Нахождение процентного отношения двух чисел. Формула простого процента: как найти исходное значение

В этом коротком видеоуроке мы научимся решать задачи на проценты с помощью специальной формулы, которая так и называется: формула простого процента. Давайте оформим эту формулу в виде теоремы.

Теорема о простом проценте. Предположим, что есть некая исходная величина x , которая затем меняется на k %, и получается новая величина y . Тогда все три числа связаны формулой:

Плюс или минус перед коэффициентом k ставится в зависимости от условия задачи. Если по условию величина x возрастает, то перед k стоит плюс. Если же величина уменьшается, то перед коэффициентом k стоит минус.

Несмотря на кажущуюся мудреность этой формулы, многие задачи с ее помощью решаются очень быстро и красиво. Давайте попробуем.

Задача. Цена на товар была повышена на 10% и составила 2970 рублей. Сколько рублей стоил товар до повышения цены?

Чтобы решить эту задачу с помощью формулы простых процентов, нам необходимы три числа: исходное значение x , проценты k и итоговое значение y . Из всех трех чисел нам известны проценты k = 10 и итоговое значение y = 2970. Обратите внимание: 2970 — это именно итоговая цена, т.е. y . Потому что по условию задачи исходная цена на товар неизвестна (ее как раз требуется найти). Но затем она была повышена, и только тогда составила 2970 рублей.

Итак, нам нужно найти x , т.е. исходное значение. Что ж, подставляем наши числа в формулу и получаем:

Складываем числа в числителе и получаем:

Сокращаем по одному нулю в числителе и знаменателе, а затем умножаем обе части уравнения на 10. Получим:

11x = 29 700

Чтобы найти x из этого простейшего линейного уравнения, нужно разделить обе стороны на 11:

x = 29 700: 11 = 2700

Как видите, это довольно большие числа, поэтому в уме такие вычисления не провести. В случае, если такая задача встретится вам на ЕГЭ, придется делить уголком. При этом все разделилось без остатка, и мы получили значение x :

x = 2700

Именно столько стоил товар до повышения цены. И именно это число нам требовалось найти по условию задачи. Поэтому все: задача решена. Причем решена не «напролом», а с помощью формулы простого процента — быстро, красиво и наглядно.

Разумеется, эту задачу можно было решать по-другому. Например, через пропорции. Или экзотическим методом коэффициентов. Но будет гораздо лучше и надежнее, если у вас на вооружении будет несколько приемов для решения любой задачи на проценты. Так что обязательно попрактикуйтесь в использовании данной формулы.

Процентное соотношение (или отношение) двух чисел — это отношение одного числа к другому умноженное на 100%.

Процентное отношение двух чисел можно записать следующей формулой:

Пример процентного отношения

Например есть два числа: 750 и 1100.

Процентное отношение 750 к 1100 равно

Число 750 составляет 68.18% от 1100.

Процентное отношение 1100 к 750 равно

Число 1100 составляет 146.67% от 750.

Пример-задача 1

Норма завода по производству автомобилей составляет 250 машин в месяц. Завод собрал за месяц 315 машин. Вопрос: на сколько процентов завод перевыполнил план?

Процентное отношение 315 к 250 = 315:250*100 = 126% .

План выполнен на 126% . План перевыполнен на 126% — 100% = 26% .

Пример-задача 2

Прибыль компании за 2011 год составила 126 млн $, в 2012 году прибыль составила 89 млн $. Вопрос: на сколько процентов упала прибыль в 2012 году?

Процентное отношение 89 млн к 126 млн = 89:126*100 = 70.63%

Прибыль упала на 100% — 70.63% = 29.37%

Отношение двух любых чисел x и y – это их частное, то есть дробь вида x/y. Процентным соотношением таких чисел является частное, умноженное на 100.

История понятия

Процент происходит от латинского выражения «pro cento», которое в переводе означает «на сотню». В математике процент - это сотая часть числа. Выражение частей от целого было актуально еще в античные времена, когда люди впервые начали использовать дроби. В Древнем Египте широкой популярностью пользовались так называемые египетские дроби, которые представляли собой сумму нескольких различных дробей, обязательно содержащих в числителе единицу. Например, выражение 13/84 египетские математики выразили бы в виде суммы 1/12 + 1/14. Однако 1/100 - наиболее удобный способ выражать части числа.

Проценты зародились в , задолго до возникновения . Многие бытовые вопросы, как то мера товаров или размер налога, определялись как сотая часть от целого. В России такие вычисления были введены гораздо позже Петром Первым, ведь русская система мер использовала числа, не кратные сотне. Проценты до сих пор активно используются в реальной жизни и занимают важное место во многих сферах деятельности.

Что такое процент

Итак, - это одна сотая часть чего либо. Если у нас есть 100 яблок, то 5 фруктов из них - это пять частей от сотни или 5 %. Если у нас есть 200 персиков, то 23 % от них означает 23 части по 2 фрукта каждая или 46 персиков. Очевидно, что эти показатели можно выразить в виде обыкновенных дробей. В случае с яблоками мы получим дробь 5 / 100 = 5 %, а в ситуации с персиками - 46 / 200 = 23 %. Используя данное уравнение, мы можем найти процентное соотношение двух чисел. И не только.

Процентное соотношение двух чисел

Процент - это соотношение двух чисел, переведенное в десятичную дробь и умноженное на 100. В математической записи это выглядит следующим образом:

m / n × 100 = p,

где m – размер части, n – размер целого, p – процент.

Зная два из трех параметров, мы можем легко определить третий. Наш калькулятор использует данное выражение для поиска процента, целого или части числа. Соответственно, в программе часть обозначена как числитель, целое - как знаменатель, а процент остается процентом. На практике это выглядит следующим образом.

Примеры расчета процентов

Допустим, у нас есть 200 кг сахара. Мы хотим узнать:

  • сколько сахара необходимо отгрузить, если требуется поставить 37 % от исходной массы;
  • 3 кг сахара просыпалось, и требуется указать процент потерянного товара.

Итак, в первой задаче нам уже известен процент p = 37, а также размер целой части n = 200. У нас есть знаменатель и процент, а требуется найти числитель. Для этого выбираем в меню калькулятора опцию «вычислить числитель» и вводим параметры процента и знаменателя. В ответе получаем 74 кг.

Во второй задаче у нас опять же есть значение целого (знаменатель, равный 200), а так же размер части (числитель, равный 3). Для решения задачи требуется определить процент. Для этого в меню программы выбираем «вычислить процент», вводим соответствующие значения и видим мгновенный результат в виде 2 %.

Есть и третья задача. Допустим, мы не знаем, сколько сахара было изначально, но хотим это выяснить. Нам известно, что 56 кг - это 18 % от первоначального объема. Теперь нам требуется найти целое или знаменатель. Выберем соответствующий пункт калькулятора и введем известные параметры, то есть процент и числитель. Таким образом, изначально на складе было 311 кг сахара.

Процентная разница между числами

Наш калькулятор также позволяет определить процентную разницу между числами. Для вычисления данного параметра используется простая формула:

(a − b) / (0,5 × (a + b)) × 100 %.

Если вам для решения практических задач требуется вычислить процентную разницу между двумя значениями, то достаточно выбрать необходимый пункт в меню калькулятора и рассчитать требуемый показатель.

Пример

Допустим, за первый месяц работы вы получили чистую прибыль в размере 500 $, а во втором - 650 $. Давайте узнаем, на сколько процентов изменился ваш доход за месяц. Для этого выберите в меню программы тип калькулятора «разница в процентах» и введите заданные показатели прибыли. При этом неважно, в какую из ячеек вы вобьете числа, так как разница в любом случае будет одинакова. В результате мы получим ответ - прибыль изменилась на 26 %. В нашем случае она увеличилась.

Заключение

Проценты занимают важное место в нашей жизни - расчет этих параметров необходим в практически любой деятельности человека: от продвижения сайтов до расчета технологических процессов. Используйте наши калькуляторы в своей деятельности - программы пригодятся вам как в учебе, так и на работе.

Проценты - одно из понятий прикладной математики, которые часто встречаются в повседневной жизни. Так, часто можно прочитать или услышать, что, например, в выборах приняли участие 56,3% избирателей, рейтинг победителя конкурса равен 74%, промышленное производство увеличилось на 3,2%, банк начисляет 8% годовых, молоко содержит 1,5% жира, ткань содержит 100% хлопка и т.д. Ясно, что понимание такой информации необходимо в современном обществе.

Одним процентом от любой величины - денежной суммы, числа учащихся школы и т.д. - называется одна сотая ее часть. Обозначается процент знаком %, Таким образом,
1% - это 0,01, или \(\frac{1}{100} \) часть величины

Приведем примеры:
- 1% от минимальной заработной платы 2300 р. (сентябрь 2007 г.) - это 2300/100 = 23 рубля;
- 1% от населения России, равного примерно 145 млн. человек (2007 г.), - это 1,45 млн. человек;
- 3%-я концентрация раствора соли - это 3 г соли в 100 г раствора (напомним, что концентрация раствора - это часть, которую составляет масса растворенного вещества от массы всего раствора).

Понятно, что вся рассматриваемая величина составляет 100 сотых, или 100% от самой себя. Поэтому, например, надпись на этикетке "хлопок 100%" означает, что ткань состоит из чистого хлопка, а стопроцентная успеваемость означает, что в классе нет неуспевающих учеников.

Слово "процент" происходит от латинского pro centum, означающего "от сотни" или "на 100". Это словосочетание можно встретить и в современной речи. Например, говорят: "Из каждых 100 участников лотереи 7 участников получили призы". Если понимать это выражение буквально, то это утверждение, разумеется, неверно: ясно, что можно выбрать 100 человек, участвующих в лотерее и не получивших призы. В действительности точный смысл этого выражения состоит в том, что призы получили 7% участников лотереи, и именно такое понимание соответствует происхождению слова "процент": 7% - это 7 из 100, 7 человек из 100 человек.

Знак "%" получил распространение в конце XVII века. В 1685 году в Париже была издана книга "Руководство по коммерческой арифметике" Матье де ла Порта. В одном месте речь шла о процентах, которые тогда обозначали "cto" (сокращенно от cento). Однако наборщик принял это "с/о" за дробь и напечатал "%". Так из-за опечатки этот знак вошел в обиход.

Любое число процентов можно записать в виде десятичной дроби, выражающей часть величины.

Чтобы выразить проценты числом, нужно количество процентов разделить на 100. Например:

\(58\% = \frac{58}{100} = 0,58; \;\;\; 4,5\% = \frac{4,5}{100} = 0,045; \;\;\; 200\% = \frac{200}{100} = 2 \)

Для обратного перехода выполняется обратное действие. Таким образом, чтобы выразить число в процентах, надо его умножить на 100:

\(0,58 = (0,58 \cdot 100)\% = 58\% \) \(0,045 = (0,045 \cdot 100)\% = 4,5\% \)

В практической жизни полезно понимать связь между простейшими значениями процентов и соответствующими дробями: половина - 50%, четверть - 25%, три четверти - 75%, пятая часть - 20%, три пятых - 60% и т.д.

Полезно также понимать разные формы выражения одного и того же изменения величины, сформулированные без процентов и с помощью процентов. Например, в сообщениях "Минимальная заработная плата повышена с февраля на 50%" и "Минимальная заработная плата повышена с февраля в 1,5 раз" говорится об одном и том же. Точно так же увеличить в 2 раза - это значит увеличить на 100%, увеличить в 3 раза - это значит увеличить на 200%, уменьшить в 2 раза - это значит уменьшить на 50%.

Аналогично
- увеличить на 300% - это значит увеличить в 4 раза,
- уменьшить на 80% - это значит уменьшить в 5 раз.

Задачи на проценты

Поскольку проценты можно выразить дробями, то задачи на проценты являются, по существу, теми же задачами на дроби. В простейших задачах на проценты некоторая величина а принимается за 100% ("целое"), а ее часть b выражается числом p%.

В зависимости от того, что неизвестно - а, b или р, выделяются три типа задач на проценты. Эти задачи решаются так же, как и соответствующие задачи на дроби, но перед их решением число р% выражается дробью.

1. Нахождение процента от числа.
Чтобы найти \(\frac{p}{100} \) от a, надо a умножить на \(\frac{p}{100} \):

\(b = a \cdot \frac{p}{100} \)

Итак, чтобы найти р% от числа, надо это число умножить на дробь \(\frac{p}{100} \). Например, 20% от 45 кг равны 45 0,2 = 9 кг, а 118% от х равны 1,18x

2. Нахождение числа по его проценту.
Чтобы найти число по его части b, выраженной дробью \(\frac{p}{100} , \; (p \neq 0) \), надо b разделить на \(\frac{p}{100} \):
\(a = b: \frac{p}{100} \)

Таким образом, чтобы найти число по его части, составляющей р% этого числа, надо эту часть разделить на \(\frac{p}{100} \). Например, если 8% длины отрезка составляют 2,4 см, то длина всего отрезка равна 2,4:0,08 = 240:8 = 30 см.

3. Нахождение процентного отношения двух чисел.
Чтобы найти, сколько процентов число b составляет от а \((a \neq 0) \), надо сначала узнать, какую часть b составляет от а, а затем эту часть выразить в процентах:

\(p = \frac{b}{a} \cdot 100\% \) Значит, чтобы узнать, сколько процентов первое число составляет от второго, надо первое число разделить на второе и результат умножить на 100.
Например, 9 г соли в растворе массой 180 г составляют \(\frac{9 \cdot 100}{180} = 5\% \) раствора.

Частное двух чисел, выраженное в процентах, называется процентным отношением этих чисел. Поэтому последнее правило называют правилом нахождения процентного отношения двух чисел.

Нетрудно заметить, что формулы

\(b = a \cdot \frac{p}{100}, \;\; a = b: \frac{p}{100}, \;\; p = \frac{b}{a} \cdot 100\% \;\; (a,b,p \neq 0) \) взаимосвязаны, а именно, две последние формулы получаются из первой, если выразить из нее значения a и p. Поэтому первую формулу считают основной и называют формулой процентов. Формула процентов объединяет все три типа задач на дроби, и, при желании, можно ею пользоваться, чтобы найти любую из неизвестных величин a, b и p.

Составные задачи на проценты решаются аналогично задачам на дроби.

Простой процентный рост

Когда человек не вносит своевременную плату за квартиру, на него налагается штраф, который называется "пеня" (от латинского роеnа - наказание). Так, если пеня составляет 0,1% от суммы квартплаты за каждый день просрочки, то, например, за 19 дней просрочки сумма составит 1,9% от суммы квартплаты. Поэтому вместе, скажем, с 1000 р. квартплаты человек должен будет внести пеню 1000 0,019 = 19 р., а всего 1019 р.

Ясно, что в разных городах и у разных людей квартплата, размер пени и время просрочки разные. Поэтому имеет смысл составить общую формулу квартплаты для неаккуратных плательщиков, применимую при любых обстоятельствах.

Пусть S - ежемесячная квартплата, пеня составляет р% квартплаты за каждый день просрочки, а n - число просроченных дней. Сумму, которую должен заплатить человек после n дней просрочки, обозначим S n .
Тогда за n дней просрочки пеня составит рn% от S, или \(\frac{pn}{100}S \), а всего придется заплатить \(S + \frac{pn}{100}S = \left(1+ \frac{pn}{100} \right) S \)
Таким образом:
\(S_n = \left(1+ \frac{pn}{100} \right) S \)

Эта формула описывает многие конкретные ситуации и имеет специальное название: формула простого процентного роста.

Аналогичная формула получится, если некоторая величина уменьшается за данный период времени на определенное число процентов. Как и выше, нетрудно убедиться, что в этом случае
\(S_n = \left(1- \frac{pn}{100} \right) S \)

Эта формула также называется формулой простого процентного роста, хотя заданная величина в действительности убывает. Рост в этом случае "отрицательный".

Сложный процентный рост

В банках России для некоторых видов вкладов (так называемых срочных вкладов, которые нельзя взять раньше, чем через определенный договором срок, например, через год) принята следующая система выплаты доходов: за первый год нахождения внесенной суммы на счете доход составляет, например, 10% от нее. В конце года вкладчик может забрать из банка вложенные деньги и заработанный доход - "проценты", как его обычно называют.

Если же вкладчик этого не сделал, то проценты присоединяются к начальному вкладу (капитализируются), и поэтому в конце следующего года 10% начисляются банком уже на новую, увеличенную сумму. Иначе говоря, при такой системе начисляются "проценты на проценты", или, как их обычно называют, сложные проценты.

Подсчитаем, сколько денег получит вкладчик через 3 года, если он положил на срочный счет в банк 1000 р. и ни разу в течение трех лет не будет брать деньги со счета.

10% от 1000 р. составляют 0,1 1000 = 100 р., следовательно, через год на его счете будет
1000 + 100 = 1100 (р.)

10% от новой суммы 1100 р. составляют 0,1 1100 = 110 р., следовательно, через 2 года на его счете будет
1100 + 110 = 1210 (р.)

10% от новой суммы 1210 р. составляют 0,1 1210 = 121 р., следовательно, через 3 года на его счете будет
1210 + 121 = 1331 (р.)

Нетрудно представить себе, сколько при таком непосредственном, "лобовом" подсчете понадобилось бы времени для нахождения суммы вклада через 20 лет. Между тем подсчет можно вести значительно проще.

А именно, через год начальная сумма увеличится на 10%, то есть составит 110% от начальной, или, другими словами, увеличится в 1,1 раза. В следующем году новая, уже увеличенная сумма тоже увеличится на те же 10%. Следовательно, через 2 года начальная сумма увеличится в 1,1 1,1 = 1,1 2 раз.

Еще через один год и эта сумма увеличится в 1,1 раза, так что начальная сумма увеличится в 1,1 1,1 2 = 1,1 3 раз. При таком способе рассуждений получаем решение нашей задачи значительно более простое: 1,1 3 1000 = 1,331 1000 - 1331 (р.)

Решим теперь эту задачу в общем виде. Пусть банк начисляет доход в размере р% годовых, внесенная сумма равна S р., а сумма, которая будет на счете через n лет, равна S n р.

Величина p% от S составляет \(\frac{p}{100}S \) р., и через год на счете окажется сумма
\(S_1 = S+ \frac{p}{100}S = \left(1+ \frac{p}{100} \right)S \)
то есть начальная сумма увеличится в \(1+ \frac{p}{100} \) раз.

За следующий год сумма S 1 увеличится во столько же раз, и поэтому через два года на счете будет сумма
\(S_2 = \left(1+ \frac{p}{100} \right)S_1 = \left(1+ \frac{p}{100} \right) \left(1+ \frac{p}{100} \right)S = \left(1+ \frac{p}{100} \right)^2 S \)

Аналогично \(S_3 = \left(1+ \frac{p}{100} \right)^3 S \) и т.д. Другими словами, справедливо равенство
\(S_n = \left(1+ \frac{p}{100} \right)^n S \)

Эту формулу называют формулой сложного процентного роста , или просто формулой сложных процентов.

Процент (что означает "на сотню") это сравнение с 100.

Символ процента %. Так, например, 5 процентов записывается как 5%.

Предположим, что в комнате 4 человека.

50% это половина - 2 человека.
25% это четверть - 1 человек.
0% это ничего - 0 человек.
100% это целое - все 4 человека в комнате.
Если в комнату заходят ещё 4 человека, то их колличество становится 200%.

1% это $\frac{1}{100}$
Если всего есть 100 человек, то 1% из них это один человек.

Чтобы выразить математически число X как процент от Y вы делаете следующее:
$X: Y \times 100 = \frac{X}{Y} \times 100$

Пример: Сколько процентов от 160 составляет 80?

Решение:

$\frac{80}{160} \times 100 = 50\%$

Увеличение/Уменьшение процентного соотношения

Когда число увеличивается относительно другого числа, то величина увеличения представляется как:

Увеличение = Новое число - Старое число

Однако, когда число уменьшается относительно другого числа, то эту величину можно представить как:

Уменьшение = Старое число - Новое число

Увеличение или уменьшение числа всегда выражается на основании старого числа.
Поэтому:

%Увеличение = 100 ⋅ (Новое число - Старое число) ÷ Старое число

%Уменьшение = 100 ⋅ (Старое число - Новое число) ÷ Старое число

Например, у Вас было 80 почтовых марок и Вы начали в этом месяце собирать ещё пока общее количество почтовых марок достигло 120. Процентное увеличение числа марок, которые у Вас есть равно

$\frac{120 - 80}{80} \times 100 = 50\%$

Когда у Вас стало 120 марок, Вы и Ваш друг договорились обменять игру "Lego" на несколько из этих марок. Ваш друг взял несколько марок, которые ему понравились, и когда Вы подсчитали оставшиеся марки, то обнаружили, что у Вас осталось 100 марок. Процентное уменьшение числа марок может быть подсчитано как:

$\frac{120 - 100}{120} \times 100 = 16,67\%$

Калькулятор Процентов

Что если % из ? Результат:
это какой процент от ? Ответ: %
это % от чего? Ответ:

Как процентные соотношения помогают в реальной жизни

Есть два способа, как процентные соотношения помогают в решении наших каждодневных проблем:

1. Мы сравниваем две разных величины, когда все величины соотносятся с одной и той же основной величиной равной 100. Чтобы объяснить это, давайте рассмотрим следующий пример:

Пример: Том открыл новую бакалейную лавку. За первый месяц он купил бакалеи за \$650 и продал за \$800, а во втором купил за \$800 и продал за \$1200. Надо рассчитать делает ли Том больше прибыли или нет.

Решение:

Напрямую из этих чисел мы не можем сказать растёт доход Тома или нет, потому что расходы и выручка каждый месяц разные. Для того, чтобы решить эту задачу, нам нужно соотнести все значения к фиксированной основной величине равной 100. Давайте выразим процентное соотношение его доходов к расходам в первый месяц:

(800 - 650) ÷ 650 ⋅ 100 = 23,08%

Это значит, что если Том тратил \$100, то он делал прибыль в размере 23.08 в первый месяц.

Теперь давайте применим тоже самое ко второму месяцу:

(1200 - 800) ÷ 800 ⋅ 100 = 50%

Так, во втором месяце, если Том тратил \$100, то его доход был \$50(потому что \$100⋅50% = \$100⋅50÷100=\$50). Теперь понятно,что доходы Тома растут.

2. Мы можем определять количество части большей величины, если известно процентное соотношение этой части. Чтобы объяснить это, давайте рассмотрим следующий пример:

Пример: Синди хочет купить 8 метров шланга для своего сада. Она пошла в магазин и обнаружила, что там есть катушка со шлангом длиной 30 метров. Однако, она заметила, что на катушке написано, что 60% уже продано. Она должна узнать хватит ли ей оставшегося шланга.

Решение:

В табличке сказано, что

$\frac{Продано\ длина}{Всего\ длина} \times 100 = 60\%$

$Продано\ длина = \frac{60 \times 30}{100} = 18м$

Поэтому остаток 30 - 18 = 12м, которого вполне достаточно Синди.

Примеры:

1. Райн любит собирать спортивные карточки с его любимыми игроками. У него есть 32 карточки с игроками бейсбола, 25 карточки с футболистами и 47 с баскетболистами. Каково процентное соотношение карточек каждого спорта в его коллекции?

Решение:

Общее количество карточек = 32 + 25 + 47 = 104

Процентное соотношение бейсбольных карточек = 32/104 x 100 = 30,8%

Процентное соотношение футбольных карточек = 25/104 x 100 = 24%

Процентное соотношение баскетбольных карточек = 47/104 x 100 = 45,2%

Обратите внимание, что если сложить все проценты, то получится 100%, что представляет общее количество карточек.

2. На уроке был математический тест. Тест состоял из 5 вопросов; за три из них давали по три 3 балла за каждый, а за осташиеся два - по четыре балла. Вам удалось правильно ответить на два вопроса по 3 балла и на один вопрос по 4 балла. Какое процентное соотношение баллов Вы получили за этот тест?

Решение:

Общее количество = 3x3 + 2x4 = 17 баллов

Полученные балы = 2x3 + 4 = 10 баллов

Процентное соотношение полученных баллов = 10/17 x 100 = 58,8%

3. Вы купили видео игру за \$40. Потом цены на эти игры подняли на 20%. Какова новая цена видео игры?

Решение:

Увеличение цены равно 40 x 20/100 = \$8

Новая цена равна 40 + 8 = \$48



Статьи по теме: