Пропускает ли пленка ультрафиолетовые лучи. Влияние УФ-излучения на свойства полиэтилена. Виды полимерной пленки

Дачников, принявших решение использовать поликарбонат для возведения на своём загородном участке парника либо теплицы, для выращивания овощей, интересует вопрос: «Пропускает ли поликарбонат ультрафиолетовые лучи?». Возникновение подобного вопроса небеспочвенно, ведь известен вред, который оказывает ультрафиолет на растения. Чтобы иметь возможность ответить на возникший вопрос, и принять окончательное решение об использовании полимера, потребуется обладать информацией о положительных и отрицательных сторонах материала.

Преимущества материала

Несмотря на то пропускает ли поликарбонат ультрафиолетовые лучи или нет, он обладает огромнейшим количеством несомненных достоинств. В их число вошли такие свойства материала:

  1. Невысокая цена на материал. Поликарбонат не требует постоянных и больших финансовых вложений по уходу за собой во время его эксплуатации.
  2. Структура термопласта такова, что даже смонтированный материал, можно без труда разобрать для хранения или повторно смонтировать.
  3. Эстетические качества, которые присутствуют благодаря производству полимера в широкой цветовой палитре.
  4. Высокий показатель прочности. Термопласт способен выдержать высокую механическую нагрузку (ударную либо под давлением высокой массы чего-либо).
  5. Возможность производить с полимером самостоятельные монтажные работы. Материал хорошо поддаётся механической обработке (сверлению, резанию), поэтому в работе с ним не потребуется затраты сверх усилий или обладания особыми навыками.
  6. Быстрота осуществления монтажных работ с материалом.
  7. Превосходная гибкость панелей термопласта, позволяющая использовать их даже в сложных конструкциях.
  8. Небольшой вес. Поликарбонат легче стекла примерно в пятнадцать раз, а это даёт возможность во время использования материала для парников либо теплиц, не устанавливать для строения фундамент.
  9. Прозрачность цветных листов материала достигает отметки в пятьдесят процентов, а для прозрачных плит этот показатель достигает восьмидесяти пяти процентов. Длительность эксплуатации не влияет на понижение коэффициента проницаемости световых лучей.
  10. Хорошее рассеивание света присутствует из-за наличия на поверхности панелей защитной плёнки, которая способствует рассеиванию солнечных лучей и защите от проникновения во внутреннюю часть помещения исходящего из солнца ультрафиолета от соприкосновения с поликарбонатом. Это свойство позволяет распределять равномерно лучи Солнца между растениями, если полимер использован в теплицах либо парниках.
  11. Теплопроводность. Это свойство меняется в зависимости от толщины плит. Чем толще панель, тем меньше показатель теплопроводности и наоборот.
  12. Пожаробезопасность. Материал быстро не воспламеняется и обладает свойством самозатухания. Полимер начинает плавиться лишь под воздействием температуры в 570 градусов по Цельсию, при этом не выделяет в воздушную среду газов, содержащих яд для живых организмов.
  13. Если материал всё же подвергся значительным воздействиям и получил механические повреждения, то он не рассыплется на мелкие частицы, словно стекло и его края не будут столь острыми, чтобы обладать способностью, нанести порез человеческому телу от неосторожного соприкосновения.

Недостатки

Поликарбонат с УФ-защитой и без неё, кроме достоинств, обладает и небольшим количеством недостатков. К их числу следует причислить следующие свойства материала:

  • понижение способностей с пропускания света - это возможно, в случае если ячейки краёв панелей оклеены обычным скотчем или не оклеены вовсе, либо были помыты растворами, содержащими в своём составе растворители, хлор, абразивные частицы;
  • деформация материала может иметь место, если профиль и листы изготовлены разными производителями и неплотно пристают друг к другу либо не было взято во внимание линейное расширение плит;
  • прогибается под тяжестью снега или от сильного воздействия порывов ветра - это возможно, если используемый материал низкого качества или его толщина не соответствует климатическим условиям заданного региона, либо монтажные работы выполнены с ошибками.

Особенности поликарбоната с ультрафиолетовой защитой и без неё

Зная ответ на вопрос: «Пропускает ли поликарбонат ультрафиолетовые лучи?» можно принять окончательное решение, о том, использовать ли термопластовые панели в строительстве теплицы.

Полезно знать: Ведь известно, что ультрафиолет, проникший внутрь парника и находящийся в диапазоне от 390 нанометров, способен нанести вред растениям.

Поликарбонат способен не пропустить ультрафиолет в том случае, если его внешняя поверхность покрыта особой плёнкой, имеющей толщину 20-70 мкм. Без защитной плёнки ультрафиолет будет проникать сквозь полимерные плиты. Материал с защитной плёнкой не желтеет и способен использоваться, не пропуская ультрафиолет, на протяжении десяти лет.

Видео про защиту поликарбоната от ультрафиолета


В стране и за рубежом создано много видов защитной пленки для парников и теплиц. Давайте попробуем разобраться в этом многообразии.

Виды полимерной пленки

Полиэтиленовая пленка. В настоящее время в овощеводстве нашей страны широко применяется обычная нестабилизированная полиэтиленовая пленка (ГОСТ 10354-82, рецептура 10803-020). Получают ее из природного газа.

Полиэтиленовая пленка чуть-чуть синевата и имеет слегка матовый оттенок, высокоэластична. Прочность ее одинакова по длине и ширине и равна более 100 кг1см2. С понижением температуры прочность пленки возрастает.

В первый период эксплуатации она сохраняет свои качества при температуре -65град. Однако установлено, что у пленки, бывшей в эксплуатации, морозостойкость понижается и при температуре минус 5-10град. она становится хрупкой. Поэтому полиэтиленовую пленку, прослужившую лето, нельзя использовать для укрытия зимой или поздней осенью.

Полиэтиленовая пленка незначительно изменяет линейные размеры в зависимости от температуры, что позволяет крепить ее жестко к элементам конструкций.

Под действием ультрафиолетовых лучей и повышенной температуры пленка «стареет», и вследствие этого ухудшается ее прочность на разрыв, светопроницаемость и морозостойкость. При использовании пленки толщиной 0,05 мм в качестве экрана в остекленных теплицах она служит от 3 до 5 лет, в то время как аналогичная пленка, находясь под прямым воздействием ультрафиолетовых лучей, изнашивается в течение 3-4 месяцев.

Долговечность полиэтиленовой пленки зависит от толщины, условий эксплуатации и применяемых конструкций.

Более тонкая пленка дешевле, но для тоннельных укрытий она должна быть толщиной не менее 0,08-0,1, мм. В то же время считают, что использовать пленку толщиной более 0,15 мм для укрытий на необогреваемом грунте невыгодно.

Полиэтиленовую пленку выпускают в рулонах с шириной полотна (рукава) 1,2-3 м.

Полиэтиленовая пленка обычно пропускает 80-90 % солнечного света. Но в специальных конструкциях с пленкой, где меньше затеняющих переплетов, освещенность бывает даже выше, чем под стеклом.

Следует отметить, что используемая в овощеводстве полиэтиленовая пленка специально для этих целей не создавалась и, естественно, обладает существенными недостатками: коротким сроком службы (4-5 месяцев); гидрофобной поверхностью, снижающей поступление света в результате загрязнения и образования светоотражающего экрана за счет мелкокапельного водяного конденсата; высокой степенью прозрачности для инфракрасного излучения, что ухудшает тепловой режим в укрытиях ночью.

Для укрытий многократного использования лучше применять светостабилизированную полиэтиленовую пленку (ГОСТ 10354-83, рецептура 108-08 или 158-08). Стабилизация пленки достигается путем введения в ее состав веществ, препятствующих разрушению полимера под воздействием атмосферных условий. Срок службы этой пленки при непрерывной эксплуатации достигает одного года, а на тоннельных укрытиях она может использоваться 2-3 сезона. Внешне она не отличается от нестабилизированной и определить ее можно по этикетке на рулоне.

Ленинградское научно-производственное объединение «Пластполимер» и Агрофизический институт разработали рецепт получения новой гидрофильной пленки (ГОСТ 10354-73, рецептура 108-82). В состав этой пленки входят свето- и термостабилизаторы, которые повышают срок ее эксплуатации в 2-3 раза по сравнению с обычной. Поверхность пленки гидрофильная, она мало загрязняется, конденсат влаги образуется в виде сплошного слоя, что повышает светопроницаемость и устраняет «капель». Способность новой пленки пропускать инфракрасное (тепловое) излучение снижена с 80 до 30-35 %. В производственных испытаниях урожайность овощей в теплицах, покрытых гидрофильной пленкой, повышалась на 10-15 %.

Теплоудерживающая полиэтиленовая пленка (ГОСТ 10354-83, рецептура 108-143Г или 158-143Г) значительно меньше пропускает инфракрасные лучи, в результате температура под ней на 1,5-2град. выше, чем под обычной полиэтиленовой пленкой. Улучшенный тепловой режим под новой пленкой позволяет увеличить ранний урожай овощей. На изготовление теплоудерживающей пленки требуется меньше полиэтилена за счет наполнителя (каолина).

В настоящее время теплоудерживающую пленку промышленность выпускает под маркой «СИК».

Особыми свойствами обладает вспененная пленка, которая состоит из двух слоев: монолитного и вспененного. Она пропускает 70 % видимого спектра солнечных лучей в рассеянном виде, в результате температура воздуха под пленкой несколько уменьшается днем и поддерживается на более высоком уровне ночью. «Вспененная» пленка рекомендуется для укрытий тоннельного типа и парников, а также для вегетативного размножения растений. При ее изготовлении достигается экономия полиэтилена до 20 % за счет его вспенивания.

Полиэтиленовая фоторазрушаемая (ГОСТ 10354-82) пленка обладает свойством разрушаться после определенного срока эксплуатации. В зависимости от рецептуры эта пленка имеет следующие средние сроки начала разрушения:

рецептура 108-70 с радиационным облучением - 20 дней;

- « - 108-70 без облучения - 45 дней;

- « - 108-71 без облучения - 60 дней.

Фоторазрушаемую пленку рекомендуют применять для мульчирования и в качестве бескаркасных укрытий. Для этих целей ее изготавливают толщиной 0,04-0,06 мм, а перед применением перфорируют круглыми или щелевидными отверстиями.

Поливинилхлоридная пленка (ГОСТ 16272-79, рецепт С). По внешнему виду она напоминает целлофан. Поливинилхлоридная пленка отличается высокой прозрачностью, она пропускает до 90 % видимого света и около 80 % ультрафиолетовой радиации. В отличие от полиэтиленовой она почти не пропускает инфракрасных (тепловых) лучей. Благодаря этому ночью под укрытием поливинилхлоридной пленкой бывает теплее, чем под полиэтиленовой. Эта пленка отличается большой долговечностью в эксплуатации, достигающей 2-3 года. В то же время она в 2-3 раза дороже, чем полиэтиленовая. При этом необходимо учесть, что Поливинилхлоридная пленка отличается относительно низкой морозостойкостью (температура хрупкости -15 град.С), поэтому ее нельзя оставлять зимой на необогреваемых сооружениях.

Пленка полиэтиленовая черная (ГОСТ 10354-82 рецептура 108-157 или 158-157) за счет стабилизации сажей практически светонепроницаема уже при толщине 0,04 мм. Она предназначена для мульчирования почвы овощных и других культур. Позволяет улучшить гидротермический режим почвы в корнеобитаемом слое и подавляет сорную растительность, в результате увеличивается урожайность и сокращаются затраты труда по уходу.

Для мульчирования в течение одного сезона рекомендуют применять черную пленку толщиной 0,04-0,05 мм, в течение двух лет - толщиной 0,06-0,08 мм, трех-четырех - 0,1 - 0,12 мм.

Многие десятки лет пленки исправно служат садоводам-огородникам и крупным тепличным хозяйствам.

Низкая стоимость материала и минимальные затраты времени и средств на монтаж позволяют конкурировать со стеклом, акрилом и поликарбонатом. Разработаны и выпускаются изделия с повышенными функциональными свойствами, обеспеченными специальными добавками.

Материалы покрытий и их свойства

Физико-механические показатели пленки определяются химическим составом и способом получения. Наиболее распространены:

  • Полиэтиленовая
  • Поливинилхлоридная
  • Этиленвинилацетатная

Первая получается экструзией полиэтилена высокого (ПВД) или низкого давления (ПНД), имеет толщину от 30 до 400 мкм, поставляется в рулонах. Типичная ширина – 1500мм, намотка 50–200 м. В соответствии с требованиями ГОСТ 10354-82 прочность на разрыв сельскохозяйственных марок СТ, СИК составляет не менее 14,7 и 12,7 МПа соответственно. Изделия из ПНД превосходят аналоги из ПВД по химической стойкости и на 20–25% по прочности. На рынке представлены продукты, содержащие вторичные полимеры, уменьшающие стоимость, но снижающие механические характеристики.

Эксплуатационные показатели обуславливают специфические компоненты:

  • Стабилизаторы (UF-добавки)
  • Антифоговый слой
  • IR-адсорбенты
  • EVA-добавки

Нестабилизированная пленка на 80% прозрачна для ультрафиолетового излучения, что приводит к ожогам растений и сокращает срок ее службы до 6–12 месяцев в результате разложения. Наличие в составе 2%, 3% UF -стабилизаторов увеличивают долговечность до 18 и 24 мес соответственно (3, 4 сезона). Проницаемость для UF лучей снижается вдвое. Ингридиенты придают лимонный или голубой оттенок продукту.

Рис.1. Работа UF-добавок

Антифоговый слой обладает высокой смачиваемостью, способствует равномерному растеканию, предупреждает падение конденсата на культуры, обеспечивает его стекание с потолка по стенкам в дренажную систему. Результат – стабильная светопроницаемость и защита от гнилостных заболеваний, вызванных переувлажнением.

Рис.2. Гидрофильное действие

Малая толщина требует снижения потерь тепла от инфракрасного излучения почвы в ночное время. Задачу решают введением в состав IR-адсорбентов и EVA (этиленвинилацетатных) компонентов.

Вещества не влияют на проницаемость для солнечного света, служат отражению вторичного коротковолнового излучения грунта. В итоге удается поднять температуру в парнике на 3–5°C, по сравнению с обычным ПВД, не допустить заморозков на грунте. Кроме этого EVA повышает эластичность и морозостойкость.

Рис.3. IR-адсорбенты, EVA-добавки

Разработаны пленки марки ФЕ (светокорректирующие), преобразующие ультрафиолетовые лучи в видимый красный свет с длиной волны 615 нм, интенсифицирующий процессы фотосинтеза и развития саженцев в 2 раза.

Неприятная особенность полимеров – электростатический эффект, проявляющийся осаждением пыли на поверхности, ухудшающий прозрачность. Избежать этого явления позволяют антистатические концентраты, например серии «Atmer» от «Croda Polimer», вводимые в количестве 30–50% в композицию.

Прочность полиэтилена увеличивают армированием и многослойной конструкцией. Последней характерна лучшая теплоизоляция благодаря воздушному зазору, но прозрачность ее ниже, чем однослойной, вследствие преломления лучей на границах сред. Трехслойные продукты оптимальны для большепролетных (до 16 м) теплиц, имеют срок службы 3–5 лет.

Рис. 4. Большепролетная теплица с 3-х

Рис. 5. 3-х слойная армированная пленка от слойной пленкой

Армированные изделия состоят из двух слоев светостабилизированного полиэтилена и внутренней сетки из синтетических нитей диаметром 0,3 мм. Материал выдерживает нагрузку до 70 кг/м 2 , однако проницаемость свету падает примерно на 10%.

Поливинилхлоридные покрытия (ПВХ), изготовленные методом каландрирования, наиболее прочные, эластичные. Продукция высшего сорта марки С по ГОСТ 16272-79 выдерживает на разрыв вдоль волокон не менее 22 МПа, что служит залогом долговечности.

Коэффициент пропускания света достигает 88%, соответствует таковому для полиэтилена, но ПВХ меньше мутнеет со временем, чаще применяется однослойным (толщиной 150–200 мкм), поэтому эффективность его выше. Проницаемость для ультрафиолета составляет около 20%, снижена полезная фотосинтетическая радиация с длиной волн 380–400 нм (ультрафиолет А)

Изготовители используют стабилизирующие, антистатические, IR-добавки, определяющие оптимальный набор показателей. Модифицированный ими поливинилхлорид удерживает до 90% инфракрасного излучения внутри сооружения, обеспечивая лучшую тепловую эффективность .

Паропроницаемость (не менее 15 г/м 2 за 24 часа) благоприятно сказывается на дыхании растений в жаркие дни (у полиэтилена 0,5–30 г/м 2). Морозостойкость до -30°C позволяет переносить заморозки без охрупчивания. Ресурс доходит до 7 сезонов, но цена продукции на 50–70% выше, чем ПВД.

Этиленвинилацетатные (севиленовые) пленки представляют сополимер этилена с винилацетатом, по внешнему виду не отличимые от полиэтилена. Превосходят его по прочности на 20–25%, по прозрачности для лучей видимой части спектра – 92% против 88–90% у первого.

Покрытие гидрофильно, предотвращает капель на листья, вызывающую переохлаждение и образование водяных микролинз – причину местных ожогов. Морозостойкость достигает -80°C. Материал жестче ПВХ, меньше удлиняется и провисает под действием снега, дождя, ветра.

Период эксплуатации изделий, например «EVA-19» от «BERETRA OY», достигает 6–7 лет. Стоимость выше, чем у предыдущих.

Плюсы и минусы

Преимущества пленочных теплиц:

  • Стоимость меньше в 3–5 раз, чем у стеклянных и поликарбонатных
  • Не требуют фундамента
  • Простота и высокая скорость монтажа
  • Компактность при перевозке

К недостаткам относят:

  • Меньшую в 10–30 раз прочность
  • Малую жесткость – склонность к удлинению и провисанию под нагрузкой.
  • Плохую теплоизоляционную способность. Теплопотери пленки толщиной 0,5 мм в 20 раз больше, чем у листа поликарбоната – 6 мм.
  • Нестабильность свойств – помутнение со временем
  • Меньшую долговечность – лучшие продукты уступают поликарбонату в 2 раза
  • Необходимость разборки на зиму

Полимерный пластик характеризуется прочностью, практичностью, долговечностью и легкостью монтажа. При этом срок эксплуатации материала зависит от его технических характеристик. Сегодня мы рассмотрим столь актуальную для многих строителей и огородников тему, как пропускает ли поликарбонат ультрафиолетовые лучи.

Ультрафиолетовая защита

Поликарбонат считается одним из самых прочных и крепких полимеров. Однако данный материал разрушается под воздействием солнечных лучей. Так, листы полимерного пластика, используемые для обшивки тепличных сооружений, садовых оранжерей, беседок, веранд, террас и других открытых строений, быстро приходят в негодность. Спустя 2–3 года от момента возведения постройки обшивка полностью теряет свои первоначальные физические свойства и качества.

Поликарбонат не пропускает УФ лучи, что делает его идеальным материалом для обшивки теплицы

Изготовители полимерного пластика нашли способ повысить уровень износостойкости материала. Поликарбонат стали изготавливать со специальным ультрафиолетовым покрытием. Защитный слой представлял собой некие стабилизаторы-гранулы, которые добавлялись в материал при первичной обработке. К сожалению, применение подобного рода технологий требует значительного капиталовложения. Соответственно возрастает стоимость строительного материала.

В настоящее время полимерный пластик изготавливается с тонким ультрафиолетовым покрытием, которое так и называют – УФ-защита.

Существует два способа нанесения ультрафиолетового слоя:

  1. Напыление. Поверхность панели полимерного пластика покрывается тонким слоем специального раствора, который внешне похож на промышленную краску. Данный метод имеет существенные недостатки. В процессе транспортирования, монтажа и эксплуатации полотна защитный слой стирается, в результате чего полимер становится непригодным к эксплуатации. Нанесенная в виде напыления, УФ-защита неустойчива к атмосферным осадкам и механическим воздействиям извне.
  2. Экструзионная защита от прямых солнечных лучей. Специальный слой, предотвращающий разрушение полимера, вживляется в поверхность поликарбонатной панели. Полотно устойчиво к физическим и химическим повреждениям, а также различным атмосферным явлениям. Срок эксплуатации поликарбоната с экструзионной защитой от солнца составляет 20–25 лет.

Видео «Защита поликарбоната от ультрафиолета»

Из этого видео вы узнаете, какая бывает защита от ультрафиолета у сотового поликарбоната.

Правила выбора

Многие интересуются, как определить наличие УФ-покрытия на поверхности листа полимерного пластика.

Ответственные производители наклеивают защитную пленку на листы поликарбоната. Прозрачный бесцветный полиэтилен говорит о том, что с данной стороны панели защита от солнца отсутствует. Прозрачная цветная пленка – первый ориентир наличия защитного ультрафиолетового слоя.

  • название и тип строительного материала;
  • технические характеристики поликарбоната;
  • рекомендации об особенностях погрузки, разгрузки, транспортирования, монтажа и ухода за полимером;
  • сведения о компании-изготовителе.

Некоторые виды листов поликарбоната обладают усиленной защитой от
ультрафиолета, подбирать их стоит в зависимости от предназначения

Зачастую маркировка наносится на цветной полиэтилен, который помогает избежать царапин, вмятин, сколов и трещин внешней стороны поликарбоната.

Если пленка отсутствует, поверните полимер к солнцу. Сторона с ультрафиолетовым покрытием отражает характерные фиолетовые блики на солнце.

При выборе строительного материала, в том числе и полимерного пластика, нужно ориентироваться на технические свойства и качества материала.

Поликарбонат с защитой ультрафиолетового типа является гарантией долговечности и прочности обшивки строения.

Стальную конструкцию защищают от коррозии грунтованием с последующим окрашиванием. А вот алюминиевая в защите не нуждается. Для большей надежности специалисты рекомендуют алюминиевый анодированный профиль, усиленный стальным стержнем.

Используют и дерево. По сравнению с металлом деревянные элементы намного массивнее. Кроме того, они нуждаются в ряде защитных мер: покраске, обработке антисептиками и антипиренами.

Предлагаемый на рынке пластиковый профиль более пригоден для временных сооружений. В наших климатических условиях он быстро приходит в негодность. Чтобы он не погнулся от сильного порыва ветра, лучше выбрать профиль, усиленный металлическим стержнем.

Основную поверхность стен и кровли образуют светопрозрачные конструкции, закрепленные на каркасе. Для них используют стекло, пленку и пластик.
Стекло пропускает 90 % солнечного света и неплохо удерживает тепло: даже в морозную погоду в остекленной теплице температура будет на 4 °С выше наружной. Его основные недостатки — хрупкость и значительный вес. Для теплиц используют стекло толщиной 3 мм. Остекление металлического каркаса герметизируют резиновым уплотнителем, а деревянного — деревянными штапиками.
Акрил (оргстекло) — легкий бесцветный материал, выдерживающий значительные механические нагрузки (что немаловажно при сильных снегопадах), пропускающий ультрафиолетовые лучи и по прозрачности не уступающий стеклу.
Поликарбонат полимерный материал, который в 250 раз прочнее и в 6 раз легче стекла. Обладает высокой прочностью, тепло- и огнестойкостью, а также низкой теплопроводностью. Он пропускает не намного меньше света, чем прозрачное стекло. Можно зашить поликарбонатом весь каркас и не демонтировать покрытие на зиму в течение многих лет. Этот материал бывает монолитный и сотовый. Из первого изготавливают элементы как плоской, так и криволинейной формы. Такие изделия достаточно жесткие и не требуют несущего каркаса. Однако они относительно дорогие, поэтому плоские кровли покрывают сотовым поликарбонатом. Благодаря своей структуре он имеет высокие теплоизоляционные характеристики. А его малый вес позволяет устанавливать легкие несущие конструкции. В качестве кровельного материала используют листы толщиной не менее 8 мм. Для стен можно выбрать более тонкие листы. Поверхность поликарбоната чувствительна к механическим воздействиям.
Поливинилхлорид (ПВХ) выпускают в виде гофрированных листов. Он отличается высокой механической и ударопрочностью, стойкостью к ультрафиолетовому излучению, долговечностью, гибкостью при температуре от —40 до +65 °С. Прозрачные бесцветные листы ПВХ пропускают 82 % света, но не пропускают ультрафиолет, поэтому для теплиц используют специально обработанные ПВХ-материалы, пропускающие УФ-излучение, необходимое для фотосинтеза.
Полимерная пленка эластична, прозрачна и легка в установке. Она выдерживает морозы до —20 °С, но плохо переносит резкие перепады температуры. Полиэтиленовая пленка пропускает 80 % видимых и ультрафиолетовых лучей, устойчива к щелочам и кислотам, не пропускает воду и пар. Ее недостаток — высокая теплопроницаемость, до 90 %. Под действием ультрафиолета и воздуха пленка стареет, ее светопрозрачность снижается, и к концу сезона материал разрушается. Полотнище пленки склеивают фенолом, формальдегидом, муравьиной кислотой, сваривают паяльником или утюгом. При стыковке ее укладывают так, чтобы край одного полотна перекрывал край другого на 10—15 мм. На место шва накладывают полоску целлофана.
ПВХ-пленка пропускает 90 % видимых и до 80 % УФ-лучей, но почти не пропускает инфракрасные лучи, благодаря чему теплицы в ночное время охлаждаются незначительно. Срок службы этого материала — два-три сезона.
Сополимерная этиленвинилацетатная пленка отличается повышенной прочностью, эластичностью и светостойкостью. Она устойчива к ветру и проколам. Служит до трех лет.
Рулонный стеклопластик изготавливают на основе полиэфирных смол, армированных стекловолокном. Он характеризуется высокой прочностью, надежностью и плохо пропускает тепловую радиацию. Поставляется в рулонах шириной 90 см. Куски соединяют при помощи эфирных смол. Срок службы рулонного стеклопластика - четыре года.



Статьи по теме: