посредством космического телескопа "Хаббл", в момент излучения света находились от нас на удалении всего несколько миллиардов световых лет.

Это означает, что очень удалённые галактики выглядят гораздо более крупными, чем можно было ожидать, как будто они находятся от нас на расстоянии порядка 2 либо 3 миллиардов световых лет (Хотя они тоже выглядят очень-очень тусклыми - см. "Фотометрическое расстояние").

Расстояние углового диаметра - хороший индикатор (особенно в такой плоской галактике, как наша) того, насколько близко к нам находилась определённая галактика, когда излучала свет, который мы видим в данный момент.

(3) Сопутствующее расстояние - DC

Шкала сопутствующего расстояния расширяется вместе со Вселенной. Она даёт нам представление о том, где в настоящее время находятся галактики, несмотря на то, что наблюдаем мы удалённую галактику в том виде, какой она имела, когда была намного младше и меньше. По данной шкале самый дальний край видимой Вселенной в настоящее время находится от нас на удалении 47 миллиардов световых лет, хотя наиболее удалённые галактики, видимые через космический телескоп "Хаббл", находились бы от нас на расстоянии порядка 32 миллиардов световых лет.

Сопутствующее расстояние противоположно расстоянию углового диаметра.

Это расстояние показывает, где галактики находятся в данный момент, а не где они находились, когда излучали свет, который мы видим сейчас.

(4) Аберрационное расстояние - DT

Аберрационное расстояние означает промежуток времени, за который нас достигает свет от удалённых галактик. Именно это и имеется в виду, когда говорят, что видимая Вселенная имеет радиус 14 миллиардов световых лет.

Смысл данного утверждения: возраст Вселенной составляет порядка 14 миллиардов лет, свету же от более удалённых галактик не хватило времени добраться до нас.

Аберрационное расстояние - это в равной степени мера времени и мера расстояния. Основная польза от этой шкалы - она даёт нам представление о возрасте того образа данной галактики, который мы видим в настоящее время.

Для малых расстояний (порядка 2 миллиардов световых лет и меньше) все четыре шкалы расстояний совмещаются и повторяют одна другую, так что определять расстояния до галактик в окружающей нас локальной Вселенной гораздо проще.

Ниже приведены все четыре шкалы расстояний, наложенные на красное смещение. Красное смещение - это мера растягивания света, вызванного расширением Вселенной: галактика с высоким уровнем красного смещения расположена дальше, чем галактика с малым уровнем красного смещения. Наиболее удалённые галактики, видимые через космический телескоп "Хаббл", имеют величину красного смещения 10, в то время как наиболее удалённые протогалактики во Вселенной, вероятно имеют величину красного смещения порядка 15. Граница видимой Вселенной имеет красное смещение на уровне бесконечности. Для сравнения: типичный переносной телескоп не позволяет рассмотреть объекты с красным смещением, значительно превышающим 0.1 (около 1,3 миллиарда световых лет).


Фотометрическое расстояние (DL ) демонстрирует, почему так сложно рассмотреть удалённые галактики: очень молодая и далёкая галактика с уровнем красного смещения 15 кажется удалённой от нас на 560 миллиардов световых лет, хотя расстояние углового диаметра (DA ) показывает, что на момент излучения этой галактикой света, который мы видим сейчас, ей фактически было порядка 2,2 миллиардов световых лет. Аберрационное расстояние (DT ) показывает, что свет от данной галактики путешествовал 13,6 миллиардов лет с момента его излучения до настоящего момента. Сопутствующее расстояние (DC ) показывает, что та же самая галактика сегодня, если бы мы могли видеть её, находилась бы от нас на удалении 35 миллиардов световых лет.

Обычно, когда говорят о размерах Вселенной, подразумевают локальный фрагмент Вселенной (Мироздания) , который доступен нашему наблюдению.

Это так называемая наблюдаемая Вселенная – область пространства, видимая для нас с Земли.

А так как возраст Вселенной около 13 800 000 000 лет, то независимо от того в каком мы направлении смотрим, мы видим свет, который достиг нас за 13,8 миллиарда лет.

Так что, исходя из этого, логично думать, что наблюдаемая Вселенная должна быть 13,8 х 2 = 27 600 000 000 световых лет в поперечнике.

Но это не так! Потому что с течением времени космос расширяется. И те далекие объекты, которые испустили свет 13,8 млрд. лет назад, за это время улетели еще дальше. Сегодня они уже более чем в 46,5 миллиардах световых лет от нас. Удвоив это, получаем 93 миллиарда световых лет.

Таким образом, реальный диаметр наблюдаемой вселенной составляет 93 млрд. св. лет.

Визуальное (в виде сферы) представление трёхмерной структуры наблюдаемой Вселенной, видимой с нашей позиции (центр круга).

Белыми линиями обозначены границы наблюдаемой Вселенной.
Пятнышки света - это скопления скоплений галактик – суперкластеры (supercluster) – самые большие известные структуры в космосе.
Масштабная линейка: одно деление сверху - 1 миллиард световых лет, снизу – 1 миллиард парсек.
Наш дом (в центре) здесь обозначен как Сверхскопление Девы (Virgo Supercluster) – это система, включающая десятки тысяч галактик, в том числе нашу собственную – Млечный Путь (Milky Way).

Более наглядное представление о масштабах обозримой Вселенной даёт следующее изображение:

Схема расположения Земли в наблюдаемой Вселенной – серия из восьми карт

слева направо верхний ряд: Земля – Солнечная система – Ближайшие звезды – Галактика Млечный Путь, нижний ряд: Местная группа галактик – Скопление Девы – Местное Сверхскопление – Обозримая (наблюдаемая) Вселенная.

Чтобы лучше прочувствовать и осознать, о каких колоссальных, не сопоставимых с нашими земными представлениями, масштабах идет речь, стоит посмотреть увеличенное изображение этой схемы в медиа просмотрщике .

А что можно сказать о всей Вселенной? Размер всей Вселенной (Мироздания, Метавселенной), надо полагать, гораздо больше!

Но, вот какая она эта вся Вселенная и как устроена, это пока остается для нас загадкой…

А как насчет центра Вселенной? Наблюдаемая Вселенная имеет центр - это мы! Мы находимся в центре наблюдаемой Вселенной, потому что наблюдаемая Вселенная - это просто участок космоса, видимый нам с Земли.

И подобно тому, как с высокой башни мы видим круглую область с центром в самой башне, также мы видим область космоса с центром от наблюдателя. На самом деле, если говорить точнее, каждый из нас - центр своей собственной наблюдаемой Вселенной.

Но это не значит, что мы находимся в центре всей Вселенной, как и башня - отнюдь не центр мира, а только центр того кусочка мира, который с нее видно - до горизонта.

То же и с наблюдаемой Вселенной.

Когда мы смотрим в небо, мы видим свет, который 13,8 миллиарда лет летел к нам из мест, которые уже в 46,5 миллиардах световых лет от нас.

Мы не видим то, что за этим горизонтом.

ВСЕЛЕННАЯ

ВСЕЛЕННАЯ

Философский энциклопедический словарь . 2010 .

В. бесконечно разнообразна по формам существования и движения материи. Материя не возникает и не уничтожается, а только переходит из одной формы в другую. Поэтому совершенно произвольной и идеалистич. является теория о постоянном творении материи из "ничего" (F. Hoyle, A new model for the expanding universe, в журн. "Monthly Notices of the Royal Astron. Soc", L., 1948, v. 108; H. Bondi, Cosmology, 1952).

Бесконечное разнообразие материальных форм в бесконечной В. приводит к выводу о том, что органич. , как одна из форм существования материи, не является достоянием только нашей планеты, а возникает повсюду, где складываются соответствующие .

Таковы осн. свойства В., имеющие не только физич., но и большое . значение. В своих наиболее общих выводах наука о строении В. теснейшим образом связана с философией. Отсюда и ожесточенная идеологич. , ведущаяся по вопросам структуры и развития В.

Отрицание бесконечности В. в пространстве и времени со стороны ряда ученых вызывается не только влиянием идеалистич. духовной атмосферы, в к-рой они находятся, но и безуспешными попытками построить непротиворечивую бесконечной В., опирающуюся на всю совокупность известных нам наблюдательных данных. Признание в той или иной форме конечности В. есть по существу отказ от решения важнейшей научной проблемы, переход с позиций науки на позиции религии. В этому диалектич. материализма, доказывая В. в пространстве и времени, стимулирует дальнейшее развитие науки, указывая принципиальные пути для развития теории.

Вопрос о конечности или бесконечности В. – это не только естествознания. Само по себе накопление эмпирич. материала и его математич. обработка только в рамках той или иной отд. науки еще не могут дать исчерпывающего и логически неуязвимого ответа на поставленный вопрос. Наиболее адекватным средством для решения поставленной задачи является филос. , опирающийся на достижения всего естествознания и прочную основу диалектико-материалистич. метода. На первый план здесь выдвигается диалектич. разработка понятия бесконечности, трудности оперирования к-рым ощущает не только , но и др. науки.

Т.о., общих свойств В., ее пространств.-временных характеристик вызывает большие трудности. Но все тысячелетнее развитие науки убеждает в том, что этой проблемы может быть только на путях признания бесконечности В. в пространстве и времени. В общем плане такое решение дано диалектическим материализмом. Однако создание рационального, непротиворечивого представления о В. в целом с учетом всех наблюдаемых процессов – дело будущего.

Лит.: Энгельс Ф., Диалектика природы, М., 1955 его же, Анти-Дюринг, М., 1957; Ленин В. И., Материализм и , Соч., 4 изд., т. 14; Блажко С. Н., Курс общей астрономии, М., 1947; Πолак И. Ф., Курс общей астрономии, 7 изд., М., 1955; Паренаго П. П., Курс звездной астрономии, 3 изд., М., 1954; Эйгенсон М. С, Большая Вселенная, М.–Л., 1936; Фесенков В. Г., Современные представления о Вселенной, М.–Л., 1949; Агекян Т. Α., Звездная Вселенная, М., 1955; Lyttlеton R. Α., The modern universe, L., ; Hоуle F., Frontiers of astronomy, Melb., ; Thomas O., Astronomie. Tatsachen und Probleme, 7 Aufl., Salzburg–Stuttgart, .

А. Бовин. Москва.

Философская Энциклопедия. В 5-х т. - М.: Советская энциклопедия . Под редакцией Ф. В. Константинова . 1960-1970 .

ВСЕЛЕННАЯ

ВСЕЛЕННАЯ (от греч. “ойкумена” - населенная, обитаемая земля) -“все существующее”, “всеобъемлющее мировое целое”, “тотальность всех вещей”; смысл этих терминов многозначен и определяется концептуальным контекстом. Можно выделить по крайней мере три уровня понятия “Вселенная”.

1. Вселенная как философская имеет смысл, близкий понятию “универсум”, или “мир”: “материальный мир”, “сотворенное бытие” и др. Она играет важную роль в европейской философии. Образы Вселенной в философских онтологиях включались в философские основания научных исследований Вселенной.

2. Вселенная в физической космологии, или Вселенная как целое, - объект космологических экстраполяции. В традиционном смысле - всеобъемлющая, неограниченная и принципиально единственная физическая система (“Вселенная издана в одном экземпляре” - А. Пуанкаре); мир, рассматриваемый с физико-астрономической точки зрения (А.Л.Зельманов). Разные теории и модели Вселенной рассматриваются с этой точки зрения как неэквивалентные друг другу одного и того же оригинала. Такое Вселенной как целого обосновывалось по-разному: 1) ссылкой на “презумпцию экстраполируемости”: космология претендует именно на репрезентацию в системе знания своими концептуальными средствами всеобъемлющего мирового целого, и, пока не доказано обратное, эти претензии должны приниматься в полном объеме; 2) логически-Вселенная определяется как всеобъемлющее мировое целое, и других Вселенных не может существовать по определению и т.д. Классическая, Ньютонова космология создала Вселенной, бесконечной в пространстве и времени, причем бесконечность считалась атрибутивным свойством Вселенной. Общепринято, что бесконечная гомогенная Вселенная Ньютона “разрушила” античный . Однако научные и философские образы Вселенной продолжают сосуществовать в культуре, взаимообогащая друг друга. Ньютоновская Вселенная разрушила образ античного космоса лишь в том смысле, что отделяла человека от Вселенной и даже противопоставляла их.

В неклассической, релятивистской космологии была впервые построена теория Вселенной. Ее свойства оказались совершенно отличными от ньютоновских. Согласно теории расширяющейся Вселенной, развитой Фридманом, Вселенная как целое может быть и конечной, и бесконечной в пространстве, а во времени она во всяком случае конечна, т. е. имела начало. А. А. Фридман считал, что мир, или Вселенная как объект космологии, “бесконечно уже и меньше мира-вселенной философа”. Напротив, подавляющее большинство космологов на основе принципа единообразия отождествляло модели расширяющейся Вселенной с нашей Метагалактикой. Начальный расширения Метагалактики рассматривался как “начало всего”, с креационистской точки зрения - как “сотворение мира”. Некоторые космологи-релятивисты, считая единообразия недостаточно обоснованным упрощением, рассматривали Вселенную как всеобъемлющую физическую систему большего масштаба, чем Метагалактика, а Метагалактику-лишь как ограниченную часть Вселенной.

Релятивистская космология коренным образом изменила образ Вселенной в научной картине мира. В мировоззренческом плане она вернулась к образу античного космоса в том смысле, что снова связала человека и (эволюционирующую) Вселенную. Дальнейшим шагом в этом направлении явился в космологии. Современный подход к интерпретации Вселенной как целого основывается, во-первых, на разграничении философской идеи мира и Вселенной как объекта космологии; во-вторых, это понятие релятивизируется, т. е. его объем соотносится с определенной ступенью познания, космологической теорией или моделью - в чисто лингвистическом (безотносительно к их объектному статусу) или же в объектном смысле. Вселенная интерпретировалась, напр., как “наибольшее событий, к которому могут быть применены наши физические законы, экстраполированные тем или иным образом” или “могли бы считаться физически связанными с нами” (Г. Бонди).

Развитием этого подхода явилась концепция, согласно которой Вселенная в космологии-это “все существующее”. не в каком-то абсолютном смысле, а лишь с точки зрения данной космологической теории, т. е. физическая система наибольшего масштаба и порядка, которой вытекает из определенной системы физического знания. Это относительная и преходящая познанного мегамира, определяемая возможностями экстраполяции системы физического знания. Под Вселенной как целым не во всех случаях подразумевается один и тот же “оригинал”. Напротив, разные теории могут иметь в качестве своего объекта неодинаковые оригиналы, т. е. физические системы разного порядка и масштаба структурной иерархии. Но все претензии на репрезентацию всеобъемлющего мирового целого в абсолютном смысле остаются бездоказательными. При интерпретации Вселенной в космологии следует проводить между потенциально и актуально существующим. То, что сегодня считается несуществующим, завтра может вступить в сферу научного исследования, окажется существующим (с точки зрения физики) и будет включено в наше понимание Вселенной.

Так, если теория расширяющейся Вселенной описывала по сути нашу Метагалактику, то наиболее популярная в современной космологии теория инфляционной (“раздувающейся”) Вселенной вводит понятие о множестве “других вселенных” (или, в терминах эмпирического языка, внеметагалактических объектов) с качественно различными свойствами. Инфляционная теория признает, т. о., мегаскопическое нарушение принципа единообразия Вселенной и вводит дополнительный ему по смыслу принцип бесконечного многообразия Вселенной. Тотальность этих вселенных И. С. Шкловский предложил назвать “Метавселенной”. Инфляционная космология в специфической форме возрождает, т. о., идею бесконечности Вселенной (Метавселенной) как ее бесконечного многообразия. Объекты, подобные Метагалактике, в инфляционной космологии часто называют “минивселенными”. Минивселенные возникают путем спонтанных флуктуации физического вакуума. Из этой точки зрения вытекает, что начальный момент расширения нашей Вселенной, Метагалактики не обязательно должен считаться абсолютным началом всего. Это лишь начальный момент эволюции и самоорганизации одной из космических систем. В некоторых вариантах квантовой космологии понятие Вселенной тесно увязывается с существованием наблюдателя (“принцип соучастия”). “Порождая на некотором ограниченном этапе своего существования наблюдателейучастников, не приобретает

Каждый из нас хотя бы раз задумывался, в каком огромном мире мы живем. Наша планета — это безумное количество городов, сел, дорог, лесов, рек. Большинство за свою жизнь не успевает увидеть и половины. Представить грандиозные масштабы планеты сложно, но есть задача еще тяжелее. Размеры Вселенной — вот что, пожалуй, не под силу вообразить даже самому развитому уму. Попробуем разобраться, что думает на этот счет современная наука.

Основное понятие

Вселенная — это все, что нас окружает, о чем мы знаем и догадываемся, что было, есть и будет. Если снизить накал романтизма, то этим понятием определяется в науке все, существующее физически, с учетом временного аспекта и законов, регулирующих функционирование, взаимосвязь всех элементов и так далее.

Естественно, представить себе реальные размеры Вселенной достаточно трудно. В науке этот вопрос является широко обсуждаемым и единого мнения пока нет. В своих предположениях астрономы опираются на существующие теории формирования мира, каким мы его знаем, а также на полученные в результате наблюдения данные.

Метагалактика

Различные гипотезы определяют Вселенную как безразмерное или невыразимо огромное пространство, о большей части которого мы мало что знаем. Для внесения ясности и возможности обсуждения области, доступной для изучения, было введено понятие Метагалактика. Этот термин обозначает часть Вселенной, доступной для наблюдения астрономическими методами. Благодаря совершенствованию техники и знаний она постоянно увеличивается. Метагалактика является частью так называемой наблюдаемой Вселенной — пространства, в котором материя за период своего существования успела достигнуть современного положения. Когда речь заходит о понимании того, каковы размеры Вселенной, в большинстве случаев говорят о Метагалактике. Современный уровень развития техники позволяет наблюдать объекты, расположенные на расстоянии до 15 млрд световых лет от Земли. Время в определении этого параметра играет, как видно, не меньшую роль, чем пространство.

Возраст и размеры

Согласно некоторым моделям Вселенной, она никогда не появлялась, а существует вечно. Однако главенствующая сегодня теория Большого взрыва задает нашему миру «отправную точку». По представлениям астрономов, возраст Вселенной — примерно 13,7 млрд лет. Если переместиться назад во времени, то можно вернуться к Большому взрыву. Независимо от того, бесконечны ли размеры Вселенной, наблюдаемая ее часть имеет границы, поскольку конечна скорость света. В нее входят все те местоположения, которые могут оказывать воздействие на земного наблюдателя со времени Большого взрыва. Размеры наблюдаемой Вселенной увеличиваются благодаря ее постоянному расширению. По последним оценкам, она занимает пространство в 93 миллиарда световых лет.

Множество

Посмотрим, что представляет собой Вселенная. Размеры космического пространства, выраженные в сухих цифрах, конечно, поражают, но трудны для понимания. Для многих будет проще осознать масштабы окружающего мира, если они узнают, сколько систем, подобных Солнечной, умещается в нем.

Наша звезда и окружающие ее планеты лишь крохотная часть Млечного пути. По данным астрономов, Галактика насчитывает примерно 100 миллиардов звезд. У некоторых из них уже обнаружены экзопланеты. Поражают не только размеры Вселенной — уже пространство, занимаемое ее ничтожной частью, Млечным Путем, внушает уважение. Свету для того чтобы пройти нашу галактику, требуется сто тысяч лет!

Местная группа

Внегалактическая астрономия, которая начала развиваться после открытий Эдвина Хаббла, описывает множество структур, схожих с Млечным путем. Ближайшие его соседи — это Туманность Андромеды и Большое и Малое Магеллановы Облака. Вместе с еще несколькими «спутниками» они составляют местную группу галактик. От соседнего аналогичного формирования ее отделяет приблизительно 3 млн световых лет. Даже страшно представить, сколько потребовалось бы современному самолету времени, чтобы преодолеть такое расстояние!

Наблюдаемые

Все местные группы разделены обширным пространством. Метагалактика включает несколько миллиардов структур, аналогичных Млечному пути. Размеры Вселенной действительно поражают. Световому лучу для преодоления расстояния от Млечного пути до Туманности Андромеды требуется 2 млн лет.

Чем дальше от нас расположен участок космоса, тем меньше мы знаем о его современном состоянии. Из-за конечности скорости света ученые могут получить информацию только о прошлом таких объектов. По тем же причинам, как уже было сказано, область Вселенной, доступной для астрономических изысканий, ограничена.

Другие миры

Однако это еще не все поражающее воображения сведения, которыми характеризуется Вселенная. Размеры космического пространства, по-видимому, значительно превосходят Метагалактику и наблюдаемую часть. Теория инфляции вводит такое понятие, как Мультивселенная. Она состоит из множества миров, вероятно, образовавшихся одновременно, не пересекающихся друг с другом и развивающихся независимо. Современный уровень развития техники не дает надежды на познание подобных соседних Вселенных. Одна из причин — все та же конечность скорости света.

Быстрое развитие науки о космосе меняет наше представление о том, каких размеров Вселенная. Современное состояние астрономии, составляющие ее теории и выкладки ученых трудны для понимания непосвященного человека. Однако даже поверхностное изучение вопроса показывает, насколько огромен мир, частью которого мы являемся, и как мало о нем мы еще знаем.



Статьи по теме: