Обогрев дома с помощью солнца. «В ногу со временем» — надежное солнечное отопление частного дома. С солнечной батареей

1.
2.
3.
4.
5.

Во многих развитых странах мира солнечные коллекторы для отопления дома используются повсеместно. Такие конструкции вытесняют традиционные системы отопления не только на юге, но и в регионах с умеренным климатом.

Разумеется, можно купить готовые , такие, как представлены на фото, но их цена еще достаточно высока. Организовать солнечное отопление дома своими руками не составит труда – для этого потребуется только время и базовые познания в физике. Конечно, самостоятельно сделать вакуумный солнечный коллектор под силу далеко не всем. Но существует и более простая система. При монтаже конструкции солнечного отопления придется не только установить коллекторы на крыше дома, но и внутридомовые элементы.

Преимущества использования гелиосистем

Установка солнечных коллекторов существенно снизит затраты на традиционное отопление. Энергия Солнца – бесплатна, а кроме того, гелиосистемы не наносят вреда окружающей среде. Именно поэтому в странах, где власти беспокоятся об экологии, такой способ отопления домов широко распространен (прочитайте: " "). Массовое использование гелиосистем позволит сохранить ресурсы, которые традиционно применяются для отопления (уголь, природный газ) и решить энергетическую проблему. Солнечное отопление обладает следующими преимуществами:
  • эффективная работа и значительная экономия на основной системе обогрева дома;
  • безопасность использования;
  • длительный срок службы;
  • эстетичный внешний вид, возможность выбора параметров коллектора.

Особенности солнечных коллекторов

Солнечные системы отопления частного дома наиболее эффективны в регионах, где в течение года насчитывается большое количество солнечных дней. Кроме того, зимой солнечное освещение также должно быть достаточно интенсивным. При монтаже подобной системы отопления нужно учитывать следующие особенности.

Чтобы конструкция обогрева была эффективной, необходимо качественно выполнить утепление дома. Рекомендуется сочетать солнечное отопление с другими видами - газовым или электрическим – это самый оптимальный вариант. Интеграция элементов гелиосистемы в традиционную схему обогрева значительность увеличивает эффективность отопления дома и снижает материальные затраты.

В регионах, для которых характерен низкий уровень инсоляции (потока лучей солнца на горизонтальную поверхность), нужно правильно рассчитать площадь коллекторов и в точности соблюдать инструкцию по монтажу, чтобы система работала максимально эффективно. Специалисты рекомендуют устанавливать коллекторы под углом, равным географической широте местности, в таком случае они будут более эффективны. Дело в том, что максимальный уровень поглощения солнечной энергии происходит в том случае, если их поверхности находятся под прямым углом по отношению к инсоляции.

При определении степени потока лучей следует помнить о том, что его интенсивность значительно выше в середине дня. Поэтому поверхности желательно располагать в южном направлении. Допустимы незначительные отклонения в юго-восточном и юго-западном направлениях. При монтаже коллекторов необходимо проследить за тем, чтобы их не затеняли деревья или соседние постройки.

Организуя отопление от солнца своими руками, нужно слегка увеличить угол наклона, чтобы повысить эффективность работы этих устройств зимой. При этом в летнее время эффективность системы несколько понизится, но это допустимо, так как в любом случае будет переизбыток тепловой энергии.

Элементы солнечной отопительной системы

Комплект элементов гелиосистемы может меняться в зависимости от пожеланий заказчика и особенностей производства завода, но принцип комплектации остается постоянным.

Система солнечного отопления состоит из:

  • вакуумного коллектора;
  • наноса, передающего теплоноситель от коллектора к накопительному баку;
  • контроллера, исполняющего функцию управления работой системы;
  • бака-аккумулятора для горячей воды емкостью 500-1000 литров (прочитайте также: " ");
  • пикового доводчика, представленного электрическим теном, тепловым насосом или другим элементом.

Гелиосистемы также позволяют обустроить теплые полы, причем расходы, связанные с покупкой и монтажом оборудования быстро окупятся.

Для создания коллектора потребуются такие материалы:

  • змеевик от старого или неисправного холодильника;
  • рейки для сборки каркаса;
  • фольга, обычное стекло;
  • резиновый коврик;
  • емкость для воды и трубы для ее подачи и слива.
Прежде чем начать делать солнечное отопление загородного дома, нужно изготовить коллектор. Перед этим змеевик тщательно промывают, удаляя остатки фреона, и подгоняют каркас, собранный из реек, под размеры. В каркасе змеевик должен свободно помещаться. Размеры резинового коврика должны быть аналогичны габаритам каркаса. Читайте также: " ".

При сборке коллектора необходимо в точности следовать указанной инструкции:
  1. На резиновый коврик укладывают фольгу, каркас из реек и змеевик, именно в данной последовательности. При сборке каркаса в его стенках делают небольшие отверстия, они должны быть достаточными для того, чтобы через них можно было вывести трубки змеевика.
  2. Змеевик закрепляют с помощью хомутов с того же самого холодильника. С обратной стороны их крепят винтами. Также с той же стороны прибивают рейки – это нужно для того, чтобы конструкция приобрела требуемую жесткость.
  3. Щели, образовавшиеся между каркасом и фольгой, заклеивают скотчем. Благодаря этому тепловые потери минимизируются, и отопление солнцем станет более эффективным. Уже готовый коллектор накрывают стеклом и по всему периметру проклеивают скотчем. Для дополнительной герметизации конструкции и большей надежности стекло крепят несколькими шурупами. Затем солнечный коллектор прикрепляют к специальным опорам.
Как самому сделать солнечный коллектор, пример на видео:

Принцип работы системы

Существуют разные типы коллекторов, и хотя принцип работы каждого из них почти одинаков, все же между ними есть некоторые различия. В данном случае будет рассматриваться работа самодельной системы из змеевика.

Таким образом, система для отопления состоит из:

  • коллектора;
  • бака-резервуара;
  • труб для подачи горячей воды и ее слива;
  • трубы для поступления в коллектор холодной воды;
  • вентиля для сброса давления;
  • запорного вентиля;
  • вентиля для подпитки (прочитайте также: " ");
  • вентиля для слива.

Система отопления работает автоматически, хозяевам дома редко приходится вмешиваться в этот процесс. Для эффективного функционирования системы, в зимнее время коллектор необходимо очищать от налипшего снега, так как он будет отражать солнечные лучи и сделает устройство бесполезным.

Солнечные коллекторы достаточно эффективны и в регионах с умеренным климатом, а не только на юге. Даже если зимой много пасмурных дней, все равно сквозь тучи поступает достаточно ультрафиолета для того, чтобы хотя бы частично обогревать дом. Правда, в таком случае одной лишь солнечной системой отопления не обойтись – придется использовать и дополнительные источники тепла. Но в любом случае, расходы на обогрев дома заметно сократятся.



Гелиосистемы экономически выгодны. Даже с учетом высокой стоимости, первоначальные затраты, при всесезонном применении окупятся за 2-3 года. Системы солнечного отопления частных домов не предназначены для автономной работы. Коллекторы компенсируют только часть необходимого для обогрева тепла, позволяя сэкономить за отопительный сезон до 300 м³ газа и до 4 м³ дров. Если использовать энергию Солнца только для отопления, окупаемость составит 6-7 лет.

У альтернативного отопления частного загородного дома существуют свои недостатки и преимущества. Перед покупкой и подключением требуется изготовление грамотного проекта и проведение теплотехнических расчетов.

Можно ли обогреть дом солнцем


Несмотря на передовые технологии и инновации, до сих пор полноценное отопление гелиосистемами не представляется возможным. Причина проста. Солнце светит только днем. Ночью солнечное излучение отсутствует. Соответственно солнечные коллекторы для отопления будут работать исключительно в светлое время суток. Хотя в пасмурную погоду гелиопанели продолжат работать, теплоотдача существенно уменьшится.

На теплоэффективность во многом влияет интенсивность ультрафиолетового излучения. В районах крайнего севера мощность и теплоотдача солнечного коллектора будет меньшей, чем в регионах с умеренным климатом.

Отопление на солнечных батареях используется исключительно как дополнительный источник тепла. Принцип работы коллектора основан на преобразовании ультрафиолетового излучения в тепловую энергию.

Получаемое тепло направляется в аккумулирующий бак, буферную емкость, установленную внутри здания. В воздушных системах жидкостный теплоноситель отсутствует. В помещение, при помощи вентиляторов нагнетаются разогретые воздушные массы.

Если учесть, что эффективность гелиоколлекторов зимой существенно снижается, автономное отопление дома требует правильных расчетов. Специалисты рекомендуют на этапе планирования установить в здание источник тепла на традиционных энергоносителях (газ, дрова, пеллеты, уголь, дизтопливо, электричество), способный удовлетворить потребность здания в обогреве и ГВС на 100%. Гелиосистема будет использовать солнечную энергию и частично компенсировать затраты с разной эффективностью, в зависимости от месяца года.

Чтобы определить стоит ли устанавливать альтернативное отопление частного дома, стоит обратить внимание на существующие преимущества и недостатки солнечных коллекторов. При составлении таблицы плюсов и минусов, нужно учитывать реальные отзывы о гелиосистемах оставленные пользователями:

  • Недостатки - главным минусом остается высокая стоимость (стоит отметить, что с появлением коллекторов российского производства, солнечные системы отопления стали экономически доступнее). Существует еще несколько минусов:
    1. сезонность - солнечные коллекторы с вакуумными термотрубками эффективны до температуры окружающей среды –50°С. Вакуумный гелиоколлекторы продолжат работать до тех пор, пока антифриз в теплообменнике не замерзнет. Солнечные панельные коллекторы работают при температуре до –25°С.
    2. зависимость от электричества - всесезонные системы работают с принудительной циркуляцией теплоносителя. При отключении напряжения теплоноситель может закипеть.
    3. долгая окупаемость - в случае отопления, работа коллектора большую часть осуществляется при отрицательных температурах. Теплоэффективность гелиосистемы снижается. Время окупаемости увеличивается до 6-7 лет.
  • Преимущества - рекордно низкие температуры в средних широтах редки. На весь отопительный сезон приходится не более недельного периода, когда коллекторы перестают работать. При правильном подборе оборудования и расчетах удастся подобрать готовое решение, способное по максимуму компенсировать потребности жилого здания в тепле. Для средних широт компенсация энергозатрат достигает 20-30%. Дополнительные плюсы:
    1. срок эксплуатации от 30 до 50 лет;
    2. присутствует антивандальная и противоградовая защита;
    3. гелиопанели выдерживают шквалы ветра.
Выше описаны общие преимущества и недостатки для любой системы отопления частного дома от солнечной энергии. У каждого типа гелиоколлекторов, воздушных и жидкостных, есть присущие им особенности, влияющие на окупаемость автономного обогрева.

Виды отопления от солнца

Существует несколько типов солнечных батарей. Главное отличие между гелиоколлекторами, используемый принцип работы. Типы солнечного отопления делятся на греющие воду или теплоноситель и нагревающие воздух.

Принцип работы влияет на теплоэффективность, особенности эксплуатации и подключения. Гелиопанели отличаются внутренним устройством, обвязкой, функциональными возможностями.

Отопление на водяных коллекторах

В основе работы лежит принудительная циркуляция теплоносителя. Отопление частного дома солнечными панелями происходит в следующем порядке:
  1. абсорбер аккумулирует тепло;
  2. полученная тепловая энергия нагревает теплоноситель, циркулирующий в трубопроводе от гелиоколлектора до теплообменника бака накопителя;
  3. змеевик внутри бойлера косвенного нагрева отдает тепло окружающей жидкости;
  4. происходит теплообмен, вода для бытовых нужд и отопления нагревается, остывший теплоноситель возвращается обратно к абсорберу.
В описанной схеме через буферную емкость закольцовано отопление и ГВС, и солнечный водонагреватель. Гелиоколлектор не сможет работать без накопительного бака. Для автоматизации отопления используется блок управления, регулирующий скорость циркуляции теплоносителя в зависимости от интенсивности нагрева.

Обогрев осуществляется гелиосистемами двух типов. Каждая отличается особенностями эксплуатации и техническими характеристиками:

  • Использование солнечных трубчатых коллекторов в системах отопления - оптимальный всесезонный вариант в условиях холодного климата, подходят для водяного радиаторного отопления и систем теплых полов, удовлетворения потребностей в ГВС. Теплопотери снижены за счет того, что теплопередающие элементы находятся в вакуумных трубках.
    Отопление дома солнечными вакуумными коллекторами зимой более эффективно, чем обогрев с использованием гелиопанелей. Внутри колбы коллектора, при условии отсутствия съема тепла, максимальная температура достигает 280-300°С, контролируемая модулем, предотвращающим закипание теплоносителя.

    Читайте также: Вакуумные солнечные коллекторы для отопления дома и ГВС



  • Отопление частного дома солнечными панелями - решение больше подходит для средних и южных широт. В этих регионах гелиопанели быстрее окупаются и отличаются большей теплоэффективностью. Принцип нагрева идентичен вакуумным коллекторам, только вместо колб в солнечных нагревателях для нагрева воды используется панель. Абсорбирующая поверхность прогревает соприкасающуюся с ней медную или алюминиевую пластину. Тепло передается циркулирующей жидкости. Интенсивность нагрева теплоносителя существенно ниже, чем у вакуумных гелиоколлекторов.
    При помощи теплоаккумулятора, солнечные панели подключают к низкотемпературным системам отопления загородных домов (тёплым полам). Средняя температура нагрева 40-60°С. Для радиаторного обогрева «незакипающие» солнечные системы не подходят.

    Читайте также: Плоский солнечный коллектор - устройство и принцип работы панельной гелиосистемы


    Неотъемлемая часть гелиоколлекторов панельного и трубчатого типа - бойлер косвенного нагрева. Внутри емкости расположено два змеевика. Основной теплообменник подключен к котлу. Второй змеевик накопительного бака теплоаккумулятора предназначен для системы солнечного отопления.

    В БКН или теплоаккумуляторе используется принцип косвенного нагрева. Основной источник нагрева воды, находящейся в буферной емкости, это отопительный котел. Гелиоколлекторы дополняют определенный запас тепла. При достижении заданной температуры в баке подача теплоносителя на нагрев прекращается.

    Обогрев воздушными гелиосистемами

    Принцип работы отличается тем, что в качестве теплоносителя используется горячий воздух. Внутреннее устройство воздушного коллектора во многом напоминает гелиосистемы панельного типа. Исключение составляет то, что абсорбер не соединяется с контуром отопления. Фактически, это обычный воздухонагреватель или конвектор. Воздух в помещение направляется посредством вентиляторов и гофрированных каналов.

    Отопление в частном доме от воздушных коллекторов отличается быстрой окупаемостью и высокой теплоэффективностью. Единственный минус в том, что от системы воздухогрейного типа нельзя обеспечить потребности ГВС. Хотя существует несколько технических решений этого вопроса, но все они с низким КПД.

    Читайте также: Воздушный солнечный коллектор для отопления дома


    Одна из современных разработок: дом с пассивным обогревом или «солнечная стена». Абсорбером в этом случае выступает наружная стена здания, защищенная от внешней среды стеклом. Стена в течение всего дня аккумулирует тепло и затем ночью отдает его в отапливаемые помещения. Смотрится такая гелиоустановка современно и отличается хорошей теплоотдачей.

    Тепловое аккумулирование используется не только для обогрева, но и охлаждения помещений. В летнее время года за счет солнечных батарей вентиляторы работают в режиме кондиционирования.

    Что эффективнее - воздушный коллектор или водяной

    Все зависит от того, какие цели ставит перед собой владелец частного дома. Сравнение солнечных водонагревателей с воздухогрейными конвекторами покажет следующее:
    • Эффективность зимой - панельные и вакуумные гелиосистемы предназначены для нагрева воды ГВС и отопления. После наступления холодов теплоэффективность коллекторов падает.
      Панельные системы прекращают аккумуляцию тепла при –25°С. Трубчатые , хотя и с минимальной эффективностью, продолжают работать до –50°С.


      Воздушный коллектор в первую очередь предназначен для обогрева помещений. Зимой гелиосистема воздушного типа продолжает отапливать здание. Отсутствие жидкостного теплоносителя позволяет коллектору работать при любой температуре.

    • Стоимость - солнечные воздухогрейные гелиосистемы обходятся дешевле, установка не требует больших затрат и использования дополнительного дорогого оборудования. Трубчатые и панельные коллекторы стоят дорого. В обвязке используется накопительный бак, контроллер и другое дорогостоящее оборудование.
    Эффективность солнечного воздушного отопления можно увидеть в том, что полная окупаемость наступает уже через 1-2 года эксплуатации. При этом коллекторы работают на отопление, кондиционирование и поддержание необходимого микроклимата в доме.

    Как сделать солнечный обогрев в своем доме

    Для начала следует учесть, что гелиосистема не устанавливается одна по себе. Для нормального обогрева здания потребуется ее одновременная работа с отопительным котлом.

    Необходимо изначально установить основной источник тепла - котел, из расчёта 100% покрытия всех теплозатрат здания. Только после этого приступают к расчету коллекторов.

    Расчет гелиосистемы

    Теплоотдача у водогрейных вакуумных и панельных коллекторов, а также воздухонагревателей, использующих энергию солнца разная. Соответственно нет единой системы расчетов. Для удобства можно воспользоваться специальными онлайн калькуляторами.

    Примеры самостоятельных расчетов:

    • Воздушные гелиосистемы - дадут 1,5 кВт тепловой энергии на каждый 1 м² поверхности коллектора. Дом на 100 м² будет полноценно отапливаться при помощи 4 воздухонагревателей, общей площадью 8 м².
    • Вакуумный трубчатый коллектор - 15 трубок дадут в общей сложности 4,8 кВт/час. Для комфортного проживания одного человека потребуется от 2-4 кВт/час тепла. Дальнейшие расчеты выполняются по количеству проживающих в одном доме.
    Таблица выбора бойлера косвенного нагрева и площади солнечного коллектора:

    Объем накопителей (л)

    Площадь коллекторов (м²)

    Температура в накопителе (°С)

    Стоимость коллекторов российского производства начинается от 15 тыс. руб. Аналоги, изготовленные в странах ЕС нередко достигают 40-50 тыс. руб. (указана стоимость комплекта). Учитывая общую цену нужно учесть, что для автоматизации солнечного отопления от панелей и трубчатых водонагревателей нужно установить блок управления, контроллер температуры, подключить бойлер косвенного нагрева, сделать обвязку, позволяющую одновременно работать котлу и коллекторам. Конечная стоимость «под ключ» будет зависеть от общей конфигурации отопительной системы.

    Монтаж солнечной системы отопления дома

    Существует несколько общих рекомендаций, облегчающих подключение гелиоколлекторов:

Реально ли обеспечить свой дом солнечной тепловой энергией? Сегодня мы обсудим перспективу использования гелиосистем в качестве основного источника отопления, рассмотрим вопрос экономической оправданности и эффективности работы солнечных коллекторов.

Основные узлы системы отопления

Источником нагрева гелиосистемы служат солнечные коллекторы, целью которых является максимально эффективная передача теплоносителю энергии инфракрасного спектра солнечного излучения. Тепловой диапазон солнечного света составляет 40-45% от общего радиационного потока, в конкретных цифрах это 200-500 Вт/м 2 в зависимости от широты, времени года и суток.

В принципе, для построения простейшей гелиосистемы достаточно одних только коллекторов. По их каналам может циркулировать обычная вода, используемая для хозяйственных нужд и обогрева жилья. Однако такой подход недостаточно эффективен по ряду причин, первая из которых — отсутствие восполнения энергопотерь в течение полных суток. Поэтому одним из важнейших элементов системы солнечного отопления служит тепловой аккумулятор — ёмкость с водой.

Схема отопления дома солнечными коллекторами: 1 — подача холодной воды; 2 — теплообменник; 3 — теплоаккумулятор; 4 — датчик температуры; 5 — контур теплоносителя; 6 — насосная станция; 7 — контроллер; 8 — расширительный бак; 9 — горячая вода; 10 — трёхходовой кран; 11 — солнечный коллектор

Также своеобразным ограничением выступает техническое устройство солнечного коллектора. Его каналы имеют довольно малое проходное сечение, из-за чего возникает риск засорения механическими примесями. Также существует высокая вероятность замерзания теплоносителя в ночное время, верхняя же граница диапазона рабочих температур составляет 200-300 °С. Коллекторы рассчитаны на быструю непрерывную циркуляцию теплоносителя, который поступает с низкой температурой, быстро нагревается солнечным светом и так же быстро отдаёт тепло аккумулятору.

Трубки вакуумного U-образного солнечного коллектора

По этим причинам для непосредственного нагрева в тепловых трубках принято использовать пропиленгликоль с набором специальных присадок. Итак, третий обязательный элемент нагревательной гелиосистемы — специальный теплоноситель и обменный контур, который зачастую конструкционно включён в состав теплоаккумулятора, либо может быть частью самого коллектора.

Разновидности и отличия коллекторов

Если не вдаваться в технические тонкости устройства, основное различие между плоскими и вакуумными коллекторами заключено в целесообразности их использования в разных климатических зонах. Плоские коллекторы лучше использовать в южных широтах с преобладающими температурами выше нуля, вакуумные — ближе к северным.

Конструкция плоского солнечного коллектора: 1 — выход теплоносителя; 2 — рама коллектора; 3 — структурированное градостойкое стекло; 4 — абсорбер; 5 — медные трубки; 6 — теплоизоляция; 7 — вход теплоносителя

Целесообразность применения отдельных разновидностей солнечных коллекторов обусловлена рядом особенностей:

  • неспособностью вакуумных коллекторов самостоятельно очищаться от снега;
  • высокими теплопотерями плоских солнечных коллекторов, растущими вместе с разницей температур;
  • низкой устойчивостью плоских коллекторов к ветровым нагрузкам;
  • высокой стоимостью проекта на вакуумных солнечных коллекторах;
  • низким температурным диапазоном эффективного применения плоских коллекторов.

Конструкция вакуумного коллектора с косвенной теплопередачей: 1 — вход охлаждённого теплоносителя; 2 — теплообменник (коллектор); 3 — герметичная пробка; 4 — вакуумная трубка; 5 — алюминиевая пластина (абсорбер); 6 — тепловая трубка; 7 — рабочая жидкость; 8 — выход нагретого теплоносителя; 9 — корпус теплосъёмника; 10 — конденсатор тепловой трубки; 11 — изоляция

Одно из важнейших отличий кроется в процессе монтажа. Плоские коллекторы требуют доставки на крышу в собранном виде, в то время как вакуумные могут собираться по месту. Также плоские коллекторы обычно не имеют собственного теплоаккумулятора и обменного контура.

Проблемы солнечной энергетики

Нагревательные солнечные системы не лишены минусов, из них самый главный — непостоянство источника энергии. В ночное время нагрев системы не происходит, а при затяжной пасмурной погоде ожидать ясного неба, чтобы нагреть дом — удовольствие ниже среднего. Если аккумулятор при достаточно большом объёме способен сохранить нужное количество теплоты хотя бы до утра, то на несколько суток автономной работы в условиях недостаточной освещённости можно рассчитывать только при существенном расширении солнечной фермы. Это, в свою очередь, вызывает обратную проблему: при выходе на режим максимальной мощности (например, в весенний ясный день) такая гелиосистема потребует более интенсивного теплосъёма или временного отключения нескольких абсорберов с их затенением.

Важно понимать, что гелиосистемы в реалиях российского климата не могут использоваться как единственный или основной источник отопления. Однако они способны существенно снизить расход энергоносителей в отопительный период. Особенно эффективно работают гибридные коллекторы, в которых нагреватели совмещены с фотоэлементами. Если облачность задерживает большинство ИК излучения, то потери фотоэлектрической части спектра не столь значительны.

Другой минус солнечных коллекторов заключён в необходимости принудительной циркуляции теплоносителя в системе коллектор-аккумулятор. Некоторые вакуумные коллекторы оснащают баком, рассчитанным на естественную циркуляцию и расположенным выше поглотителя. Такие установки обычно используют в системах горячего водоснабжения с забором воды под давлением холодного водопровода. Но способы наладить совместную работу таких солнечных коллекторов с отопительной системой всё же имеются.

Интеграция в систему отопления

Есть два пути совмещения солнечных коллекторов со сколь угодно сложной системой отопления на жидком теплоносителе. Основным источником энергии может выступать либо газ, либо электричество — существенной разницы в том нет.

Первый вариант — нагрев общего суточного аккумулятора. Накопитель связывается с котлом совместно и последовательно, при недостаточно высокой температуре последний включается в работу и подогревает жидкость. Правильно спроектированная система такого рода может эффективно работать даже без принудительной циркуляции.

1 — контур отопления; 2 — греющая жидкость; 3 — датчик температуры; 4 — насосная станция; 5 — контроллер; 6 — насос; 7 — расширительный бак; 8 — санитарная вода; 9 — холодная вода; 10 — ГВС; 11 — солнечный коллектор; 12 — отопительный котёл

Второй тип совмещения подразумевает использование теплового аккумулятора с двумя контурами. Через один осуществляется съём тепла от коллектора, через второй — нагрев теплоносителя в системе, вода из аккумулятора служит источником ГВС. Поскольку контуры изолированы друг от друга, в отопительной системе и цикле теплообмена от солнечного коллектора можно использовать более теплоёмкие жидкости или антифриз. Основной недостаток — энергозависимость системы, ведь в обоих контурах циркуляция осуществляется принудительно.

1 — подача холодной воды; 2 — датчик температуры; 3 — теплообменник солнечного коллектора; 4 — теплообменник котла; 5 — контур теплоносителя коллектора; 6 — насосная станция; 7 — контроллер; 8 — расширительный бак; 9 — циркуляционный насос; 10 — выход горячей воды; 11 — отопительный котёл; 12 — солнечный коллектор

Расчёт мощности и этапы монтажа

Переход на солнечную энергетику не приемлет спешки и поверхностного подхода. Зачастую выводы о целесообразности установки гелиосистемы можно сделать только через несколько лет наблюдений и расчётов.

К сожалению, полагаться на инсоляционные карты не имеет особого смысла, ибо местные погодные условия могут сильно искажать среднестатистические показатели. Поэтому первое, что нужно сделать — самостоятельно составить отчёт по интенсивности солнечной радиации в месте установки коллекторов. Для измерений используют пиранометры, в пределах 5 тысяч рублей можно приобрести бюджетный прибор с достаточным набором функций.

Измерения следует проводить в разное время суток с периодичностью около недели в течение всего года. В процессе замеров нужно учитывать угол наклона и ориентацию коллекторов. Полученные данные в итоге сверяются со статистикой гидрометцентра о процентном содержании пасмурных дней в году.

Чтобы обеспечить высокую эффективность работы гелиоустановки, следует рассматривать самый негативный сценарий, то есть принимать за точку отсчёта наиболее продолжительный период с самой низкой освещённостью. В идеале можно сделать поправку на вероятность возникновения ещё более неблагоприятных погодных условий, пользуясь метеорологической статистикой за последние 15-20 лет. Полученные данные о поступающей солнечной энергии помогут установить необходимую общую площадь абсорбционного поля и определиться с количеством коллекторов, которые необходимо приобрести.

Как упоминалось, коллекторы очень редко используют как основной источник нагрева, обычно они играют вспомогательную роль. Но долю участия рассчитать можно, она указывается в виде процентной части от совокупной мощности энергосистемы дома или его теплопотерь. Получив требуемое количество киловатт, его умножают на оптический КПД абсорберов, добавляют несколько коэффициентов — поправок на ориентацию, наклон, температурный режим, а также запас надёжности.

По «чистому» значению генерируемой мощности подбирается:

  • нужное число коллекторов определённой модели и в среднем по одному резервному солнечному коллектору на 10-15 находящихся в работе;
  • система трубопроводов с рекомендуемой производителем пропускной способностью и термостойкостью;
  • циркуляционная группа, запорная арматура, прочие вспомогательные устройства;
  • объём и место размещения аккумуляторного бака. В системах с суточным накопителем или мощностью теплового отбора более 20 кВт имеет смысл строить изолированные бетонные резервуары объёмом от 15-20 м 3 .

Для самостоятельного монтажа и обслуживания необходимо составить проект системы, выделить место для размещения вспомогательных устройств и закрепить солнечный коллектор на южном (для северного полушария) склоне кровли с учётом рекомендаций поставщика техники по части ветровых нагрузок. Не забывайте, что приобретая полный комплекс оборудования у одного дистрибьютора, вы получаете возможность бесплатно составить если не проект отопительной гелиосистемы, то как минимум список хорошо совместимого оборудования и комплектующих.

Нужен ли тепловой насос

Один из основных недостатков солнечных отопительных систем — это высокая стоимость. В то время как технология производства плоских коллекторов хорошо освоена, вакуумные абсорберы остаются дорогими, а ведь при определённых погодных условиях с успехом получится эксплуатировать только их. Но есть и другая альтернатива — коллекторы воздушного типа.

Ввиду более простого устройства их стоимость меньше, плюс имеется возможность автономной работы. Эффективность воздушных коллекторов повышается с установкой нагнетающего вентилятора, питающегося от встроенной солнечной панели. За счёт ускоренного, но пропорционального нагреву охлаждения каналов обратные теплопотери через коллектор сводятся к минимуму. Ограничение мощности можно обеспечить управлением скоростью вентилятора или простым перекрытием протока — теплового удара воздушные коллекторы не боятся, к тому же легко настроить естественную рециркуляцию.

Недостаток воздушных систем в малой степени нагрева теплоносителя. Теплоёмкость воздуха меньше, плюс практически всегда абсорбер греется без фокусировки. Чтобы получить возможность интеграции в отопительную систему (что наиболее часто необходимо из-за невозможности проложить вентканал в обогреваемое помещение) тепловой насос или сплит-система действительно нужны.

Но воздушные тепловые насосы можно применять и для прироста эффективности кондиционирования воздуха. С ними скорость циркуляции удаётся поднять до значений, не приемлемых в бытовых вентиляционных системах, что даёт 2-3 кратный прирост выработки за счёт высокой разницы температур. В ночное время коллектор также будет обладать малой долей выработки при рабочем диапазоне температур.

Используемый как теплоноситель воздух можно подвергнуть осушению или заменить на углекислоту или другой более теплоёмкий газ. Однако тепловые насосы с водяным первичным контуром использовать не имеет смысла: они изначально рассчитаны на работу с высокой разницей температур и потому прироста мощности оказывается недостаточно для обоснования стоимости установки.

Стоимость солнечной отопительной установки

За удовольствие от пользования чистой энергией вообще приходится платить достаточно дорого, по крайней мере, на сегодняшний день. Справедливости ради, есть и позитивные новости: за последние пять лет стоимость производства плоских коллекторов упала в 2-2,5 раза, подобного можно вскоре ожидать и от устройств с вакуумными абсорберами.

Стоимость плоских и вакуумных коллекторов определяется объёмом выработки — значением солнечной радиации в идеальных условиях освещения, то есть удельной мощностью. В среднем за 1 кВт гелиоколлекторов плоского типа придётся выложить порядка $350-500, а за комплектную установку с внешним аккумулятором — около $800-1000. Стоимость вакуумных солнечных коллекторов колеблется в более высоком диапазоне — от $600 до $1000-1200 за комплекс в зависимости от качества исполнения, материала трубок, изоляции теплообменника и прочих особенностей.

Для ёмкостных коллекторов действует норма измерения в литрах воды, нагретой на максимально возможную температуру. Вычислить количество вырабатываемой электроэнергии можно либо по общей площади абсорбера, либо выразив через удельную теплоёмкость воды. В зависимости от сложности системы стоимость сильно разнится, цена одного из примеров из среднего сегмента рынка достигает $1500 за 300 литров (на 4-5 жильцов) с разницей температур около 50 °С, что эквивалентно 2,5 кВт удельной мощности.

Рождённый Хаосом властелин вселенной Ра, светоносный страж небесной тверди Сурья, объезжающий на колеснице небосвод Гелиос, неистовый в своих страстях Ярило - все древние народы мира почитали Солнце, осознавая, что источаемые им тепло и свет являются первоосновой жизни. Современная цивилизация пытается найти пути использования чистой и на ближайшие миллионы лет нескончаемой энергии дневного светила, избавившись от необходимости сжигания углеводородов. Солнечное отопление - один из этапов этого пути к всеобщему процветанию.

Типы солнечного отопления

Применяемые сегодня методы использования солнечной энергии для обогрева жилища (и не только) можно разделить на пассивные и активные. Пассивное отопление дома солнцем предусматривает прямой нагрев внутренних помещений за счёт инфракрасного излучения. Активное основано на получении тепловой либо электрической энергии в специальных установках, зачастую расположенных за пределами здания, последующего её преобразования и распределения для нужд отопления. Наиболее эффективно такое солнечное отопление дома, где совмещаются как пассивные, так и активные методы.

Впустим солнце в дом - пассивные методы обогрева

Окна - на юг

Вроде бы все должны понимать, что, расположив основную часть окон с солнечной стороны дома, мы впустим в помещения не только свет, но и тепло. Однако, проезжая по нашим коттеджным посёлкам, можно убедиться, что добрая половина застройщиков не придерживается рационального принципа «дом - на северную часть участка, а окна - на юг». А зря.

Огромные витражи энергосберегающей конструкции Eagle Ridge Residence (США) открыты на южную и западную стороны, впуская в дом максимум тепла и света. С севера здание ограничивает глухая, хорошо утеплённая стена

Зимой низко стоящее солнце проникает в помещения на всю их глубину, а летом, когда светило в зените, от перегрева защищает козырёк, выступающий более чем на два метра от стеклянного фасада

Стена Тромба

В 40-х годах прошлого века американский инженер Тромб придумал «солнечную печку». С южной стороны дома расположена массивная стена из теплоёмкого материала (бетон, камень, полнотелый кирпич), окрашенного в чёрный цвет. В нижней и верхней части этого теплоаккумулятора имеются отверстия. Снаружи на небольшом расстоянии от стены - стеклянный витраж. Солнце нагревает бетон, тёплый воздух стремится подняться вверх, выходит в помещение, а холодный поступает в пространство между камнем и стеклом снизу. Образуется устойчивая циркуляция тёплого воздуха в помещении. Благодаря изобретению селективных покрытий для стекла и камня (бетона), эффективность стены Тромба в современном исполнении стала заметно выше.

Принцип действия стены Тромба. Приятный бонус: её можно использовать не только зимой для косвенного обогрева дома (на рисунке справа), но и летом для вентиляции (слева)

Логическое развитие стены Тромба. Представляет собой пустотелый плоский ящик (панель), для лучшего улавливания излучения располагаемый наклонно. Верхнее ограждение панели - прозрачное для инфракрасного излучения, а вдоль её разделяет перегородка. Окрашенная в чёрный цвет, перегородка нагревается, тёплый воздух поднимается и поступает в комнату. В нижнюю, холодную часть коллектора проникает ещё не нагретый воздух из помещения.

Пассивный воздушный солнечный коллектор - простейшее устройство. Выполнить такое солнечное отопление своими руками под силу любому хозяйственному мужику

Гелиотеплица - свежие овощи как бонус

Солнечная теплица, пристроенная к дому. Чтобы «впустить» в дом больше солнца, нужно увеличить площадь окон. Сделать стеклянной всю южную стену в холодном климате проблематично, слишком высоки будут теплопотери. Отделив часть здания со стеклянными стенами и крышей от основных помещений дома, получим гелиотеплицу. Она почти не помешает проникновению в окна дома инфракрасного излучения, в дополнение к этому нагреется наружная стена внутри оранжереи. В яркий зимний солнечный день воздух в гелиотеплице может прогреваться до существенно большей, чем в доме, температуры.

Солнечным днём гелиотеплица может перегреваться, что является проблемой для летнего времени. Приходится организовывать вентиляцию либо затенять витражи.

Чтобы максимально использовать тепло, полученное теплицей, можно организовать воздухообмен с жилыми помещениями.

Оранжерею солнечного дома в Винчестере (США) от основной части дома отделяет массивная теплоаккумулирующая стена с открывающимися вентиляционными отверстиями. Такое решение - сочетание гелиотеплицы и стены Тромба. Установленные в теплице канистры с водой помогают дольше сохранить тепло

Естественный воздухообмен между теплицей и домом довольно слаб и, чтобы использовать энергию по максимуму, движение воздуха делают принудительным.

Воздухообмен между основной частью этого дома в Хэмптдене (США) и пристроенной теплицей организован через подпольное пространство, тёплый воздух поступает в помещения снизу, а остывший в теплицу сверху. Циркуляцию воздушных потоков обеспечивает вентилятор, автоматика включает и выключает его в нужное время. Практически, это уже солнечное отопление частного дома активного типа

Дополнительный бонус, который даёт гелиотеплица своим хозяевам: почти круглый год в ней можно выращивать овощи или оставлять цитрусовые на зимовку. Правда, это потребует решения проблем вентиляции, влажности, дневного перегрева и ночных заморозков.

Активное отопление - солнечный свет собирают вакуумные коллекторы

Воздушный солнечный коллектор

Воздушный солнечный коллектор, оснащённый системой принудительной передачи и распределения энергии, способен дать намного больше тепла по сравнению с пассивным вариантом. Скорость циркуляции воздуха автоматически регулируется в зависимости от температуры в доме и степени нагрева коллектора. Нагретый в коллекторах воздух может поступать в систему вентиляции или помещения напрямую. Если его температура достаточно высока, он может использоваться и для нагрева жидкого теплоносителя. Излишки дневной энергии запасают на ночь в теплоаккумуляторах.

Солнечное воздушное отопление на основе гелиоколлектора. Из пустотелой панели (1) по воздушным каналам (6) вентилятор гонит воздух в техническое помещение, где автоматика в зависимости от ситуации распределяет его в блок воздухоподготовки (3) либо массивный теплоаккумулятор (2). Параллельно может нагреваться и змеевик горячего водоснабжения (5). Днём, когда помещения нуждаются в нагреве, система работает в режиме В, тёплый воздух из коллектора направляется в комнаты. При достижении необходимой температуры в доме воздушный поток перенаправляется в теплоаккумулятор, режим А. Ночью, когда коллектор не даёт тепла, заслонка закрывает канал, ведущий к нему, циркуляция осуществляется между теплоаккумулятором и помещениями.

Вакуумный солнечный коллектор

Наиболее совершенное на сегодняшний день устройство для гелиоотопления.

Принципиальная схема вакуумного солнечного коллектора. Жидкий абсорбер, циркулирующий по U-образным трубкам, при нагревании испаряется и поднимается вверх, в коллектор. Последний подсоединён к контуру системы отопления и по нему, в свою очередь, циркулирует жидкий теплоноситель. Абсорбер отдаёт энергию теплоносителю, остывает, конденсируется, опускается вниз. Цикл повторяется

Солнечное отопление загородного дома на основе вакуумных коллекторов значительно эффективнее других гелиосистем, однако, помимо традиционной для гелиосистем неравномерности генерации тепла, у него имеется ещё три существенных недостатка: на сильном морозе теплоотдача резко падает, установки хрупки и дорого стоят.

Вакуумные солнечные коллекторы следует устанавливать таким образом, чтобы они были защищены от вандалов. Это особенно актуально для нашей страны, попасть камешком в стеклянную трубочку - милое дело

Вакуумные панели не подключают к системе отопления напрямую. Необходимы, как минимум, буферные ёмкости, которые будут сглаживать неравномерность выработки тепла.

«Правильная» схема подключения вакуумного гелиоколлектора к системе отопления. Тепло передаётся не напрямую, а через теплообменник, дневные излишки тепла на ночь запасаются в теплоаккумуляторе (буферном баке). Обратите внимание, что на схеме изображён «нормальный» отопительный котёл, солярная система лишь дополняет его

Электрические солнечные панели можно использовать для отопления лишь косвенно. Расходовать электроэнергию на нагрев помещений напрямую неразумно, ей можно найти более рациональное применение. Например, направить на работу вентиляторов и автоматики активных гелиосистем.

Почему на крышах наших домов не видно гелиоустановок

Интернет пестрит рекламными материалами с красивыми картинками, повествующими о необычайной выгоде гелиосистем. Народные умельцы выкладывают в youtube ролики на тему «отопление от солнца своими руками» о собственных ноу-хау, собранных на коленке из подручных материалов. Сеть пухнет от перепостов восторженных статей, рассказывающих о чудесных преимуществах солнечного отопления. Однако, много ли домов с солнечными коллекторами на крыше появилось за последние годы поблизости от вашего дома? Ни одного? В чём же причины того, что отопление солнечной энергией в наших краях не находит признания?

  • К сожалению, солнечная энергия для отопления домапоступает не тогда и не туда, когда и куда нужно. Холодно бывает ближе к полюсам, зимой и по ночам. А максимум солнечного излучения приходится на экваториальные районы, на лето и день. Теплоаккумуляторы худо-бедно помогают сгладить суточные, но не сезонные перепады.

Карта интенсивности распределения солнечного света по территории России. В Западной части страны, где живёт львиная доля населения, солнца мало. А в восточной Сибири, где доля излучения заметно выше, холодно, что затрудняет использование активных систем. Кстати, солнечные панели, вырабатывающие электричество, не столь чувствительны к сильным морозам. В холодной, но солнечной Якутии уже построены и успешно функционируют довольно мощные гелиоэлектростанции.

  • Пассивное отопление солнечной энергией малоэффективно и не способно сколь-нибудь серьёзно обогреть дом в условиях русской зимы. «Окна - на юг» - реально полезный метод проектирования, ничего не стоящий, но помогающий оптимизировать расходы на отопление. А вот некогда относительно популярные в США гелиотеплицы, стены Тромба и их производные постепенно сошли на нет даже у себя на родине.
  • Активные солнечные системы отопления частного дома обходятся весьма недёшево, немало денег придётся отдать за оборудование. Эксплуатация, вопреки некоторым утверждениям, отнюдь не бесплатна: расходуется электроэнергия, требуется обслуживание техники. При нынешних ценах, по сравнению не только с дешёвым природным газом, но даже с довольно дорогими пеллетами, дизтопливом, установка вакуумного солнечного коллектора на подавляющей части территории РФ не окупится вообще никогда, срок окупаемости превышает срок службы оборудования. Лишь в некоторых южных регионах страны солнечные системы отопления частного дома могут быть не убыточны при определённых условиях.

Научная станция на острове Ольхон (Россия). Применение вакуумных коллекторов (справа на крыше) для приготовления горячей воды и гелиопанелей (слева) для выработки электроэнергии имеет смысл, ведь центральных коммуникаций на этом скалистом байкальском острове нет. Однако для полноценного отопления в климате Бурятии солнечных систем недостаточно, греют дом «нормальные» печи, топливо для которых завозят с «большой земли», ведь изводить местный лес на дрова нельзя

Как обстоят дела в Европе

Почему же, путешествия по Западной Европе, мы видим (хотя, не так уж и часто) гелиоколлекторы на крышах домов? Причин тому несколько: дороговизна традиционных видов топлива, мягкий климат, большее количество солнечных дней. Не случайно в пасмурной Британии солнечное отопление так же мало распространено, как и у нас. И, главное, в тех странах, где система солнечного отопления - практическая реальность, действуют программы поддержки, до половины стоимости оборудования оплачивает государство. Положа руку на сердце, солнечные коллекторы малопригодны для отопления, в основном их используют для приготовления горячей воды, в солнечную погоду летом реально полностью обеспечивать нужды ГВС. Кстати, в основном на крышах домов можно увидеть солнечные панели, вырабатывающие электричество. Электроэнергию производить выгоднее, а неравномерность генерации - не проблема, ведь в любое время суток центральные энергосети покупают электроэнергию, полученную в частном доме. Причём, оплата идёт по повышенному тарифу. Опять-таки, оборудование почти не требует обслуживания и ремонта. Сегодня можно смело утверждать, что в глобальном масштабе у гелиоэнергетики, хоть она пока и не конкурент традиционной - большое будущее. А вот насчёт перспектив солнечного отопления ситуация неясна. Существующие системы уже исчерпали свой потенциал, новых подходов пока не видно, а стоимость традиционного топлива падает, что снижает привлекательность солярных систем обогрева.

«Солнечные крыши» Баварии. Все панели, которые мы видим на фото - электрические, солнечное отопление рациональные немцы не считают особо выгодным даже при условии, что государство берёт на себя половину расходов по установке гелиосистем

Тем читателям, кого тема использования энергии солнца для жизнеобеспечения дома живо заинтересовала, рекомендуем критически воспринимать рекламные материалы и обращаться к профессионалам-практикам, желательно имеющими опыт установки и эксплуатации гелиоустановок.

Видео: воздушное солнечное отопление своими руками

Энергия солнца, дающая нам свет, электричество, тепло, быстрыми темпами завоевывает все новые и новые рубежи. Уже никого не удивить различными приборами и устройствами на солнечных батареях, домашними гелиевыми электростанциями, различными светильниками, уличными гирляндами, светофорами, работающими от энергии солнечного света.

И конечно же, логичным направлением применения энергии солнца стало использование ее для отопления, нагрева воды не только в отдельно взятом частном доме, но и в больших домах, в общественных зданиях.

Конечно, солнечные системы не в состоянии обеспечить круглосуточный режим работы для нагрева воды. Но заменить в световой день традиционные ископаемые источники энергии – нефть, газ, уголь – они в состоянии. Поскольку солнечное отопление не требует потребления сырья, то отсутствуют вредные выбросы в атмосферу, нет загрязнения окружающей среды.

Поэтому использование энергии солнца для отопления жилых домов, горячего водоснабжения с каждым годом будет приобретать все большее значение на фоне ожидаемого роста цен на нефть, газ, уголь.

Система солнечного отопления

В простейшем случае солнечная система отопления состоит из одного или нескольких солнечных коллекторов, соединенных в замкнутый контур с арматурой отопления – батареями или трубами, уложенными в полу. При этом батареи или трубы пола должны находиться выше коллекторов.

Тогда вода, нагреваемая в коллекторах, по законам конвекции будет подниматься в отопительные секции, а холодная вода будет опускаться к коллекторам. Батареи или трубы, упрятанные в пол, нагреваются и таким образом без каких-либо дополнительных устройств происходит обогрев помещения.

Простейшая схема солнечного отопления

Но это именно самая простая схема, поясняющая принцип построения системы. Реально же солнечное отопление дома подразумевает установку значительно более сложной системы. Прежде чем покупать солнечные нагреватели воды или делать их своими руками, нужно определить, какую площадь нужно отапливать, какая система отопления дома наиболее подходит для этих целей.

При этом нужно учитывать, что ни одна из гелиевых систем не сможет обеспечить круглосуточный режим работы. Для обогрева помещений в ночное время придется использовать традиционные средства отопления, работающие на одном из ископаемых энергоносителей.


Типовая схема солнечного отопления и горячего водоснабжения

Для небольшого дома с одной-двумя комнатами может быть использована система воздушного отопления от солнечных коллекторов. В таких установках в качестве теплоносителя используется воздух, который, нагреваясь в системе коллекторов, по воздуховодам поступает в обогреваемое помещение. Охлажденный воздух из этого помещения поступает в коллектор.


Схема солнечного воздушного отопления

Что касается систем солнечного отопления с жидким теплоносителем, то принципиально все они строятся одинаково. Различие заключается в типе коллекторов, используемых для нагрева теплоносителя.

Стандартный комплект состоит из коллекторов, бака-накопителя с двумя теплообменниками (один соединен с коллекторами, второй – с дополнительным нагревателем). Бак-накопитель должен быть снабжен хорошей теплоизоляцией. Циркуляция теплоносителя и воды в системе отопления поддерживается насосной группой.

Система отопления с плоским коллектором

Конструкция плоского коллектора настолько проста, что он свободно может быть изготовлен своими руками. Это устройство представляет собой короб, внутри которого размещается адсорбер, трубы с теплоносителем, теплоизоляция. Для его изготовления не требуются какие-то особые материалы. Все комплектующие вполне доступны. Это доски, ДВП, деревянные бруски, кровельное железо, пенопласт, медные трубы, каленое стекло, герметизирующие материалы, термостойкая черная краска.

Такое добротно собранное самодельное устройство способно разогреть теплоноситель в режиме застоя до 150°С. Как правило, в систему заливается вода с добавлением антифриза в такой пропорции, чтобы этот раствор не замерз зимой в ночное время, когда солнечный коллектор не работает.


Промышленный плоский коллектор

Коллектор или батареи коллекторов устанавливаются таким образом, чтобы обеспечить максимальное освещение их солнцем. Как правило, это южная сторона крыши дома. Теплоноситель, циркулирующий в контуре устройства, подается насосом в теплообменник, расположенный в нижней части бака-накопителя. Непрерывно циркулируя в этой системе, теплоноситель нагревает воду в бойлере до 50°С – 60°С, что вполне достаточно для того, чтобы обогревать жилые помещения.


Плоские солнечные коллекторы на крыше отеля и частного дома

Чтобы обеспечить непрерывное поступление тепла в жилые помещения в ночное время, устанавливается система резервного подогрева воды, работающая на традиционных источниках энергии – газе, электричестве, угле, дровах. Теплоноситель, циркулирующий в резервной системе, поступает в теплообменник, расположенный над основным.

Тем самым обеспечивается подогрев воды в бойлере и непрерывный цикл отопления. Если система резервного отопления, работающая на угле и дровах, может быть запущена только вручную, то газовая и электрическая системы могут включаться автоматически, под управлением специального блока управления.

Система отопления с вакуумным коллектором

Эта система отличается от предыдущей только конструкцией коллектора. В этом устройстве для нагрева теплоносителя используются вакуумные трубки. В сущности, эти вакуумные трубки представляют собой модифицированный сосуд Дьюара.

Двойная стеклянная трубка, в которой из межстеночного промежутка откачан воздух. Тем самым обеспечивается надежная теплоизоляция внутренней трубки. Во внутренней трубке находится адсорбер и медная труба, верхний конец которой имеет несколько больший диаметр, чем сама труба, и запаян. Предварительно труба наполняется легкокипящей жидкостью.

Под воздействием солнечного излучения трубка нагревается, жидкость в ней начинает кипеть, пар поднимается в наконечник. Там он отдает свое тепло, возвращается в жидкое состояние и стекает по законам конвекции вниз. Этот процесс продолжается непрерывно, разогревая при этом наконечник до 250°С -280°С. Пятнадцать-двадцать таких трубок монтируются в единую конструкцию – коллектор. Наконечники вставляются в трубу, по которой циркулирует теплоноситель. Теплоноситель разогревается до 60°С - 80°С и подается в теплообменник бойлера.


Схема вакуумной трубки

Сам же вакуумный коллектор устанавливается наклонно, для обеспечения свободной циркуляции жидкости в медных трубках. За исключением коллектора, эта система отопления ничем не отличается от системы на базе плоского коллектора.


Вакуумные коллекторы на крыше дома

Система отопления с параболоцилиндрическим зеркалом

Такое устройство представляет собой наиболее громоздкую и сложную в эксплуатации конструкцию. Это длинное (несколько метров) зеркало, изогнутое в параболу. Такое зеркало можно сделать самому, изогнув, к примеру, лист фанеры и обклеив его с внутренней стороны алюминиевой фольгой.

Такое параболоцилиндрическое зеркало устанавливается на устойчивой раме. В фокусе зеркала устанавливается длинная труба, по которой циркулирует теплоноситель. При правильном определении фокуса зеркала и установке трубы в этом фокусе температура по линии нагрева трубы может достигать 250°С – 300°С. Но это при условии правильной установки и ориентации зеркала на солнце.


Параболоцилиндрический зеркальный коллектор

Последнее условие является очень важным, так как при неправильной ориентации зеркала теряется мощность нагрева, и температура на трубе существенно падает. Чтобы этого не произошло, установку с параболоцилиндрическим зеркалом необходимо оснастить следящим устройством с исполнительным механизмом.

Следящее устройство будет отслеживать положение солнца и соответствующим образом ориентировать зеркало в вертикальной и горизонтальной плоскостях. Это значительно усложняет, а следовательно, удорожает конструкцию.

Если кроме солнечных коллекторов будет установлен еще и комплект солнечных батарей, снабжающих дом электричеством, то в результате можно получить абсолютно автономное энергообеспечение дома, которое никак не зависит от общих сетей энергоснабжения.


Вакуумные коллекторы и гелиевые фотоэлектрические батареи

Солнце будет снабжать дом электричеством и теплом, а в ночное время электричество, накопленное за световой день, будет подогревать воду в резервной системе отопления. Блок управления будет следить за своевременным включением и отключением нужных устройств, регулировать температуру внутри помещений. И это не далекое будущее. Это работает уже сейчас.



Статьи по теме: