Влагоемкость почвы зависит от общего. Определение предельной полевой влагоемкости почвы. Определение кислотности почвы

ВЛАГОЕМКОСТЬ ПОЧВЫ, величина, количественно характеризующая водоудерживающую способность почвы; способность почвы поглощать и удерживать в себе от стекания определенное количество влаги действием капиллярных и сорбционных сил. В зависимости от условий, удерживающих влагу в почве, различают несколько видов В. п.: максимальную адсорбционную, капиллярную, наименьшую и полную.

Максимальная адсорбционная ВЛАГОЕМКОСТЬ ПОЧВЫ, связанная влага, сорбированная влага, ориентировочная влага - наибольшее количество прочно связанной воды, удерживаемое сорбционными силами. Чем тяжелее гранулометрический состав почвы и выше содержание в ней гумуса, тем больше доля связанной, почти недоступной винограду и др. культурам влаги в почве.

Капиллярная ВЛАГОЕМКОСТЬ ПОЧВЫ - максимальное количество влаги, удерживаемое в почвогрунте над уровнем грунтовых вод капиллярными (менисковыми) силами. Зависит от мощности слоя, в котором она определяется, и его удаленности от зеркала грунтовых вод. Чем больше мощность слоя и меньше его удаление от зеркала грунтовых вод, тем выше капиллярная В. п. При равном удалении от зеркала ее величина обусловлена общей и капиллярной пористостью, а также плотностью почвы. С капиллярной В. п. связана капиллярная кайма (слой подпертой влаги между уровнем грунтовых вод и верхней границей фронта смачивания почвы). В условиях достаточного тепла и пресных грунтовых вод допускается размещение винограда, особенно столовых сортов, при наличии капиллярной каймы в нижней части корнеобитаемого слоя. При засоленных грунтовых водах капиллярная кайма должна быть ниже корнеобитаемого слоя, чтобы не происходило его засоление, вредное для винограда. Капиллярная В. п. характеризует культурное состояние почвы. Чем почва менее оструктурена, тем больше в ней происходит капиллярный подъем влаги, ее физич. испарение и, зачастую, накопление в верхней части легкорастворимых, в т.ч. и вредных для винограда, солей.

Наименьшая ВЛАГОЕМКОСТЬ ПОЧВЫ, полевая ВЛАГОЕМКОСТЬ ПОЧВЫ - количество воды, фактически удерживаемое почвой в природных условиях в состоянии равновесия, когда устранено испарение и дополнительный приток воды. Эта величина зависит от гранулометрич., минералогич. и химического состава почвы, ее плотности и пористости. Применяется при расчете поливных норм. Полная В. п., водовместимость почвы - содержание влаги в почве при условии полного заполнения всех пор водой. При полной В. п. влага, находившаяся в крупных промежутках между частицами почвы, непосредственно удерживается зеркалом воды или водоупорным слоем. Водовместимость почвы рассчитывается по ее общей пористости. Значение величины полной В. п. необходимо при подсчете способности водовпитывания без образования поверхностного стока, для определения способности водоотдачи почвы, высоты подъема грунтовых вод при обильных дождях или орошении виноградников.
Литература: Роде А. А. Основы учения о почвенной влаге. - Л., 1992-1969.
- Ч. 1-2; Почвоведение / Под ред. И. С. Кауричева. - 3-е изд., - Москва,
1982.


Полная влагоемкость, определяемая в трубках, всегда бывает несколько меньше общей порозности, так как при погружении в воду образца почвы в нем сохраняется около 8% защемленного воздуха.
Полную влагоемкость почвы с нарушенным строением определяют в металлических цилиндрах с сетчатым дном или в стеклянных трубках, обвязанных с одного конца марлей. Диаметр трубки 5-6 см, высота 15-18 см. На сетчатое дно накладывают кружок фильтровальной бумаги и смачивают водой. После стекания излишка воды взвешивают трубку на технических весах с точностью 0,05 г (удобны весы BЛTK-500).
Цилиндр наполняют на 8/4 высоты просеянной через грохот почвой. Почву вносят небольшими порциями и уплотняют постукиванием трубки или осторожным уминанием, добиваясь того же уплотнения, которое принято для сосудов вегетационного опыта. Одновременно берут пробу для определения влажности исходной почвы.
После наполнения почвой цилиндр взвешивают и по разности между весом цилиндра с почвой и пустого цилиндра определяют навеску исходной почвы. Зная влажность почвы, вычисляют вес абсолютно сухой почвы в цилиндре.
Цилиндр с почвой прикрывают сверху стеклом, ставят в сосуд с водой, доводят уровень ее до уровня почвы в цилиндре и оставляют на сутки. Через сутки вынимают цилиндр из воды, обтирают фильтровальной бумагой и взвешивают. Еще через сутки повторяют взвешивание. При получении близких данных насыщение прекращают.
Влагоемкость выражают в весовых или объемных процентах. Для перевода в объемные весовые данные следует умножить на объемный вес. Отношение веса поглощенной воды к весу сухой почвы определяет полную влагоемкость в весовых процентах.
Запись результатов определения:
Вес цилиндра с увлажненной обвязкой (а).
Вес цилиндра с почвой (b).
Навеска исходной почвы (b - а).
Навеска абсолютно сухой почвы (d).
Вес трубки с почвой после насыщения (с).
Вес поглощенной воды (с - а - d).
Полную влагоемкость (в % на абсолютно сухую почву) определяют по формуле:

Капиллярная влагоемкость - способность почв и грунтов удерживать в своей толще максимально возможное количество капиллярной воды (без перехода ее в гравитационную форму), выраженное в весовых или объемных процентах или в кубических метрах на 1 га. Капиллярная влагоемкость, таким образом, представляет собой верхний предел водоудерживающей способности почв, обусловленный капиллярно-менисковыми силами. Поэтому и величина капиллярной влагоемкости (капиллярной водоудерживающей способности) в общем соответствует капиллярной скважности почв и грунтов. Поскольку граница и различия между капиллярной и некапиллярной скважностью в почвах условны и представлены рядом переходов, постольку и величина капиллярной влагоемкости несколько условна, она изменяется в зависимости от ряда факторов.
При близком залегании (1,5-2,0 м) уровня грунтовых вод, когда капиллярная кайма смачивает толщу почвы до поверхности, капиллярная влагоемкость почвы характеризуется наибольшими величинами, так как капиллярная влагоемкость в данном случае обусловлена суммарной всасывающей деятельностью менисков тонких и крупных пор и капилляров. В этом случае капиллярная влагоемкость соответствует максимально возможной величине содержания в почве капиллярно-подпертой воды. Наиболее точно величина капиллярной влагоемкости определяется в этом случае в поле путем установления послойной влажности от поверхности почвы до уровня грунтовых вод. Для 1,5-метрового слоя среднесуглинистых почв это соответствует 30-40 об.%, или около 4500- 6000 м3/гa.
В случае глубокого залегания уровня грунтовых вод капиллярная влагоемкость почвы связана только с работой сравнительно тонких пор и капилляров. В этом случае ее величина соответствует максимально возможному объему удержанной в почве капиллярно-подвешенной воды. Величина влагоемкости в случае капиллярно-подвешенной воды колеблется в зависимости от структуры и механического состава почв в пределах 20-35 об.%, что составляет для 1-метрового слоя 2000-3500 м3/га, а для 1,5-метрового - 3000-5250 м3/га.
Очень часто влагоемкость в отношении капиллярно-подвешенной воды называют наименьшей влагоемкостью (HB). Этот термин, введенный П.С. Коссовичем, основан на идее о том, что в почвах глубокого уровня грунтовых вод нет подпирающего влияния восходящей капиллярной каймы и пористая почвенная система удерживает то наименьшее количество влаги, которая остается после свободного оттока гравитационной воды.
Капиллярная влагоемкость может быть определена на монолите в лаборатории или в полевых условиях методом предварительного длительного увлажнения почвы таким объемом воды, который заведомо превышает водоудерживающую способность почвы. Переувлажненная почва оставляется на известное время защищенной от испарения. Гравитационной воде в течение нескольких дней предоставляется возможность свободно стечь из почвенных горизонтов. Затем определяется количество влаги, удержанной в почве. Эта величина и будет соответствовать капиллярной (подвешенной) влагоемкости (наименьшей влагоемкости) почвы. Капиллярная влагоемкость, определенная для полевых конкретных условий, называется полевой влагоемкостью (полевой предельной влагоемкостью, полевой водоудерживающей способностью) почвы.
Почва в естественных условиях залегания не может удержать капиллярной воды больше этого «предельного» количества. Возрастание влажности почвы сверх ее водоудерживающей способности вызывает образование гравитационной воды, стекающей в нисходящем направлении или питающей грунтовые воды.
Понятие «предельная полевая влагоемкость» (ППВ) почв является важной гидрологической характеристикой, широко используемой в практике водных мелиораций. Величина предельной полевой влагоемкости зависит от ряда факторов.
Почвы глинистого тяжелого механического состава имеют большую величину полевой влагоемкости - 3500-4000 м3/га для 1-метрового слоя, почвы легкого супесчаного и песчаного механического состава - 2000-2500 м3/га. Почвы с хорошо развитой комковато-зернистой структурой обычно имеют умеренные средние показатели полевой влагоемкости - 2500-3000 м3/га для 1-метрового слоя; бесструктурные почвы характеризуются более высокой величиной полевой влагоемкости. Ниже приводятся величины полевой влагоемкости почв различного механического состава в % от скважности:


Как это ясно из предыдущего изложения, полевая влагоемкость зависит также от положения грунтовых вод, сильно возрастая в случаях близкого уровня грунтовых вод (капиллярная кайма в пределах почвенного профиля) и уменьшаясь при глубоком положении грунтовых вод. Так, при близких (1,5-2 м) грунтовых водах с углублением на каждые 10 см глубже 50 см величина полевой влагоемкости возрастает на 2-3%, а при очень глубоких грунтовых водах - уменьшается на каждые 10 см на ту же величину.
Неоднородность и слоистость почв по профилю, в частности смена механического состава и структурного состояния грунта, способствуют увеличению суммарной величины полевой влагоемкости всего профиля. Это объясняется тем, что вблизи поверхности раздела между соседними слоями вышележащий слой имеет повышенную влажность за счет образования дополнительных менисков и дополнительной водоудерживающей способности (капиллярно-посаженная вода).
Зная величину предельной влагоемкости почвы и сопоставляя с ней величину влажности, зафиксированной в почве на определенный момент, можно оценить состояние и форму воды и определить направление движения влаги. В тех случаях, когда влажность почвы выше величины предельной полевой влагоемкости, имеют место нисходящие токи гравитационной воды. В случае, когда влажность верхних горизонтов меньше полевой влагоемкости, поток капиллярной воды направлен обычно кверху от зеркала грунтовых вод.
Многочисленными исследованиями на опытных станциях и в производственных условиях установлено, что оптимальная влажность почв для развития сельскохозяйственных растений в условиях орошения колеблется в пределах от 100 до 70-75% от полевой влагоемкости. Отсюда следует, что в межполивные периоды относительная влажность почв перед очередным поливом не должна опускаться ниже 70-75% от полевой влагоемкости.
Разность между величиной полевой влагоемкости и фактической влажностью почвы перед очередным поливом называется дефицитом влажности до полевой влагоемкости.
Дефицит влажности до полевой влагоемкости в условиях орошаемого хозяйства должен быть не больше, чем разность между полевой влагоемкостью и величиной 70-75% полевой влагоемкости (на глинах и солончаках 80-85%). Если величина фактической влажности перед поливом ниже 70-75% от полевой влагоемкости (например, 60-50%), то растения будут испытывать депрессию в развитии, что вызовет снижение урожая. Хлопчатник в таких случаях сбрасывает свои плодовые органы (бутоны, завязи, коробочки).
Таким образом, по полевой влагоемкости устанавливаются рациональные нормы поливов. Если при очередном поливе подача воды превысит величину дефицита влаги до полевой влагоемкости, запас воды в почве превысит ее водоудерживаюшую способность, появится свободная гравитационная вода, которая начнет двигаться в нисходящем направлении и пополнять запасы грунтовой воды, повышая их уровень.
В практике орошаемого земледелия иногда применяют поливы без норм, большими количествами воды, в 1,5-2 раза превышающими дефицит до полевой влагоемкости. Такие поливы вызывают интенсивный подъем уровня грунтовых вод, приближение их к дневной поверхности, развитие процессов заболачивания и засоления. Особенно часто это происходит на полях орошаемого риса, где нередко за вегетационный период дается 30-40 тыс. м3/га поливной воды.
Рационально рассчитанная норма полива для незасоленных почв должна представлять собой величину, не превышающую дефицит влажности до полевой влагоемкости, чтобы свести к минимуму фильтрацию избыточной свободной воды в грунтовые воды.
Величина поливной нормы выражается следующим простейшим равенством:

M = П - м + к,


где M - поливная норма; П - полевая влагоемкость; м - фактическая влажность перед поливом; к - потери воды на испарение в момент полива.
Поскольку известно, что при орошении обычных полевых культур влажность почвы не должна перед очередным поливом опускаться ниже 70-75% от полевой влагоемкости, то величина дефицита влажности П - м в большинстве случаев должна быть не выше 25-30% П, что для почв суглинистого механического состава для 1-метровой толщи составит 800-1200 м3/га.
Поясним это на следующем примере. Полевая влагоемкость незасоленной почвы равна 20 вес.%, объемный вес почвы 1,4. Требуется установить оптимальный дефицит До полевой влагоемкости, который и будет представлять оптимальную величину поливной нормы воды для 1-метрового слоя.
Полевая влагоемкость в абсолютном выражении будет составлять П = 2800 м3/га; допустимая влажность до полива - 70% от П, т. е. 1960 м3/га. Тогда дефицит, а следовательно, и поливная норма, составляя разность между полевой влагоемкостью и допустимым запасом воды перед поливом (2800-1960 м3/га), будут равны 840 м3/га.
Зная величину полной влагоемкости и полевой влагоемкости, можно всегда представить себе вероятную величину свободной гравитационной воды, образующейся в почве в случае естественного или искусственного снижения уровня грунтовых вод. Эта величина называется водоотдачей грунта.
Водоотдача грунта - количество свободной гравитационной воды, образующейся в грунте при снижении уровня грунтовых вод, выраженное в процентах от скважности (полной влагоемкости), от объема грунта или в виде коэффициента. Коэффициент водоотдачи сильно колеблется в зависимости от структуры, механического состава и скважности почв и грунтов. Об этом можно судить по данным табл. 6.


Зная величину коэффициента водоотдачи, можно предвидеть вероятный подъем уровня грунтовых вод при поступлении в грунт свободной гравитационной воды. Вероятный подъем уровня грунтовых вод h (в см) при поступлении в них гравитационной воды равен слою просочившейся воды b (в см), деленному на коэффициент водоотдачи Q:

Из величин коэффициента водоотдачи видно, что при поступлении гравитационной воды интенсивность подъема уровня грунтовых вод возрастает тем больше, чем тяжелее механический состав грунта. Так, в глинах каждый миллиметр просочившейся и поступившей в грунтовые воды гравитационной, воды может повысить уровень грунтовой воды на 3-10 см, в суглинках - на 2-3 см, в песках значительно меньше - на 0,3-0,5 см.
Зная дефицит влажности до полевой влагоемкости, можно установить то количество свободной гравитационной воды, которое появляется в толще горизонтов почвы при ее увлажнении сверх водоудерживающей способности. Количество гравитационной воды, образующейся при этом в толще грунта, представляет собой разность между объемом поданной воды и объемом дефицита до полевой влагоемкости, что может быть показано следующим выражением:

В = М - (П - м),


где В - гравитационная вода; M - вода, поступившая на почву сверху; П - полевая влагоемкость; м - запас воды в почве.
Таким образом, капиллярная влагоемкость и ее разновидность для почв, находящихся в культуре, так называемая полевая (предельная) влагоемкость, являются важнейшими почвенно-гидрологическими характеристиками, на знании которых и правильном применении должно базироваться рациональное регулирование водного режима почв и осуществление водных мелиораций.
Наименьшая (или предельная полевая) влагоемкость показывает количество воды, удерживаемое почвой в практически неподвижном состоянии после обильного полива и просачивания избыточной воды под влиянием силы тяжести. Определение делается в природных условиях. При залегании грунтовых вод глубже 3 м определение показывает «истинную наименьшую влагоемкость», а при более близких грунтовых водах - более высокое содержание, достигающее величины «капиллярной влагоемкости». Глубину грунтовых вод следует указывать при определении.
Влагоемкость, определяемая описанным ниже методом, называется различными исследователями: общая влагоемкость (Качинский, Вадюнина), предельная полевая влагоемкость (Астапов, Розов, Долгов), наименьшая полевая влагоемкость (Березинь, Рыжов, Зимина), полевая влагоемкость (Ревут, Гречин).
Порядок определения наименьшей влагоемкости. Выбирают ровный, типичный для данного поля участок и на нем окружают земляным валиком высотой 30-40 см площадку размером 1,5х1,5 л. Землю для насыпания валиков берут вне площадки, поверхность площадки оберегают от затаптывания. Для ограждения площадки вместо земляных валиков иногда применяют деревянные или железные рамы. Поблизости от площадки закладывают и описывают почвенный разрез, в стенке которого берут образцы почвы по генетическим горизонтам для определения влажности, объемного и удельного веса почвы.
Для промачивания почвы до 1,5 м на каждый квадратный метр площадки надо приготовить 200-300 л на суглинистых или 200 л воды на супесчаных почвах. Во избежание размыва поверхности под струю воды, подаваемой на площадку, необходимо подложить кусок фанеры или слой соломы. Вода подается постепенно, так чтобы не создавать слоя воды на поверхности выше б см.
Когда вся поданная на площадку вода впитается в почву, ее покрывают для предохранения от испарения с поверхности клеенкой или пластиком и толстым слоем соломы (до 0,5 м), которую прижимают сверху землей.
Просачивание излишней воды из первого метра почвы в основном заканчивается на песчаных почвах за 1-2 суток, на суглинистых - 3-5 и глинистых - 5-10 суток. Однако и после этого срока почвенная влага продолжает медленно просачиваться вниз. Поэтому рекомендуют определение наименьшей влагоемкости в три срока - через 1,3 и 10 суток, обозначая их индексами HB1, HB3 и HB10. Для песчаных и супесчаных почв достаточно определить HB1 и HB3.
Почвенные пробы для определения влажности отбирают буром с трех-пяти мест послойно через 10 см. Для этого на площадку кладут доску и, стоя на ней и не снимая покрытия почвы, производят бурение в центральной части площадки 80х80 см. Отверстия скважин после взятия проб плотно забивают почвой.
Наименьшую (предельную полевую) влагоемкость можно определить во всех случаях обильного увлажнения почвы - ранней весной после полного оттаивания почвы и впитывания талых вод или после полива орошаемых участков. После увлажнения выбранную площадку закрывают клеенкой, соломой и через соответствующие интервалы бурят и определяют влажность почвы площадки.
Наименьшая влагоемкость зависит от механического состава - от 20% объема супесчаных до 40% от объема суглинистых и глинистых почв, и несколько уменьшается с глубиной. Наименьшая влагоемкость тяжелой почвы зависит также от сложения, приемов обработки, структурности, внесения извести.
Вычисляют наименьшую влагоемкость послойно для каждых 10 см в процентах от объема почвы, поэтому необходимо определять объемный вес почвы. Если наименьшая влагоемкость составляет 70-80% общей порозности, то это считается благоприятным для сельскохозяйственных культур, при 80-90% - посредственным, а свыше 90% - неудовлетворительным из-за недостаточного содержания воздуха.

Влагоемкостью почвы называется способность почв вмещать и удерживать в себе определенное количество воды.

Выполнение анализа: Берут цилиндр с сетчатым дном и взвешивают его. Взвешенный цилиндр наполняют на ¾ объема воздушно-сухой почвой и снова взвешивают.

Погружают цилиндр с почвой в сосуд с водой и доводят уровень воды в сосуде до уровня почвы в цилиндре. После того, как вода пропитает всю почву, дают стечь излишней воде, протирают увлажненную поверхность цилиндра, взвешивают и производят расчеты.

А = 100 (с - в) / (в - а)

где: А – влагоемкость почвы, %; а – масса пустого цилиндра, г; в – масса цилиндра с почвой до погружения в воду, г; с – масса цилиндра с почвой после насыщения водой, г.

Определение капиллярности почвы

Под капиллярностью понимают водоподъемную способность почвы по капиллярам из нижних слоев в верхние, которая зависит от ее механического состава, т.е. чем меньше частицы почвы, тем выше капиллярный подъем влаги. Высокая капиллярность нередко служит основной причиной сырости почвы, помещений, если не принимаются соответствующие меры (гидроизоляция).

Выполнение анализа: В штативе устанавливают ряд (в зависимости от образцов почвы) высоких 50 – 100 см стеклянных трубок диаметром 2-3 см с сантиметровым делением. Каждую трубку заполняют исследуемой почвой. Нижние концы трубок обвязывают полотном и погружают в ванночки с водой на глубину 0,5 см. По изменению окраски почвы следят за быстротой и высотой подъема воды, отмечая её уровень в сантиметрах через 5; 10; 15; 20 и 60 минут, а далее через каждый час до прекращения водоподъема.

Определение водопроницаемости почвы

Водопроницаемостью называется способность почвы проводить воду из верхних слоев в нижние. Водопроницаемость (фильтрационная способность) определяется количеством воды, просачивающейся через определенный слой почвы в единицу времени и зависит от размера ее зерен, наличия коллоидных частиц, а также от высоты слоя воды над ней.

Водопроницаемость песчаных почв – 5-8 мин, глинистых – 15 мин и более.

Выполнение анализа: Берут стеклянную трубку диаметром 3-4 см, высотой 25-30 см. Нижний конец трубки подвязывают полотном и наполняют сухой измельченной почвой до высоты 20 см, равномерно распределяя ее легким постукиванием о стенки трубки. Трубку с почвой укрепляют в штативе и наливают в нее воду, постоянно поддерживая высоту уровня воды над почвой в 4 см до появления первой капли прошедшей через матерчатое дно трубки. В ходе определения водопроницаемости отмечают время с начала заливания воды, и время появления первой капли. Разница во времени показывает быстроту прохождения воды через слой почвы в 20 см.

Запись результатов исследований

Номер пробы почвы

Физические свойства почвы

Температура, о С

Порозность,

Влагоемкость,

Капилярность,

Водопроницаемость, сек



Статьи по теме: