Основание призмы треугольник. Объем треугольной призмы: формула общего типа и формула для правильной призмы

Школьникам, которые готовятся к сдаче ЕГЭ по математике, обязательно стоит научиться решать задачи на нахождение площади прямой и правильной призмы. Многолетняя практика подтверждает тот факт, что подобные задания по геометрии многие учащиеся считают достаточно сложными.

При этом уметь находить площадь и объем правильной и прямой призмы должны старшеклассники с любым уровнем подготовки. Только в этом случае они смогут рассчитывать на получение конкурентных баллов по итогам сдачи ЕГЭ.

Основные моменты, которые стоит запомнить

  • Если боковые ребра призмы перпендикулярны основанию, она называется прямой. Все боковые грани этой фигуры являются прямоугольниками. Высота прямой призмы совпадает с ее ребром.
  • Правильной является призма, боковые ребра которой перпендикулярны основанию, в котором находится правильный многоугольник. Боковые грани этой фигуры - равные прямоугольники. Правильная призма всегда является прямой.

Подготовка к единому госэкзамену вместе со «Школково» - залог вашего успеха!

Чтобы занятия проходили легко и максимально эффективно, выбирайте наш математический портал. Здесь представлен весь необходимый материал, который поможет подготовиться к прохождению аттестационного испытания.

Специалисты образовательного проекта «Школково» предлагают пойти от простого к сложному: сначала мы даем теорию, основные формулы, теоремы и элементарные задачи с решением, а затем постепенно переходим к заданиям экспертного уровня.

Базовая информация систематизирована и понятно изложена в разделе «Теоретическая справка». Если вы уже успели повторить необходимый материал, рекомендуем вам попрактиковаться в решении задач на нахождение площади и объема прямой призмы. В разделе «Каталог» представлена большая подборка упражнений различной степени сложности.

Попробуйте рассчитать площадь прямой и правильной призмы или прямо сейчас. Разберите любое задание. Если оно не вызвало сложностей, можете смело переходить к упражнениям экспертного уровня. А если определенные трудности все же возникли, рекомендуем вам регулярно готовиться к ЕГЭ в онлайн-режиме вместе с математическим порталом «Школково», и задачи по теме «Прямая и правильная призма» будут даваться вам легко.

Тип задания: 8
Тема: Призма

Условие

В правильной треугольной призме ABCA_1B_1C_1 стороны основания равны 4 , а боковые рёбра равны 10 . Найдите площадь сечения призмы плоскостью, проходящей через середины рёбер AB, AC, A_1B_1 и A_1C_1.

Показать решение

Решение

Рассмотрим следующий рисунок.

Отрезок MN является средней линией треугольника A_1B_1C_1, поэтому MN = \frac12 B_1C_1=2. Аналогично, KL=\frac12BC=2. Кроме того, MK = NL = 10. Отсюда следует, что четырёхугольник MNLK является параллелограммом. Так как MK\parallel AA_1, то MK\perp ABC и MK\perp KL. Следовательно, четырёхугольник MNLK является прямоугольником. S_{MNLK} = MK\cdot KL = 10\cdot 2 = 20.

Ответ

Тип задания: 8
Тема: Призма

Условие

Объём правильной четырёхугольной призмы ABCDA_1B_1C_1D_1 равен 24 . Точка K — середина ребра CC_1 . Найдите объём пирамиды KBCD .

Показать решение

Решение

Согласно условию, KC является высотой пирамиды KBCD . CC_1 является высотой призмы ABCDA_1B_1C_1D_1 .

Так как K является серединой CC_1 , то KC=\frac12CC_1. Пусть CC_1=H , тогдаKC=\frac12H . Заметим также, что S_{BCD}=\frac12S_{ABCD}. Тогда, V_{KBCD}= \frac13S_{BCD}\cdot\frac{H}{2}= \frac13\cdot\frac12S_{ABCD}\cdot\frac{H}{2}= \frac{1}{12}\cdot S_{ABCD}\cdot H= \frac{1}{12}V_{ABCDA_1B_1C_1D_1}. Следовательно, V_{KBCD}=\frac{1}{12}\cdot24=2.

Ответ

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Тип задания: 8
Тема: Призма

Условие

Найдите площадь боковой поверхности правильной шестиугольной призмы, сторона основания которой равна 6 , а высота — 8 .

Показать решение

Решение

Площадь боковой поверхности призмы находим по формуле S бок. = P осн. · h = 6a\cdot h, где P осн. и h — соответственно периметр основания и высота призмы, равная 8 , и a — сторона правильного шестиугольника, равная 6 . Следовательно, S бок. = 6\cdot 6\cdot 8 = 288.

Ответ

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Тип задания: 8
Тема: Призма

Условие

В сосуд, имеющий форму правильной треугольной призмы, налили воду. Уровень воды достигает 40 см. На какой высоте будет находиться уровень воды, если её перелить в другой сосуд такой же формы, у которого сторона основания в два раза больше, чем у первого? Ответ выразите в сантиметрах.

Показать решение

Решение

Пусть a — сторона основания первого сосуда, тогда 2 a — сторона основания второго сосуда. По условию объём жидкости V в первом и втором сосуде один и тот же. Обозначим через H уровень, на который поднялась жидкость во втором сосуде. Тогда V= \frac12\cdot a^2\cdot\sin60^{\circ}\cdot40= \frac{a^2\sqrt3}{4}\cdot40, и, V=\frac{(2a)^2\sqrt3}{4}\cdot H. Отсюда \frac{a^2\sqrt3}{4}\cdot40=\frac{(2a)^2\sqrt3}{4}\cdot H, 40=4H, H=10.

Ответ

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Тип задания: 8
Тема: Призма

Условие

В правильной шестиугольной призме ABCDEFA_1B_1C_1D_1E_1F_1 все рёбра равны 2 . Найдите расстояние между точками A и E_1 .

Показать решение

Решение

Треугольник AEE_1 — прямоугольный, так как ребро EE_1 перпендикулярно плоскости основания призмы, прямым углом будет угол AEE_1.

Тогда по теореме Пифагора AE_1^2 = AE^2 + EE_1^2. Найдём AE из треугольника AFE по теореме косинусов. Каждый внутренний угол правильного шестиугольника равен 120^{\circ}. Тогда AE^2= AF^2+FE^2-2\cdot AF\cdot FE\cdot\cos120^{\circ}= 2^2+2^2-2\cdot2\cdot2\cdot\left (-\frac12 \right).

Отсюда, AE^2=4+4+4=12,

AE_1^2=12+4=16,

AE_1=4.

Ответ

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Тип задания: 8
Тема: Призма

Условие

Найдите площадь боковой поверхности прямой призмы, в основании которой лежит ромб с диагоналями, равными 4\sqrt5 и 8 , и боковым ребром, равным 5 .

Показать решение

Решение

Площадь боковой поверхности прямой призмы находим по формуле S бок. = P осн. · h = 4a\cdot h, где P осн. и h соответственно периметр основания и высота призмы, равная 5 , и a — сторона ромба. Найдём сторону ромба, пользуясь тем, что диагонали ромба ABCD взаимно перпендикулярны и точкой пересечения делятся пополам.

Пусть требуется найти объём прямой треугольной призмы, площадь основания которой равна S, а высота равна h = AA’ = BB’ = CC’ (рис. 306).

Начертим отдельно основание призмы, т. е. треугольник АBС (рис. 307, а), и достроим его до прямоугольника, для чего через вершину В проведём прямую КМ || АС и из точек A и С опустим на эту прямую перпендикуляры АF и СЕ. Получим прямоугольник АСЕF. Проведя высоту ВD треугольника АBС, увидим, что прямоугольник АСЕF разбился на 4 прямоугольных треугольника. Причём \(\Delta\)ВСЕ = \(\Delta\)BCD и \(\Delta\)BAF = \(\Delta\)BAD. Значит, площадь прямоугольника АСЕF вдвое больше площади треугольника АBС, т. е. равна 2S.

К данной призме с основанием АBС пристроим призмы с основаниями ВСЕ и BАF и высотой h (рис. 307, б). Получим прямоугольный параллелепипед с основанием АСЕF.

Если этот параллелепипед рассечём плоскостью, проходящей через прямые BD и BB’, то увидим, что прямоугольный параллелепипед состоит из 4 призм с основаниями BCD, ВСЕ, BАD и BAF.

Призмы с основаниями BCD и ВСЕ могут быть совмещены, так как основания их равны (\(\Delta\)BCD = \(\Delta\)BСЕ) и также равны их боковые рёбра, являющиеся перпендикулярами к одной плоскости. Значит, объёмы этих призм равны. Также равны объёмы призм с основаниями BАD и BАF.

Таким образом, оказывается, что объём данной треугольной призмы с основанием АBС вдвое меньше объёма прямоугольного параллелепипеда с основанием АСЕF.

Нам известно, что объём прямоугольного параллелепипеда равен произведению площади его основания на высоту, т. е. в данном случае равен 2Sh . Отсюда объём данной прямой треугольной призмы равен Sh .

Объём прямой треугольной призмы равен произведению площади её основания на высоту.

2. Объём прямой многоугольной призмы.

Чтобы найти объём прямой многоугольной призмы, например пятиугольной, с площадью основания Sи высотой h , разобьём её на треугольные призмы (рис. 308).

Обозначив площади основания треугольных призм через S 1 , S 2 и S 3 , а объём данной многоугольной призмы через V, получим:

V = S 1 h + S 2 h + S 3 h , или

V = (S 1 + S 2 + S 3)h .

И окончательно: V = Sh .

Таким же путём выводится формула объема прямой призмы, имеющей в основании любой многоугольник.

Значит, объём любой прямой призмы равен произведению площади её основания на высоту.

Объём призмы

Теорема. Объём призмы равен произведению площади основания на высоту.

Сначала докажем эту теорему для треугольной призмы, а потом и для многоугольной.

1) Проведём (черт. 95) через ребро AA 1 треугольной призмы АВСА 1 В 1 С 1 плоскость, параллельную грани ВВ 1 С 1 С, а через ребро СС 1 - плоскость, параллельную грани AA 1 B 1 B; затем продолжим плоскости обоих оснований призмы до пересечения с проведёнными плоскостями.

Тогда мы получим параллелепипед BD 1 , который диагональной плоскостью АА 1 С 1 С делится на две треугольные призмы (из них одна есть данная). Докажем, что эти призмы равновелики. Для этого проведём перпендикулярное сечение abcd . В сечении получится параллелограмм, который диагональю ас делится на два равных треугольника. Данная призма равновелика такой прямой призме, у которой основание есть \(\Delta\)аbc , а высота - ребро АА 1 . Другая треугольная призма равновелика такой прямой, у которой основание есть \(\Delta\)аdс , а высота - ребро АА 1 . Но две прямые призмы с равными основаниями и равными высотами равны (потому что при вложении они совмещаются), значит, призмы АВСА 1 В 1 С 1 и ADCA 1 D 1 C 1 равновелики. Из этого следует, что объём данной призмы составляет половину объёма параллелепипеда BD 1 ; поэтому, обозначив высоту призмы через H, получим:

$$ V_{\Delta пр.} = \frac{S_{ABCD}\cdot H}{2} = \frac{S_{ABCD}}{2}\cdot H = S_{ABC}\cdot H $$

2) Проведём через ребро АА 1 многоугольной призмы (черт. 96) диагональные плоскости АА 1 С 1 С и AA 1 D 1 D.

Тогда данная призма рассечётся на несколько треугольных призм. Сумма объёмов этих призм составляет искомый объём. Если обозначим площади их оснований через b 1 , b 2 , b 3 , а общую высоту через Н, то получим:

объём многоугольной призмы = b 1 H +b 2 H + b 3 H =(b 1 + b 2 + b 3) H =

= (площади ABCDE) H.

Следствие. Если V, В и Н будут числа, выражающие в соответствующих единицах объём, площадь основания и высоту призмы, то, по доказанному, можно написать:

Другие материалы

В физике треугольная призма, сделанная из стекла, часто используется для изучения спектра белого света, поскольку она способна разлагать его на отдельные составляющие. В данной статье рассмотрим формулу объема

Что такое треугольная призма?

Перед тем как приводить формулу объема рассмотрим свойства этой фигуры.

Чтобы получить этот необходимо взять треугольник произвольной формы и параллельно самому себе перенести его на некоторое расстояние. Вершины треугольника в начальном и конечном положении следует соединить прямыми отрезками. Полученная объемная фигура называется треугольной призмой. Она состоит из пяти сторон. Две из них называются основаниями: они параллельны и равны друг другу. Основаниями рассматриваемой призмы являются треугольники. Три оставшиеся стороны - это параллелограммы.

Помимо сторон, рассматриваемая призма характеризуется шестью вершинами (по три для каждого основания) и девятью ребрами (6 ребер лежат в плоскостях оснований и 3 ребра образованы пересечением боковых сторон). Если боковые ребра перпендикулярны основаниям, то такая призма называется прямоугольной.

Отличие треугольной призмы от всех остальных фигур этого класса заключается в том, что она всегда является выпуклой (четырех-, пяти-, ..., n-угольные призмы могут также быть вогнутыми).

Это прямоугольная фигура, в основании которой лежит равносторонний треугольник.

Объем треугольной призмы общего типа

Как найти объем треугольной призмы? Формула в общем виде аналогична таковой для призмы любого вида. Она имеет такую математическую запись:

Здесь h - это высота фигуры, то есть расстояние между ее основаниями, S o - площадь треугольника.

Величину S o можно найти, если известны некоторые параметры для треугольника, например одна его сторона и два угла или две стороны и один угол. Площадь треугольника равна половине произведения его высоты на длину стороны, на которую опущена эта высота.

Что касается высоты h фигуры, то ее проще всего найти для прямоугольной призмы. В последнем случае h совпадает с длиной бокового ребра.

Объем правильной треугольной призмы

Общую формулу объема треугольной призмы, которая приведена в предыдущем разделе статьи, можно использовать для вычисления соответствующей величины для правильной треугольной призмы. Поскольку в ее основании лежит равносторонний треугольник, то его площадь равна:

Эту формулу может получить каждый, если вспомнит, что в равностороннем треугольнике все углы равны друг другу и составляют 60 o . Здесь символ a - это длина стороны треугольника.

Высота h является длиной ребра. Она никак не связана с основанием правильной призмы и может принимать произвольные значения. В итоге формула объема треугольной призмы правильного вида выглядит так:

Вычислив корень, можно переписать эту формулу так:

Таким образом, чтобы найти объем правильной призмы с треугольным основанием, необходимо возвести в квадрат сторону основания, умножить эту величину на высоту и полученное значение умножить на 0,433.



Статьи по теме: